
B
R

IC
S

R
S

-95-31
P

alsberg
&

Ø
rbæ

k:
Trustin

the
λ

-calculus

BRICS
Basic Research in Computer Science

Trust in the λ-calculus

Jens Palsberg
Peter Ørbæk

BRICS Report Series RS-95-31

ISSN 0909-0878 June 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Trust in the λ-calculus

Jens Palsberg Peter Ørbæk

BRICS∗

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

This paper introduces trust analysis for higher-order languages. Trust
analysis encourages the programmer to make explicit the trustworthiness of
data, and in return it can guarantee that no mistakes with respect to trust will
be made at run-time. We present a confluent λ-calculus with explicit trust
operations, and we equip it with a trust-type system which has the subject
reduction property. Trust information in presented as two annotations of each
function type constructor, and type inference is computable in O(n3) time.

1 Introduction

With todays popular client-server software, server software needs to be very careful
about the input they get from possibly untrustworthy clients. While writing server
software one needs to be permanently aware of which data should be trusted (e.g.,
data coming from local databases or from authenticated clients) and which data
cannot be trusted, such as input coming from unauthenticated clients.

Trust analysis aims to help the programmer write secure systems that cannot
as easily be spoofed into trusting untrustworthy data. On one hand trust analysis
enforces a certain discipline on the programmer, on the other hand it offers some
guarantees that the software doesn’t mistakenly trust untrustworthy data.

In [14] the second author introduced the concept of trust analysis for a simple
first order imperative language using abstract interpretation. This paper extends
trust analysis to a language with higher order functions.
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.

E-mail: {palsberg,poe}@daimi.aau.dk.

1

The remainder of the paper is structured as follows. First we give some intu-
itions about the intended program analysis, the semantics of our example language,
and the type system. Then we present an extension of the λ-calculus together with
an operational reduction semantics. The semantics is shown to have the Church-
Rosser property. We define our static trust analysis in terms of a type system. The
type system is shown to have the Subject Reduction property with respect to the
reduction rules of the semantics. We then relate our type system to the classical
Curry type system for λ-calculus and see that our system is a proper restriction of
Currys system in that it accepts fewer programs. We also state some results relat-
ing reductions in our semantics with reductions in λ-calculus and finally we prove
that well-typed terms are strongly normalizing. Then a type inference algorithm is
presented and proved correct with respect to the type system. Finally we discuss
how to extend the type system to handle recursion and polymorphism, and we relate
trust analysis to other program analyses.

1.1 Motivation

Suppose we are writing a program using a patient database and assume the database
contains sensitive data that should be accessible only to a few privileged people. In
our library we are given two functions:

see-some: PatientId −→ Info
see-all: PatientId −→ Info.

The see-some function returns non-sensitive information related to a patient, whereas
see-all returns all recorded information about a patient.

With ordinary types these two functions seems to be interchangeable, and the
lazy programmer may choose to use see-all at all times because it’s just plain easier to
remember one function than two. Our aim is to force the programmer to distinguish
these two functions. In the type system presented in Section 3 the typings would
be:

see-some: PatientId> >−→Info # ⊥
see-all: PatientId⊥ ⊥−→Info # ⊥ .

Each function (and in general each expression) is associated with a decorated type
and an annotation about the trustworthiness of the value of that expression. An
expression having annotation ⊥ (bottom) is treated as trusted whereas the annota-
tion > (top) means that the value cannot be trusted. Expressions of function type
s

u v−→ t take arguments of decorated type s and these arguments must be at least
as trustworthy as stated by the decoration u. The result of applying the function
will have decorated type t, and the result will be trustworthy only if v is and the
function applied is itself trusted.

2

With this in mind calls to see-all would not be allowed by the type system unless
the actual argument had a trustworthy value, i.e., one derived solely from other
trustworthy values or explicitly blessed into being trusted.

In order to allow programs to implement validity checks on data that subse-
quently should be regarded as trusted, our language includes a trust construct that
behaves as the identity with respect to values, but informs the analysis that the re-
sult should henceforth be regarded as trustworthy. Symmetrically, there is a distrust
construct that “curses” data into being untrusted.

The programmer is thus forced to make explicit when she needs trustworthy data
and when untrusted data will do. Since raising of trustworthiness has to be made
explicit in the program it can be better controlled, and we minimize the risk of using
untrustworthy data (provided by some villain) unintentionally where trusted data
are needed.

There is a third construct in our language: check, which intuitively aborts eval-
uation if the argument is not trustworthy. This would be what forces the type of
see-all above. One might imagine the definition see-all looking like (ML’ish syntax):

fun see-all pid =
let tpid = check pid
in ...

We want a static analysis that can guarantee the programmer that no mistakes
concerning trust exists in the program, i.e., that no untrustworthy data reach a
check. Our decorated type system keeps explicit track of the trust “tags” together,
and in parallel with, the ordinary type of values, and there are no trust tags around
during run-time.

With all of this under our belts, we may now consider the following program
fragment:

credentialsOK: Cred⊥ ⊥−→ Bool # ⊥

fun validateID credentials id g f =
if credentialsOK credentials then // if we are credible

g (trust id) // call the “good” continuation
else

f id // call “failure” continuation
endif

... let info = validateID credentials id see-all see-some
in ...

Assuming credentials is trusted and id untrusted, validateID would get the type:

Cred⊥ ⊥−→PatientId> ⊥−→ (PatientId⊥ ⊥−→Info)⊥ ⊥−→ (PatientId> >−→Info)⊥ >−→ Info .

3

E, F, G, H ::= x | λx.E | EE | trust E | distrust E | check E

Figure 1: The syntax of expressions

If the program is written such that trust occurs only in such validate routines then the
trust analysis will effectively guarantee us that see-all and similarly typed functions
will only be called in situations where the process’ credentials are in order.

Note the close coupling between checking credentials and the application of trust.
This is a central point in the setup. It is here that the static analysis is coupled
with the run-time properties of the program. Trust analysis deals with properties
of data that cannot be decided from the values of that data. In some runs of the
above program, a PatientId number might be trusted whereas in other runs of the
same program that same number might be untrusted. This is a main point where
trust analysis differs from many other program analyses. The differences between
trust analysis and other program analyses is further discussed in Section 5.

In the remainder of the paper the above ideas are formalized in an extension of
the λ-calculus.

2 Syntax and Semantics

This section presents the syntax and operational semantics of the trust language.
Figure 1 defines the syntax of our language.

Variables, lambda abstraction and application behave as usual. Trust E is used
to introduce trusted values in a program. One may view trust as a run-time tag
on values that indicate the trustworthiness of the value. Symmetrically, distrust
indicates untrusted values. The check construct will only reduce on trusted values,
so evaluation may get stuck if an expression check(distrust E) occurs at some point
during evaluation.

2.1 Reduction rules

The reduction (or evaluation) rules for the language are given in Figure 2. Stating
E → E′ means that there is a derivation of that reduction in the system.

There are three kinds of values around during reduction: trusted, distrusted
and untagged. Untagged lambdas are treated as trusted program constants in the
(Lambda Contraction) rules, since lambdas stem from the program text which the
programmer is writing himself and they may therefore be trusted.

In order to facilitate the proof of the Church-Rosser property of the system, the
reduction rules form a reflexive “one step” transition relation. This is inspired by
the proof of Church-Rosser for the ordinary λ-calculus by Tait and Martin-Löf in
[2, pp. 59–62].

4

E → E (Reflex)

E → E′

λx.E → λx.E′

trust E → trust E′

distrust E → distrust E′

check E → check E′

(Sub)

E → trust E′

trust E → trust E′

distrust E → distrust E′

check E → trust E′

(Trust Contraction)

E → distrust E′

trust E → trust E′

distrust E → distrust E′

(Distrust Contraction)

E → check E′

trust E → check E′

check E → check E′

(Check Contraction)

E → λx.E′

trust E → λx.E′

check E → λx.E′

(Lambda Contraction)

E → E′ F → F ′

EF → E′F ′

(λx.E)F → E′[F ′/x]
(distrust (λx.E))F → distrust E′[F ′/x]

(Application)

Figure 2: The reduction rules.

5

E → const
trust E → const
check E → const

(Constant)

T ≡ K ≡ λxy.x (True)
F ≡ λxy.y (False)

if E then F else G ≡ EFG (If)

E → E′ F → F ′

if T then E else F →∗ E′

if F then E else F →∗ F ′

if distrust T then E else F →∗ distrust E′

if distrust F then E else F →∗ distrust F ′

(If)

Figure 3: Example rules.

The contraction rules exist to eliminate redundant uses of our new constructs in
the calculus. For example, trusting an expression twice is the same as trusting it
once (the first (Trust Contraction) rule) and checking the trustworthiness of an ex-
pression followed by explicitly trusting it is the same as just checking the expression.
Checking an explicitly trusted expression succeeds and yields a trusted expression.
Note that there is no rule contracting distrust(check E) since this would allow the
removal of the check on the trustworthyness of E.

In the following we always consider equality of terms modulo α-renaming. Terms
for which no further reductions are possible, i.e ¬∃F 6= E : E → F are said to be
in normal form. There are proper and improper normal forms. A normal form
containing a subterm: check(distrust E′) is said to be improper. All other normal
forms are proper.

As an example of how to extend the language with usual programming con-
structs, we show in Figure 3 how a reduction rule for program constants would look
and the derived rules we get for if-then-else with the usual coding of booleans in
the λ-calculus. Notice how the (Constant) rules are patterned after the (Lambda
Contraction) rules. In Section 5 we also show how to encode a rec construct in the
language.

2.2 Church-Rosser

The Church-Rosser (or confluence) theorem for a reduction system states that for
any term, if the term can reduce to two different terms there exists a successor
term such that both of the two reduced terms can further reduce to that common
successor. A corollary of this is that a normal form is unique if it exists.

6

We write →∗ for the reflexive transitive closure of the reduction relation →.

Theorem 1 (Church-Rosser) For expressions E, F and G. If E →∗ F and
E →∗ G then there is an expression H such that F →∗ H and G →∗ H.

Proof. By the Diamond lemma below (Lemma 7) and Lemma 3.2.2 of [2]. 2

Lemma 2 If E → F and E has a certain structure then some conditions on the
structure of F hold, as made explicit below.

• If trust E1 → F then F = α F1 where α ∈ {check, trust, λx.}.

• If check E1 → F then F = α F1 where α ∈ {check, trust, λx.}.

• If distrust E1 → F then F is of the form distrust F1.

• If λx.E1 → F then F is of the form λx.F1.

Proof. In each case by inspection of the reduction rules. 2

Lemma 3 (Trust/Check Identity) Let α ∈ {trust, check, λx.}.
If E → α E1 then check E → α E1 and trust E → α E1

Proof. By inspection of the reduction rules, especially the contraction rules. 2

Lemma 4 (Symmetry) Let α, β ∈ {trust, distrust}. If α E → α E′ then β E →
β E′

Proof. By induction on the structure of the derivation of α E → α E′, verifying
that in each case there is also a corresponding rule for the opposite combination.

2

Lemma 5 (Pre-Substitution) If E → F then G[E/x] → G[F/x].

Proof. By induction on the structure of G. This is essentially a consequence of the
(Sub) rules and the first (Application) rule. 2

Lemma 6 (Substitution) If E → F and G → H then E[G/x] → F [H/x].

Proof. By induction on the structure of the derivation of E → F . If F = E by the
(Reflex) axiom, we must show that E[G/x] → E[H/x] given that G → H. This is
the Pre-Substitution lemma (5).

For all the rules except the (Application) case: Suppose that α, β, and γ are
in the set {check, trust, distrust, λx.} as appropriate, and β and γ may be empty as
well. Assume the rule

E1 → β F1

E = α E1 → γ F1 = F

7

is the last rule in the derivation of E → F . By the induction hypothesis we get

E1[G/x] → (β F1)[H/x] = β(F1[H/x]).

Now E[G/x] = α E1[G/x] and F [H/x] = γ F1[H/x], and we may now deduce

E1[G/x] → β F1[H/x]
α E1[G/x] → γ F1[H/x]

as required. Of course, in the case of a lambda, if the bound variable is the one
substituted for, nothing happens during substitution, i.e.

E[G/x] = E → F = F [H/x]

as the only rule applicable to the case of α = λx. is the (Sub) rule.
The (Application) cases: If E = E1E2 → F1F2 = F , where E1 → F1 and

E2 → F2 then the result follows directly from the induction hypothesis. Suppose
the last rule in the derivation of E → F was (x 6= y):

E1 → F1 E2 → F2

E = (λy.E1)E2 → F1[F2/y] = F

By the induction hypothesis E1[G/x] → F1[H/x] and similarly for E2. Also E[G/x] =
(λy.E1[G/x])(E2[G/x]) and

F [H/x] = (F1[F2/y])[H/x] = (F1[H/x])[F2[H/x]/y]

where the last equality depends on y not being free in H. This can be assured by
α-renaming H. We may now deduce:

E1[G/x] → F1[H/x] E2[G/x] → F2[H/x]
(λy.E1[G/x])(E2[G/x]) → (F1[H/x])[F2[H/x]/y]

Suppose the last rule in the derivation of E → F was:

E1 → F1 E2 → F2

E = (λx.E1)E2 → F1[F2/x] = F

By the induction hypothesis, E2[G/x] → F2[H/x]. Also E[G/x] = (λx.E1)(E2[G/x])
and

F [H/x] = (F1[F2/x])[H/x] = F1[F2[H/x]/x].

Now

E1 → F1 E2[G/x] → F2[H/x]
(λx.E1)(E2[G/x]) → F1[F2[H/x]/x]

as required. Two similar cases apply to the distrust λx.E case. 2

8

Lemma 7 (Diamond) For expressions E, F and G. If E → F and E → G then
there is an expression H such that F → H and G → H.

Proof. By induction on the derivation of E → F and E → G and by cases on how
F and G must look depending on E.

Depending on E there are a number of applicable rules. In all cases (Reflex) and
(Sub) are applicable.

1. E = λx.E1: none other.

2. E = trust E1:

(a) E → trust E′1 since E1 → trust E′1. (Trust Contraction)

(b) E → λx.E′1 since E1 → λx.E′1. (Lambda Contraction)

(c) E → check E′1 since E1 → check E′1. (Check Contraction)

(d) E → trust E′1 since E1 → distrust E′1. (Distrust Contraction)

3. E = distrust E1:

(a) E → distrust E′1 since E1 → trust E′1. (Trust Contraction)

(b) E → distrust E′1 since E1 → distrust E′1. (Distrust Contraction)

4. E = check E1:

(a) E → trust E′1 since E1 → trust E′1. (Trust Contraction)

(b) E → check E′1 since E1 → check E′1. (Check Contraction)

(c) E → λx.E′1 since E1 → λx.E′1. (Lambda Contraction)

5. E = (λx.E1)E2: E → E′1[E′2/x] since E1 → E′1 and E2 → E′2.

6. E = (distrust λx.E1)E2: E → distrust E′1[E
′
2/x] since E1 → E′1 and E2 → E′2.

If E → F or E → G by (Reflex) then there is no problem, one may just use the
rule applied in the other branch to get to the common successor. Case 1 is easy as
well: there is only one applicable rule except (Reflex) namely (Sub).

The tables below map pairs of “outgoing” reductions to proofs of the correspond-
ing case.

Case 2 2a 2b 2c 2d (Sub)
2a B B C A
2b B C A
2c C A
2d D

9

Case 3 3a 3b (Sub)
3a G F
3b E

Case 4 4a 4b 4c (Sub)
4a B B A
4b B A
4c A

For case 6 the argument is as follows: Here the last rules in the derivation of
E → F and E → G were:

E1 → F1 E2 → F2

E = (distrust λx.E1)E2 → distrust F1[F2/x] = F
(Application)

and

E1 → G1 E2 → G2

E = (distrust λx.E1)E2 → (distrust λx.G1)G2 = G
(Sub)

respectively. By the induction hypothesis there are H1 and H2 such that F1 → H1,
G1 → H1 and F2 → H2, G2 → H2. So by the Substitution lemma (Lemma 6) (and
(Sub)):

F = distrust F1[F2/x] → distrust H1[H2/x] = H

and by (Application)

G = (distrust λx.G1)G2 → distrust H1[H2/x] = H.

Case 5 without distrust is similar.
In each of the cases below, the quest is to find an appropriate common successor

H to F and G.

Case A. Let α ∈ {trust, check} and β ∈ {trust, check, λx.}. The last rules of the
derivation of E → F and E → G were

E1 → β F1

E = α E1 → β F1 = F
(β Contraction)

E1 → G1

E = α E1 → α G1 = G
(Sub)

By the induction hypothesis there is an H1 such that G1 → H1 and β F1 → H1 By
Lemma 2 and the restriction on β; H1 = γ H2 where γ ∈ {trust, check, λx.}. By the
Trust/Check Identity lemma (Lemma 3), G1 → γ H2 implies that α G1 → γ H2 =
H1. So we can use H = H1.

10

Case B. Let α, β, γ ∈ {trust, check, λx} as appropriate. The last rules used in the
derivation of E → F and E → G are:

E1 → β F1

E = α E1 → β F1 = F
(β Contraction)

E1 → γ G1

E = α E1 → γ G1 = G
(γ Contraction)

By the induction hypothesis there is an H1 such that β F1 → H1 and γ G1 → H1.
We may now use H1 as H.

Case C. Let α ∈ {trust, check, λx.}. The two last rules used in the derivation of
E → F and E → G are:

E1 → α F1

E = trust E1 → α F1 = F
(α Contraction)

E1 → distrust G1

E = trust E1 → trust G1 = G
(Distrust Contraction)

By the induction hypothesis we know there exists H1 such that α F1 → H1. Here
Lemma 2 says that H1 = β H2 where β ∈ {check, trust, λx.}. Also by the induction
hypothesis we have distrust G1 → H1. And here Lemma 2 says that H1 = distrust H2!
This is a contradiction so it cannot be the case that both E1 → α F1 and E1 →
distrust G1.

Case D. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = trust E1 → trust F1 = F
(Distrust Contraction)

E1 → G1

E = trust E1 → trust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and G1 → H1.
By Lemma 2 H1 = distrust H2 so

G1 → distrust H2

trust G1 → trust H2
(Distrust Contraction)

By Symmetry (Lemma 4) distrust F1 → distrust H2 implies trust F1 → trust H2. So
we can use trust H2 as H.

11

Case E. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

E1 → G1

E = distrust E1 → distrust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and G1 → H1.
By Lemma 2 H1 = distrust H2. By (Distrust Contraction) G1 → distrust H2 implies
distrust G1 → distrust H2 = H1. So we use H = H1 in this case.

Case F. The two last rules used in the derivation of E → F and E → G are:

E1 → trust F1

E = distrust F1 → distrust F1 = F
(Trust Contraction)

E1 → G1

E = distrust E1 → distrust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that trust F1 → H1 and G1 → H1.
By Lemma 2 H1 = α H2 where α ∈ {trust, check, λx.}.

If α = trust then we have G1 → trust H2 and trust F1 → trust H2 and by Sym-
metry distrust F1 → distrust H2. By (Trust Contraction) we also get distrust G1 →
distrust H2, so here we may use H = distrust H2.

If α = check or α = λx. then by (Sub) we get distrust G1 → distrust (α H2).
Since trust F1 → α H2 one sees by inspection of the rules that for each α there is
just one possible last rule for this reduction so we must have F1 → α H2. Now by
(Sub) we get distrust F1 → distrust (α H2). So here we may use H = distrust (α H2).

Case G. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

E1 → trust G1

E = distrust E1 → distrust G1 = G
(Trust Contraction)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and trust G1 →
H1, but by Lemma 2 this is a contradiction so this case cannot arise.

This concludes the proof of the Diamond lemma. 2

12

u, v, w ::= > | ⊥
s, t ::= base | s

u v−→ t

Figure 4: Syntax of trust-types

3 The Type System

Our decorated type system is based on Currys simple monomorphic type system for
the λ-calculus, also known as simply typed λ-calculus. Figure 4 shows the syntax of
the trust-types. Recall from Section 1.1 that ⊥ means that the value is trusted and
> means that it is untrusted.

Trust-types are subject to a partial ordering ≤, defined on trusts as: ⊥ ≤ > and
extended to types such that two base types are ordered only if they are identical,
and for arrow types:

s
u v−→ t ≤ s′

u′ v′−→ t′ if and only if s′ ≤ s, u′ ≤ u, v ≤ v′ and t ≤ t′

so argument types are ordered contravariantly. This is inspired by the work on
structural subtyping by Mitchell [12] and others.

We denote by t the least upper bound operation on the trust lattice. In Section 5
we discuss several extensions of the type system to cope with recursion, polymor-
phism and more general lattices.

3.1 Rules

A type assumption A is a partial function which takes a program identifier to a pair
of its type and trust. Figure 5 shows the inference rules for the type system. A type
judgment A ` E : t # u means that from the assumptions A we can deduce that the
expression E has type t and is as trustworthy as u.

The rule for variables and the subtyping rule should give no surprises. A lambda
expression occurring in the program is always known to have a function type thus
we can mark all lambdas in the program as trusted. This means that we trust that
a lambda will evaluate to a function, but it says nothing about the arguments and
results of the function. That information is kept in the arrow type.

In the application rule, the trust of the actual argument is required to match the
argument trust coded in the arrow type of the function. The trust of the result of
the application is the least upper bound of the result-trust from the arrow type and
the trust of the function itself. The intuition is that if we cannot trust the function,
we cannot trust the result of applying it.

The three rules for trust, distrust and check show that they behave as the identity
on the type. Trust makes any value trusted and distrust makes any value untrusted.
Check E has a type only if E is trusted. This means that we cannot type improper

13

A ` x : t # u if x ∈ dom(A) and A(x) = 〈t, u〉 (Var)

A ` E : t # u t ≤ t′ u ≤ u′

A ` E : t′# u′
(Sub)

A[x 7→ 〈t, u〉] ` E1 : s# v

A ` λx.E1 : t
u v−→ s# ⊥ (Lambda)

A ` E1 : s
u v−→ t # w A ` E2 : s# u

A ` E1E2 : t # v t w
(App)

A ` E1 : t # u

A ` trust E1 : t # ⊥ (Trust)

A ` E1 : t # u

A ` distrust E1 : t # > (Distrust)

A ` E1 : t # ⊥
A ` check E1 : t # ⊥ (Check)

Figure 5: The type system.

14

�
�
�
�

Z
Z
Z
Z

�
�
�
�

Z
Z
Z
Z

distrust ◦ check : t
⊥ >−→ t

trust: t
> ⊥−→ t

check: t
⊥ ⊥−→ t distrust: t

> >−→ t

Figure 6: The relationship between arrow types

normal forms and together with Subject Reduction (Theorem 9) this ensures the
soundness of the type system.

Figure 6 shows the ordering of arrow types and how the constructs trust, distrust
and check would fit into it.

3.2 Subject Reduction

The main result of this section is the Subject Reduction theorem. The theorem
states that types are invariant under reduction.

Lemma 8 (Substitution) If A[x 7→ 〈s, u〉] ` E : t # v and A ` F : s# u then
A ` E[F/x] : t # v.

Proof. By induction on the derivation of A[x 7→ 〈s, u〉] ` E : t # v. 2

Theorem 9 (Subject Reduction) If A ` E : t # u and E → F then A ` F :
t # u.

Proof. By induction on the structure of the derivation of E → F and by cases on
the structure of E. The (Reflex) case is trivial. In the (Sub) cases the result
follows directly from the induction hypothesis. The type rule (Sub) is applicable in
all cases, so when reasoning “backwards” (as in “when α E has type t then E must
have type t′”) we must take care to handle the case where the (Sub) type rule was
used in between.

For the contraction rules we show just two illustrative cases, the remaining cases
are extremely similar. Suppose the last rule used in the derivation of E → F was

E1 → trust F1

E = trust E1 → trust F1 = F
(Trust Contraction)

By assumption we have A ` trust E1 : t # u so by the rules we must have A ` E1 :
t′# u′ where t′ ≤ t. By the induction hypothesis we now get A ` trust F1 : t′# u′

and again we must have A ` F1 : t′′# u′′ where t′′ ≤ t′. Now by the (Trust)
rule of the type system we get A ` trust F1 : t′′# ⊥ and finally by (Sub) we get
A ` trust F1 : t # u as required.

15

Another case: Suppose the last rule used in the derivation of E → F was

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

By assumption we know A ` distrust E1 : t # u and therefore u = >, so by the rules
we must have A ` E1 : t′# u′ where t′ ≤ t. From the induction hypothesis we get
A ` distrust F1 : t′# u′. By the (Distrust) rule we must have A ` F1 : t′′# u′′ where
t′′ ≤ t′ and u′ = >. By the (Distrust) rule we now get A ` distrust F1 : t′′# > which
via (Sub) yields the required result.

Regarding application: If E = E1E2 → F1F2 = F then the result follows by two
applications of the induction hypothesis.

If the last rule used in the derivation of E → F was

E1 → F1 E2 → F2

E = (distrust(λx.E1))E2 → distrust F1[F2/x] = F
(Application)

then by assumption A ` (distrust(λx.E1))E2 : t # u. By definition of the type rules
this must mean that A ` distrust(λx.E1) : s1

v1 v2−→ t1 # w1 and A ` E2 : s1 # v1 where

t1 ≤ t and v2 t w1 ≤ u. Again, we must also have A ` λx.E1 : s′1
v′1 v′2−→ t′1 # w′1 and it

must be case that w1 = > and thus u = >. Also t′1 ≤ t1, v′2 ≤ v2, v1 ≤ v′1 and s1 ≤ s′1.
Once again by the type rules we must have A[x 7→ 〈s′′1 , v′′1〉] ` E1 : t′′1 # v′′2 where
s′1 ≤ s′′1, v′1 ≤ v′′1 , t′′1 ≤ t′1 and v′′2 ≤ v′2. By the (Sub) rule we get A ` E2 : s′′1 # v′′1 .

We can now apply the induction hypothesis to get A[x 7→ 〈s′′1 , v′′1〉] ` F1 : t′′1 # v′′2
and A ` F2 : s′′1 # v′′1 . By the Substitution lemma (Lemma 8) we now get A `
F1[F2/x] : t′′1 # v′′2 . By the (Distrust) rule we get A ` distrust F1[F2/x] : t′′1 # > and
by (Sub) we get the desired result as t′′1 ≤ t′1 ≤ t1 ≤ t.

The case without distrust is similar. 2

3.3 Comparison with the Curry System

Our type system may be viewed as a restriction of the classic Curry type system for
λ-calculus. This notion is formalized in the following. Define the erasure | · | of a
term as:

x	= x	λx.E	= λx.	E				
E1E2	=	E1		E2		trust E	=	E
distrust E	=	E		check E	=	E		

and likewise the erasure of a trust-type as:

|base| = base |s u v−→ t| = |s| −→ |t|.

The notion of erasure is extended pointwise to environments: |A|(x) = |t| if and
only if A(x) = 〈t, u〉.

The Curry type rules for erased expressions are defined in Figure 7. Here type
assumptions A map program identifiers to Curry types.

16

A `C x : t if x ∈ dom(A) and A(x) = t

A[x 7→ s] `C E1 : t

A `C λx.E1 : s −→ t

A `C E1 : s −→ t A `C E2 : s

A `C E1E2 : t

Figure 7: The Curry type system.

Lemma 10 (Erasure) If s and t are trust types and s ≤ t then |s| = |t|.

Proof. For base-types s ≤ t implies s = t. For arrow types note that by definition of
≤, s and t must have the same arrow structure. So the result follows by an induction
on the common structure of s and t. 2

Theorem 11 If A ` E : t # u then |A| `C |E| : |t|.

Proof. By induction on the derivation of A ` E : t # u.

E = x: By assumption we have x ∈ dom(A) and 〈t, u〉 = A(x). Thus x ∈ dom(|A|)
and |A|(x) = |t|.

E = α E1: Here α ∈ {trust, distrust, check}. By the definition of erasure, |E| = |E1|
and the result follows by induction.

E = λx.E1: By assumption we must have A[x 7→ 〈s1, v1〉] ` E1 : t1 # u1 where
s1

v1 u1−→ t1 ≤ t. By the induction hypothesis |A|[x 7→ |s1|] `C |E1| : |t1|. By
the lambda rule in the Curry system we get |A| `C λx.|E1| : |s1| −→ |t1|. By
definition of erasure and the Erasure lemma we get the desired result.

E = E1E2: By assumption we must have A ` E1 : s1
v1 u1−→ t1 # w1 and A ` E2 :

s1 # v1 where t1 ≤ t and u1 t w1 ≤ u. From the induction hypothesis we get
|A| `C |E1| : |s1| −→ |t1| and |A| `C E2 : |s1|. By the application rule in the
Curry system we get |A| `C |E1E2| : |t1|. Finally by the Erasure lemma we
get the desired result.

2

If there are no subterms of the form check E in a program and the erasure of the
program is Curry typable then the program is trust-typable and all the trusts may
be chosen as >. This idea is formalized below. Define the decoration of a Curry
type as

∆(base) = base
∆(s −→ t) = ∆s

> >−→ ∆t

Extend decorations to Curry type assumptions: (∆A)(x) = 〈∆t, >〉 whenever
A(x) = t. Clearly |∆ t| = t.

17

E → E (Reflex)
E → E′

λx.E → λx.E′
(Sub)

E → E′ F → F ′

EF → E′F ′

(λx.E)F → E′[F ′/x]

(Application)

Figure 8: Reductions in the ordinary λ-calculus.

Theorem 12 If A `C |E| : t and E contains no subterm of the form check E′ then
∆A ` E : ∆t # >.

Proof. By induction on the structure of E.

E = x: By assumption we have x ∈ dom(A) and A(x) = t, so x ∈ dom(∆A) and
(∆A)(x) = 〈∆t, >〉. By the (Var) rule we get ∆A ` x : ∆t # >.

E = λx.E1: By the assumptions and the Curry rules we must have
A[x 7→ s1] `C |E1| : t1 where s1 −→ t1 = t. By induction
∆(A[x 7→ s1]) ` E1 : ∆t1 # >. By the (Lambda) and (Sub) rules of the trust
system, we get ∆A ` λx.E1 : ∆s1

> >−→ ∆t1 # > as required.

E = E1E2: By the assumptions and the Curry rules we must have
A `C |E1| : s −→ t and A `C |E2| : s. By the induction hypothesis we get
∆A ` E1 : ∆(s −→ t)# > and ∆A ` E2 : ∆s# >. By the (App) rule we then
get ∆A ` E1E2 : ∆t # > as required.

E = trust E1: Since |trust E1| = |E1| and A `C |E1| : t by the induction hypothesis
one gets ∆A ` E1 : ∆t # >. Now we may apply the (Trust) and (Sub) rules
to get ∆A ` trust E1 : ∆t # > as wanted. The case for distrust is similar.

This exhausts the possible cases since E was assumed check-free. 2

3.4 Simulation

The aim of this section is to show that for well-typed terms one may erase all the
trust, distrust and check constructs and reduce expressions according to the ordinary
λ-calculus as displayed in Figure 8 (this is taken from Definition 3.2.3 in [2].) We
use the same symbol for this reduction relation as for our own and it will be clear
from the context which reduction relation is meant. Note that the relation defined
in Figure 8 is a subrelation of the reduction relation defined in Figure 2.

More formally the two following simulation theorems show that for well-typed
terms, reduction and erasure commute: | · |◦ →∗ = →∗ ◦| · |.

18

In terms of implementation this means that after typechecking an interpreter may
erase all trust tags and run the program without tags, thus no run-time performance
penalty is paid.

Lemma 13 (Step) If E →∗ α F (α may be empty) and there is a reduction rule

E1 → α F1

β E1 → γ F1

then β E →∗ γ F .

Proof. By induction on the length of the sequence E →∗ α F . If E = α F then by
(Reflex) we have E → α F and we may apply the rule to get β E → γ F and since
→⊆→∗ this is the required result.

Otherwise the last step in the reduction sequence E →∗ α F must look like
E′ → α F , where E →∗ E′ and E′ 6= α F . Now we apply the rule mentioned in the
statement of the lemma:

E′ → α F

β E′ → γ F

By the induction hypothesis one gets (via the (Sub) rule and using β for γ): E →∗ E′

implies β E →∗ β E′. By appending the two reductions we get β E →∗ γ F as we
wanted. In effect we get this derived rule:

E1 →∗ α F1

β E1 →∗ γ F1

Similarly, from

E → G F → H

EF → GH
we get

E →∗ G F →∗ H

EF →∗ GH

2

Some notation: We write E0 = CTD∗F to mean that E0 is produced by the
following grammar, where F is an ordinary term.

E0 ::= check E0 | trust E0 | distrust E0 | F

We also write distrust? E to mean either E or distrust E.

Lemma 14 (CTD) If E = CTD∗(λx.E1), A ` E : t # u and E1 →∗ F1 then
E →∗ distrust? (λx.F1).

19

Proof. By induction on the length of the CTD sequence. Suppose that

CTD∗λx.E1 = (α (β . . . (λx.E1) . . .)).

In the base case (the empty sequence) E1 →∗ F1 implies (via Sub and Step) that
λx.E1 →∗ λx.F1.

Otherwise, there are two cases depending on whether (β . . .) reduces to a lambda
or a distrusted lambda.

Suppose that (β . . .) →∗ λx.F1 by the induction hypothesis then via the Step
lemma and (Lambda Contraction):

α = trust: (trust (β . . .)) →∗ λx.F1.

α = distrust: (distrust (β . . .)) →∗ distrust λx.F1.

α = check: (check (β . . .)) →∗ λx.F1.

Finally, suppose that (β . . .) →∗ distrust λx.F1 by the induction hypothesis then
via the Step lemma and (Distrust Contraction):

α = trust: (trust (β . . .)) →∗ trust λx.F1 and via a (Lambda Contraction) step:
trust λx.F1 → λx.F1.

α = distrust: (distrust (β . . .)) →∗ distrust λx.F1.

α = check: As E is well-typed this case cannot occur since check(distrust E1) is
untypable.

2

Theorem 15 (Simulation 1) If A ` E : t # u and |E| → F then there is a term
G such that E →∗ G and |G| = F .

Proof. By structural induction on E.

E = x: Here |E| = E and the only applicable rule is (Reflex), thus we get E =
F = G.

E = α E1, where α ∈ {trust, distrust, check}. Here we have |E| = |E1|, A ` E1 :
t1 # u1 and |E| = |E1| → F . So by the induction hypothesis there is a G1 such
that E1 →∗ G1 and |G1| = F . By the Step lemma we can deduce:

E1 →∗ G1

E = α E1 →∗ α G1 = G
(Sub)

and the erasure of G is F as required.

20

E = λx.E1: By the assumptions we must have A[x 7→ 〈t1, u1〉] ` E1 : t2 # u2. Also,
|E| = λx.|E1| and F = λx.F1. By the nature of the reduction rules, we must
have |E1| → F1. By the induction hypothesis we know there is a G1 such that
E1 →∗ G1 and |G1| = F1. By the (Sub) rule and the Step lemma we get

E1 →∗ G1

E = λx.E1 →∗ λx.G1 = G
(Sub)

and |G| = λx.|G1| = λx.F1 = F as required.

E = E1E2: By the assumptions E is well-typed thus E1 and E2 are well-typed. By
definition of the reduction rules we must have |E1| → F1 and |E2| → F2. By
the induction hypothesis we get G1 and G2 such that E1 →∗ G1, E2 →∗ G2,
|G1| = F1 and |G2| = F2.

There are two cases depending on the form of |E|:

|E| = not a β-redex: Here F = F1F2 where |E1| → F1 and |E2| → F2 so by the
reasoning above |G1G2| = F and we are done.

|E| = (λx.H1)H2: If F = (λx.F ′1)F2 where H1 → F ′1 and H2 → F2 then also
|E1| = λx.H1 → λx.F ′1 = F1 by (Sub). By the above statements and the
Step lemma we get E →∗ G1G2 and |G1G2| = F .
Otherwise a β-reduction happens. Here H1 → F ′1, H2 → F2 and F =
F ′1[F2/x].
Clearly, E1 must have form CTD∗(λx.Q1) where |Q1| = H1. By the
induction hypothesis there is a Q′1 such that Q1 →∗ Q′1 and |Q′1| = F ′1.
By the CTD lemma E1 →∗ distrust? (λx.Q′1) and by the Subject Reduc-
tion theorem (Theorem 9) we get that distrust? (λx.Q′1) is well-typed.
We may now reason as follows:

E1 →∗ distrust? (λx.Q′1) E2 →∗ G2

E1E2 →∗ (distrust? (λx.Q′1))G2
(Sub + Step)

and

Q′1 → Q′1 G2 → G2

(distrust? (λx.Q′1))G2 → distrust? Q′1[G2/x]
(Application)

since |Q′1| = F ′1 and |G2| = F2:

|distrust? Q′1[G2/x]| = |Q′1[G2/x]| = F ′1[F2/x] = F

as required.

This concludes the proof of the Simulation theorem. 2

Theorem 16 (Simulation 2) If E → F then |E| → |F |.

21

Proof. By induction on the derivation of E → F .

• If E → F by (Reflex) then |E| = |F | and the result holds trivially.

• If E → F by the (Sub) rule. The subterm(s) Ei of E then must reduce Ei → Fi

and by the induction hypothesis |Ei| → |Fi|. We may now apply the (Sub)
rule to these erased terms and get |E| → |F |.

• Let α, β, γ ∈ {trust, distrust, check}. If the last rule in the derivation of E → F
was

E1 → α F1

E = β E1 → γ F1 = F
(α-Contraction)

then |E| = |E1| and |F | = |F1|. By the induction hypothesis we know |E1| →
|F1| which is the desired result.

• If the last rule used in the derivation of E → F was

E1 → λx.F1

E = α E1 → λx.F1 = F
(Lambda Contraction)

where α ∈ {trust, check} then by the induction hypothesis we get |E1| →
λx.|F1| and since |E| = |E1| and |F | = λx.|F1| this is the desired result.

• If the last rule used in the derivation of E → F was

E1 → F1 E2 → F2

E = (distrust λx.E1)E2 → distrust F1[F2/x] = F
(Application)

We have |E| = (λx.|E1|)|E2| and |F | = |F1|[|F2|/x]. By the induction hypoth-
esis |E1| → |F1| and |E2| → |F2|. We may now apply the (Application) rule
to get the desired result. The case for the trusted lambda is similar.

2

3.5 Strong Normalization

In Curry typed λ-calculus all typable terms are strongly normalizing, i.e. they
reduce to a normal form. This result carries over to our language, essentially since
our type system admits fewer terms than the Curry system. On the other hand we
have terms not occurring in the standard λ-calculus and a lot more reduction rules
so this requires a proof.

Theorem 17 (Strong Normalization) If A ` E : t # u then there is a normal
form G′ such that E → G′.

22

Proof. By Theorem 11, A ` E : t # u implies |A| `C |E| : |t|. By the Strong
Normalization theorem for Curry typed λ-calculus [7] there is a Curry normal form
F such that |E| →∗ F . We can now apply the first Simulation theorem (Theorem 15)
to obtain a term G such that E →∗ G and |G| = F .

As |G| = F is a normal form it has no β-redexes, but in G some other reductions
may be applicable. Because of the Church-Rosser theorem, only using contraction
and Sub rules will not block any possible other reduction that might be applicable,
so let G →∗ G′ be such a reduction sequence. In all the contraction rules the number
of {check, trust, distrust} constructs decrease with one. Writing →! for the irreflexive
part of the → relation we have that in the sequence G →! G1 →! · · · →! G′ there
are a finite number of steps (less than the size of G). Thus we may take G′ such
that in G′ no more of these non-β reductions are applicable.

After reaching G′ can it be the case that the contractions revealed a β-redex
in G′? Suppose for a contradiction that this is the case. This means that G′ has
a subterm of the form (distrust? λx.G1)G2. So we have G′ → G′′ by reducing this
redex. By Theorem 16 this means that F = |G′| →! |G′′| and clearly |G′′| 6= F . But
this contradicts the fact the F could be reduced no further! So it cannot be the case
that the final contractions reveal a β-redex, and thus G′ is a normal form. 2

4 Type Inference

The type inference problem is:

Given an untyped program E, is E typable? If so, annotate it.

From Theorem 11 we have that trust typing implies Curry typing. Our type
inference algorithm works by first checking if the program has a Curry type and
then checking a condition that only involves trust values.

4.1 Constraints

The type inference problem can be rephrased in terms of solving a system of con-
straints.

Definition 18 Given two disjoint denumerable sets of variables Vy and Vr, a T-
system is a pair (C, D) where:

• C is a finite set of inequalities X ≤ X ′ between constraint expressions, where
X and X ′ are of the forms V or V

W W ′−→ V ′, and where V, V ′ ∈ Vy and
W, W ′ ∈ Vr.

• D is a finite set of constraint of the forms W ≤ W ′, W = ⊥, or W = >, where
W, W ′ ∈ Vr.

23

A solution for a T-system is a pair of maps (δ, ϕ), where δ maps variables in Vy

to types, and where ϕ maps variables in Vr to trusts, such that all constraints are
satisfied.

If ϕ satisfies all constraints in D, we say that D has solution ϕ. 2

Given a λ-term E, assume that E has been α-converted so that all bound vari-
ables are distinct. Let Vy be the set consisting of:

• A variable [[F]]y for each occurrence of a subterm F of E; and

• A variable xy for each λ-variable x occurring in E.

(The notation [[F]]y is ambiguous because there may be more than one occurrence of
F in E. However, it will always be clear from context which occurrence is meant.)
Intuitively, [[F]]y denotes the type of F after the use of subsumption. Moreover, xy

denotes the type assigned to the bound variable x.
Let Vr be the set consisting of:

• A variable [[F]]r for each occurrence of a subterm F of E; and

• A variable xr for each λ-variable x occurring in E.

• A variable 〈GH〉r for each occurrence of an application GH in E.

(As before, the notation [[F]]r is ambiguous.) Intuitively, [[F]]r denotes the trust value
of F after the use of subsumption. Moreover, xr denotes the trust value assigned to
the bound variable x. Finally, 〈GH〉r denotes the trust value of GH before the use
of subsumption.

From the λ-term E, we generate the T-system (C, D) where:

For each
occurrence in E

We have in C We have in D

x xy ≤ [[x]]y xr ≤ [[x]]r
λx.F xy

xr [[F]]r−→ [[F]]y ≤ [[λx.F]]y

GH [[G]]y ≤ [[H]]y
[[H]]r 〈GH〉r−→ [[GH]]y

[[G]]r ≤ [[GH]]r
〈GH〉r ≤ [[GH]]r

trust F [[F]]y ≤ [[trust F]]y
distrust F [[F]]y ≤ [[distrust F]]y [[distrust F]]r = >
check F [[F]]y ≤ [[check F]]y [[F]]r = ⊥

Denote by T (E) the T-system of constraints generated from E in this fashion.
The solutions of T (E) correspond to the possible type annotations of E in a sense
made precise by Theorem 21.

Let A be a trust-type environment. If δ is a function assigning types to variables
in Vy and ϕ a function assigning trusts to variables in Vr, we say that (δ, ϕ) extend
A if for every x in the domain of A, we have A(x) = 〈δ(xy), ϕ(xr)〉.

24

As a shorthand in the following, we write (δ, ϕ) |= (C, D) to mean that (δ, ϕ) is
a solution to the constraints (C, D). Define also, for two functions δ and δ′ agreeing
on dom(δ) ∩ dom(δ′), δ + δ′ as the unique function on dom(δ) ∪ dom(δ′) that agree
with the two functions on their respective domains.

Lemma 19 (Soundness) If (δ, ϕ) |= T (E), and δ, ϕ extend A then A ` E :
δ([[E]]y)# ϕ([[E]]r).

Proof. By induction on the structure of E. 2

Lemma 20 (Completeness) If A ` E : t # u then there is a solution (δ, ϕ) |=
T (E) with δ and ϕ extending A, and δ([[E]]y) = t and ϕ([[E]]r) = u.

Proof. By induction on the derivation of A ` E : t # u.

E = x: As A ` x : t # u we must have x ∈ dom(A), A(x) = 〈t′, u′〉 and t′ ≤ t, u′ ≤
u. In this case T (E) = {xy ≤ [[x]]y, xr ≤ [[x]]r}. Put δ(xy) = t′ and ϕ(xr) = u′

so that (δ, ϕ) extends A. Finally assign δ([[x]]y) = t and ϕ([[x]]r) = u to satisfy
the constraints.

E = λx.F : By the type rules we must have A[x 7→ 〈s, v〉] ` F : s′# u′ where
s

v u′−→ s′ ≤ t. By the induction hypothesis we get (δ, ϕ) |= T (F), δ([[F]]y) = s′,
ϕ([[F]]r) = u′, and (δ, ϕ) extends A[x 7→ 〈s, v〉]. Now assign δ′ = δ[[[λx.F]] 7→ t]
and ϕ′ = ϕ[[[λx.F]] 7→ u]. Now check that s

v u′−→ s′ ≤ t implies

δ′(xy)
ϕ′(xr) ϕ′([[F]]r)−→ δ′([[F]]y) ≤ δ′([[λx.F]]y)

as required. So we get (δ′, ϕ′) |= T (E).

E = GH: By the type rules we must have A ` G : s′
u′ v′−→ t′# w′, A ` H : s′# u′

where t′ ≤ t and v′ t w′ ≤ u. By the induction hypothesis we get (δ, ϕ) |=
T (G) and (δ′, ϕ′) |= T (H) and both solutions extending A which means that
they agree on their common domain (the xy’s and the xr’s in dom(A)). The
definition of T (E) says

T (E) = T (G) ∪ T (H) ∪ ({[[G]]y ≤ [[H]]y
[[H]]r 〈GH〉r−→ [[GH]]y},

{[[G]]r ≤ [[GH]]r, 〈GH〉r ≤ [[GH]]r}) .

Define δ′′ = δ + δ′[[[GH]]y 7→ t] and ϕ′′ = ϕ + ϕ′[[[GH]]r 7→ u, 〈GH〉r 7→ v′].
Now, (δ′′, ϕ′′) |= T (E) because

δ([[G]]y) = s′
u′ v′−→ t′ ≤ s′

u′ v′−→ t = δ′([[H]]y)
ϕ′([[H]]r) ϕ′′(〈GH〉r)−→ δ′′([[GH]]y)

25

ϕ([[G]]r) = w′ ≤ u = ϕ′′([[GH]]r)
ϕ′′(〈GH〉r) = v′ ≤ u = ϕ′′([[GH]]r) .

and clearly (δ′′, ϕ′′) extend A.

E = check F : From the type rules we must have A ` F : t′# ⊥ where t′ ≤
t. By the induction hypothesis we get (δ, ϕ) |= T (F), δ([[F]]y) = t′, and
ϕ([[F]]r) = ⊥. Now, T (E) = T (F) ∪ {[[F]]y ≤ [[check F]]y, [[F]] = ⊥}. Put
δ′ = δ[[[check F]]y 7→ t] and ϕ′ = ϕ[[[check F]]y 7→ u].

Clearly, δ′, ϕ′ extend A, δ′([[F]]y) ≤ δ′([[check F]]y), and ϕ′([[F]]r) = ⊥ as re-
quired. The cases for trust and distrust are very similar.

2

Theorem 21 The judgement A ` E : t # u is derivable if and only if there exists a
solution (δ, ϕ) of T (E) with (δ, ϕ) extending A such that δ([[E]]y) = t and ϕ([[E]]r) =
u. In particular, if E is closed, then E is typable with type t and trust u if and only
if there exists a solution (δ, ϕ) of T (E) such that δ([[E]]y) = t and ϕ([[E]]r) = u.

Proof. Combine Lemma 19 and 20. 2

4.2 Algorithm

Definition 22 Given a T-system (C, D), define the deductive closure (C̄, D̄) to be
the smallest T-system such that:

• C ⊆ C̄.

• D ⊆ D̄.

• If V1
W1 W2−→ V2 ≤ V ′1

W ′1 W ′2−→ V ′2 is in C̄, then V ′1 ≤ V1 and V2 ≤ V ′2 are in C̄, and
W ′

1 ≤ W1 and W2 ≤ W ′
2 are in D̄.

• If X1 ≤ X2 and X2 ≤ X3 are in C̄, then X1 ≤ X3 is in C̄.

2

Lemma 23 (C, D) and (C̄, D̄) have the same solutions.

Proof. Since C ⊆ C̄ and D ⊆ D̄, any solution of (C̄, D̄) is also a solution of (C, D).
The converse can be proved by induction on the construction of (C̄, D̄). 2

26

If we remove all mentioning of trust and subtyping from the type rules in figure 5
and from the constraints defined earlier in this section, we obtain two equivalent
formulations of Curry typability [16]. Clearly, E is Curry typable if and only if |E|
is Curry typable. The constraint system (written out below) that expresses Curry
typability will be denoted Curry(E).

For each
occurrence in E

We have in Curry(E)

x xy = [[x]]y
λx.F [[λx.F]]y = xy → [[F]]y
GH [[G]]y = [[H]]y → [[GH]]y
trust F [[trust F]]y = [[F]]y
distrust F [[distrust F]]y = [[F]]y
check F [[check F]]y = [[F]]y

If s, t are trust types such that |s| = |t|, then define the operators t|s| and u|t|
as follows.

s t|s| t =


base if s = t = base
(s1 u|s1| t1)

u1uv1 u2tv2−→ (s2 t|s2| t2) if s = s1
u1 u2−→ s2

and t = t1
v1 v2−→ t2

s u|s| t =


base if s = t = base
(s1 t|s1| t1)

u1tv1 u2uv2−→ (s2 u|s2| t2) if s = s1
u1 u2−→ s2

and t = t1
v1 v2−→ t2 .

If t1, . . . , tn are trust types, and s is a Curry type such that |ti| = s for all i ∈ 1..n,
then define

⊔s
i ti = t1 ts . . . ts tn. If t is a Curry type, define

small(base) = base big(base) = base
small(s → t) = big(s) > ⊥−→ small(t) big(s → t) = small(s) ⊥ >−→ big(t)

If s is a trust type and t is a Curry type such that |s| = t, then stt small(t) = s and
s ut big(t) = s. In other words, small(t) is the least trust type with erasure t.

For each a constraint expression X define

L(C, X) = {V1
W1 W ′1−→ V ′1 | V1

W1 W ′1−→ V ′1 ≤ X is in C̄} .

Intuitively, L(C, X) is the set of syntactic lower bounds for X.
We also define the erasure of a constraint expression used in C, mapping trust-

type constraint expressions to Curry constraint expressions:

|V | = V

|V W W ′−→ V ′| = |V | → |V ′|

where V, V ′ ∈ Vy and W, W ′ ∈ Vr.

27

Lemma 24 If T (E) = (C, D), and ψ is a solution to Curry(E), and X1 ≤ X2 is a
constraint in C̄, then ψ(|X1|) = ψ(|X2|).

Proof. By induction on the construction of C̄. 2

Theorem 25 Suppose T (E) = (C, D). Then T (E) is solvable if and only if E is
Curry typable and D̄ is solvable.

Proof. Suppose first that T (E) is solvable. By Theorem 21, E is trust typable. It
follows from Theorem 11 and the remark above that E is Curry typable, and from
Lemma 23 that D̄ is solvable.

For the reverse implication, suppose that Curry(E) has solution ψ and that D̄ has
solution ϕ. We define δ inductively in the Curry types of the constraint variables.

δ(V) = if ψ(|V |) = base then base

else let {Vi
Wi W ′i−→ V ′i } = L(C, V) ∪ {small(ψ(|V |))}

in
⊔

i
ψ(|V |)(δ(Vi)

ϕ(Wi) ϕ(W ′i)−→ δ(V ′i))

To see that δ is well-defined, we need that the Curry types of the variables Vi and

V ′i are of strictly less size than the Curry type of V . For (Vi
Wi W ′i−→ V ′i) ∈ L(C, V),

we get by Lemma 24 that ψ(|Vi
Wi W ′i−→ V ′i |) = ψ(|V |) = s → t for some s, t. This

means that ψ(|Vi|) = s and ψ(|V ′i |) = t which are both of smaller size than s → t,
so δ is well-defined.

To see that (δ, ϕ) is a solution of T (E), consider an inequality X1 ≤ X2 in C.
If ψ(|X1|) = base, then by Lemma 24, ψ(|X2|) = base, δ(X1) = δ(X2) = base, thus
δ(X1) ≤ δ(X2) as required.

In case ψ(|X1|) = s → t, we have by Lemma 24 that ψ(|X2|) = s → t and since
C̄ is transitively closed we get L(C, X1) ⊆ L(C, X2) so δ(X1) ≤ δ(X2) as required.

2

Using the characterization of Theorem 25, we get a type inference algorithm:
Input: A λ-term E of size n.

1: Construct T (E) = (C, D) (in log space).
2: Close (C, D), yielding (C̄, D̄) (in O(n3) time, see for example [15]).
3: Check if E is Curry typable (in O(n) time).
4: Check if D̄ is solvable (in O(n2) time).
5: If E is Curry typable and D̄ is solvable,

then output “typable”
else output “not typable”.

The entire algorithm requires O(n3) time. To construct an annotation of a
typable program, we can use the construction of the second half of the proof of
Theorem 25.

28

5 Extensions and Related Work

In this section we discuss several extensions of the type system and related work.

Recursion. The type system can be extended to handle recursion by adding a
rec rule. In the (untyped) reduction system, the rec combinator can be coded with
the classical Y combinator: rec x.E ≡ Y(λx.E). The following reduction rule is a
derived rule in the λ-calculus and in our system, and correspondingly we would have
a rec rule in the type system:

E →∗ F

YE →∗ F (YE)
A[x 7→ 〈t, u〉] ` E1 : t # u

A ` rec x.E1 : t # u

Subject Reduction still holds, but Strong Normalization of course fails in this case.
The type inference algorithm can also be extended in a straightforward way to deal
with the rec construct.

Polymorphism. ML style let polymorphism can be achieved in the usual way by
replacing let bound variables with their definition. This is of course inefficient as
each definition might then be type-checked many times. The type system can be
extended along the same ideas that extend Curry types to Hindley-Milner types.
An extension of our type inference algorithm remains to be found.

Other Lattices. The values of trust-tags may be extended from the two point
lattice used in this paper to any finite lattice. Extending the lattice to a longer linear
lattice accommodates multiple levels of trust. Extensions to non-linear orderings
may allow different properties of values.

Related Work. The original notion of trust analysis was presented in [14] where
an abstract interpretation [4] analysis and a constraint based analysis for a simple
imperative, first order, language were given. This work extends trust analysis to the
higher order functional case and formalizes it in terms of a decorated type system.

Security flow analysis [5, 13, 1] aims at restricting the flow of confidential in-
formation out of a trusted computer system, dually to our analysis that aims at
preventing untrustworthy information from entering into a secure facility. Also, the
above analyses all deal with procedural, imperative languages without higher-order
functions.

In [12] Mitchell developed the structural subtyping idea and our type system
borrows some of these ideas to handle automatic coercion from trusted data to
untrusted data.

Our type system extends the basic Curry types with annotations in the same
spirit as Talpin and Jouvelot’s effect systems [17], Wright’s annotated types [18] and
others.

29

The idea of accepting fewer programs than a well-known type system is in the
spirit of the refinement types of [6].

Other Analyses. Without support for trust in the type system one might ap-
proximate the same effect by coding the relevant types as sums with a trusted and a
distrusted variant. This has two drawbacks: the values have to be explicitly packed
and unpacked each time they are used and the tags will be present at run-time which
means that hackers might be able to fiddle with these tags and thereby circumvent
the security measures.

As mentioned in Section 1 many other program analyses approximate informa-
tion inherent in the values that exists at run-time. Strictness analysis [3, 11] aims
to find out whether functions in a higher order lazy language are strict or not. This
may not be a decidable property but it is nevertheless a property of a value (func-
tion). In binding time analysis [8] one aims to approximate whether a value can
be computed at compile-time or not. At compile-time this is a property of the val-
ues. Also, this is something that does not change from one compilation of the same
program to the next.

Another kind of analysis that looks related to trust analysis is dynamic typing or
boxing/unboxing analysis [9, 10] which aims to remove type tags as much as possible
in a dynamically typed language. One might be tempted to view, say, distrust as a
boxing operation and trust as the corresponding unboxing operation. However, this
does not explain how check should be interpreted and it doesn’t match with our
application type rule, in that applying a boxed function to an argument does not
necessarily result in a boxed result.

6 Conclusion

We have argued for the usefulness of so-called trust analysis to help programmers
produce safer and more trustworthy software. We have presented an extension of
the λ-calculus together with a reduction semantics. The reduction relation is proved
Church-Rosser. Then we gave a type system that enables the static inference of
the trustworthiness of values and the type system was proved to have the Subject
Reduction property with respect to the semantics of our language.

Last a constraint based type inference algorithm was presented and proved cor-
rect with respect to the type system.

References

[1] Jean-Pierre Banâtre, Ciarán Bryce, and Daniel Le Metayer. Compile-time de-
tection of information flow in sequential programs. In Dieter Gollmann, editor,
Computer Security – ESORICS 94, 3rd European Symp. on Research in Comp.
Security, pages 55–73. Springer-Verlag (LNCS 875), 1994.

30

[2] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, 1981.

[3] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness analysis for
higher-order functions. Science of Computer Programming, 7:249–278, 1986.

[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Fourth ACM Symposium on Principles of Programming Languages,
pages 238–252, 1977.

[5] Dorothy E. Denning and Peter J. Denning. Certifications of programs for secure
information flow. Communications of the ACM, 20(7):504–512, July 1977.

[6] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proc. ACM
SIGPLAN 1991 Conference on Programming Language Design and Implemen-
tation, 1991.

[7] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Number 7
in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989.

[8] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untyped
lambda-calculus. Journal of Functional Programming, 1(1):21–69, 1991.

[9] Fritz Henglein. Dynamic typing. In Proc. ESOP’92, European Symposium on
Programming, pages 233–253. Springer-Verlag (LNCS 582), 1992.

[10] Fritz Henglein and Jesper Jørgensen. Formally optimal boxing. In Proc.
POPL’94, 21st Annual Symposium on Principles of Programming Languages,
pages 213–226, 1994.

[11] Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new perspective
based on type inference. In Proc. Conference on Functional Programming Lan-
guages and Computer Architecture, pages 260–272, 1989.

[12] John Mitchell. Coercion and type inference. In Eleventh Symposium on Prin-
ciples of Programming Languages, pages 175–185, 1984.

[13] Masaaki Mizuno and David Schmidt. A security flow control algorithm and
its denotational semantics correctness proof. Technical Report TR-CS-90-21,
Kansas State University, 1990.

[14] Peter Ørbæk. Can you trust your data? In P. D. Mosses, editor, Proc.
TAPSOFT’95, Theory and Practice of Software Development, pages 575–590.
Springer-Verlag (LNCS 915), 1995.

31

[15] Jens Palsberg. Efficient inference of object types. Information and Computa-
tion. To appear. Also in Proc. LICS’94, Ninth Annual IEEE Symposium on
Logic in Computer Science, pages 186–195, Paris, France, July 1994.

[16] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type infer-
ence. Information and Computation, 118(1):128–141, 1995.

[17] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, 2(3):245–271, 1992.

[18] David A. Wright. A new technique for strictness analysis. In Proc. TAP-
SOFT’91, pages 235–258. Springer-Verlag (LNCS 494), 1991.

32

Recent Publications in the BRICS Report Series

RS-95-31 Jens Palsberg and Peter Ørbæk.Trust in theλ-calculus.
June 1995. 32 pp. To appear inStatic Analysis: 2nd
International Symposium, SAS '95 Proceedings, 1995.

RS-95-30 Franck van Breugel. From Branching to Linear Met-
ric Domains (and back). June 1995. 30 pp. Abstract
appeared in Engberg, Larsen, and Mosses, editors,6th
Nordic Workshop on Programming Theory, NWPT '6 Pro-
ceedings, 1994, pages 444-447.

RS-95-29 Nils Klarlund. An n logn Algorithm for Online BDD
Refinement. May 1995. 20 pp.

RS-95-28 Luca Aceto and Jan Friso Groote.A Complete Equational
Axiomatization for MPA with String Iteration. May 1995.
39 pp.

RS-95-27 David Janin and Igor Walukiewicz.Automata for theµ-
calculus and Related Results. May 1995. 11 pp. To appear
in Mathematical Foundations of Computer Science: 20th
Int. Symposium, MFCS '95 Proceedings, LNCS, 1995.

RS-95-26 Faith Fich and Peter Bro Miltersen. Tables should be
sorted (on random access machines). May 1995. 11 pp. To
appear in Algorithms and Data Structures: 4th Workshop,
WADS '95 Proceedings, LNCS, 1995.

RS-95-25 Søren B. Lassen.Basic Action Theory. May 1995. 47 pp.

RS-95-24 Peter Ørbæk.Can you Trust your Data?April 1995. 15
pp. Appears in Mosses, Nielsen, and Schwartzbach, edi-
tors, Theory and Practice of Software Development.6th In-
ternational Joint Conference CAAP/FASE, TAPSOFT '95
Proceedings, LNCS 915, 1995, pages 575–590.

RS-95-23 Allan Cheng and Mogens Nielsen.Open Maps (at) Work.
April 1995. 33 pp.

RS-95-22 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing
Processes, Late Approach, Part II: A Behavioural Seman-
tics and Full Abstractness. April 1995. 33 pp.

