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From Branching to Linear Metric Domains
(and back)

Franck van Breugel∗

McGill University
School of Computer Science

3480 University Street, Montreal H3A 2A7, Canada

Abstract
A branching and a linear metric domain—both turned into a category—

are related by means of a reflection and a coreflection.

Introduction

Besides partial orders, also metric spaces have turned out to be very useful to
give semantics to programming languages (see, e.g., the collection of papers of the
Amsterdam Concurrency Group [BR92]). In the literature, one encounters two
main classes of metric domains: linear domains and branching domains. Linear
domains were already studied by topologists in the early twenties. Branching
domains have been introduced by, e.g., De Bakker and Zucker [BZ82, BZ83],
Golson and Rounds [GR83, Gol84], and the author [Bre93]. The elements of
these linear and branching domains are convenient to model—one might even
say that they represent—trace equivalence classes and bisimulation equivalence
classes, respectively. The former is a simple observation. The latter has been
proved by Van Glabbeek and Rutten [GR89].

Linear domains are more abstract than branching domains. Our aim is to
show that linear domains can be embedded in branching domains. We focus on
the branching domain B introduced by De Bakker and Zucker in [BZ83] and the
linear domain L the elements of which can be viewed as nonempty and compact
sets of sequences. The elements of the branching domain B can be viewed as
labelled trees.

There is an obvious way to abstract from the branching structure of the
branching domain B arriving at the linear domain L. This abstraction operator—
called linearize operator in the sequel—can be viewed as assigning to a labelled
∗Supported by the Netherlands Organization for Scientific Research.
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tree the set of label sequences corresponding to the paths from the root of the
tree to any of its leaves. For example, to the labelled tree

·

��
a
� � �

� � � ��
a
===

===

·

��
b

·

��
b

· ·

��
a
� � �

� � � ��
b

===

===

· ·

the linearize operator assigns the set of sequences

{ab, aba, abb}.

The linearize operator can be defined conveniently in terms of a metric labelled
transition system. The theory of metric labelled transition systems has been
outlined in the author’s [Bre94a] and has been developed further in his thesis
[Bre94b]. The branching domain B can be seen as a labelled transition system
as De Bakker, Bergstra, Klop, and Meyer noted in [BBKM84]. It can even be
viewed as a compactly branching—being a generalization of finitely branching—
metric labelled transition system. The additional metric structure of a metric
labelled transition system (with respect to a labelled transition systems) is es-
sential in the definition of the linearize operator lin. Similarly, we can linearize
other branching domains like the more involved branching domains—used to
model object-oriented and higher-order features—introduced by Rutten [Rut90]
and De Bakker and the author [BB93].

There are various ways to add branching structure to the linear domain L
arriving at the branching domain B. Some of the branch operators have the
property being a right inverse for the linearize operator. We will focus on two of
these branch operators: branch0 and branch1.

L
//branch0

//branch1
Boo lin

These two branch operators are canonical. The operator branch0 can be charac-
terized as “branch as late as possible” whereas the operator branch1 “branches
as soon as possible (i.e. at the root)”. For example, to the set of sequences

{ab, ac}
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the branch operator branch0 assigns the labelled tree

·

��
a

·

��
b
� � �

� � � ��
c
===

===

· ·

and to the set the branch operator branch1 assigns the labelled tree

·

��
a
� � �

� � � ��
a
===

===

·

��
b

·

��
c

· ·

We detail the relationship between the linearize and branch operators. We
follow the work of Nielsen and Winskel et al. [Win84, SNW93, WN94] using
category theory—in particular functors—to classify domains. The linear and
branching domain are both turned into a generalized metric space. Generalized
metric spaces were already studied by Lawvere [Law73]. Lately, there is a growing
interest in generalized metric spaces (see, e.g., Wagner’s thesis [Wag94], Flagg
and Kopperman’s [FK94] and Rutten’s [Rut95]). The generalized metrics are
obtained from the metrics the domains are endowed with by dropping one half
of the Hausdorff metric [Hau14]. Generalized metric spaces induce very simple
categories, namely preorders. The morphisms of the branching domain can be
seen as simulations and the morphisms of the linear domain can simply be viewed
as inclusion functions. The linearize operator and both the branch operators are
functors. The functors branch0 and branch1 are a right and a left adjoint for the
functor lin . The adjunctions form a reflection and a coreflection1.

L
�� //
� � oo B

Among the branch operators which are a right inverse for the linearize operator
lin , the operator branch0 is final and the operator branch1 is initial.

By means of this reflection and coreflection we have expressed that the linear
domain L can be embedded in the branching domain B in two canonical ways.
For a detailed discussion of the merits of relating domains by means of reflections
and coreflections we refer the reader to the introduction of [WN94].

1We use the term reflection to mean an adjunction the right adjoint of which is full and
faithful. Similarly, the term coreflection is used here to mean an adjunction the left adjoint of
which is full and faithful. Although the same uses can be found in the literature, they are not
entirely standard.
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The linear domain L and the branching domain B are introduced in Section 1
and 2. In the next two sections, the linearize operator lin and the branch opera-
tors branch0 and branch1 are defined. The main results—including the facts that
lin and branch0 form a reflection and that lin and branch1 form a coreflection—are
presented in Section 5. In the concluding section, some related work and future
work is discussed. Appendix A contains some notions from metric topology and
Banach’s fixed point theorem. Banach’s theorem [Ban22] plays a central role. It
is used to define the linear domain L, the branching domain B, the linearize oper-
ator lin , the branching operators branch0 and branch1, and the generalized metric
the branching domain B is endowed with. Furthermore, branch0 and branch1 be-
ing a right inverse for lin and the reflection and coreflection results are proved
by means of Banach’s theorem. In Appendix B, some of the theory on (metric)
labelled transition systems is developed. We assume that the reader is familiar
with the basics of category theory. For further reading we refer the reader to Mac
Lane’s standard work [ML71]. Some proofs have been sent to Appendix C.

Acknowledgements
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like to thank BRICS for the financial support making this visit possible. The au-
thor has benefitted from discussions with Jaco de Bakker, Michael Barr, Claudio
Hermida, Bart Jacobs, Mogens Nielsen, Jaap van Oosten, Prakash Panangaden,
Jan Rutten, Vladimiro Sassone, and Glynn Winskel, and from presenting this
material at a seminar of the Centre de Recherche en Theorie des Categories.

1 A linear domain

Both the linear and the branching domain are defined in terms of a set (a, b, c ∈)2

A of actions. This set is turned into a complete metric space (see Definition A.1
and A.5) by endowing it with the discrete metric (see Definition A.2).

The linear domain is defined in two steps. In the first step, the complete
metric space A∞ is defined in terms of the complete metric space A, the singleton
metric space 1 containing 0 as single element, and the operations 1

2 ·, ×, and +
(see Definition A.3).

Definition 1.1 The complete metric space (σ ∈)A∞ is the unique complete
metric space satisfying

A∞ ∼= A × 1
2 · (1 + A∞).

2We use the notation (x ∈)X for the introduction of a set or metric space X with typical
elements x, x′, x0, . . .
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The fact that there exists a unique (up to isometry) complete metric space A∞

being isometric3 (see Definition A.11) to the complete metric space A× 1
2 ·(1+A∞)

follows from Theorem 4.4 of America and Rutten’s [AR89]. The proof of this
theorem relies on Banach’s theorem.

The elements of the complete metric space A∞ can be viewed as nonempty
and finite or infinite sequences over the action set A. For example, the element

〈a, 〈b, 0〉〉

corresponds to the finite sequence ab and the infinite sequence aω corresponds to
the element

〈a, 〈a, · · ·〉〉.

The metric mA∞ is a Baire-like metric [Bai09]. For example,

mA∞ (〈a, 〈b, 0〉〉, 〈a, 〈a, · · ·〉〉)
= (mA × 1

2 · (m1 + mA∞)) (〈a, 〈b, 0〉〉, 〈a, 〈a, · · ·〉〉)
= max {mA (a, a), 1

2 · mA∞ (〈b, 0〉, 〈a, · · ·〉)}
= max {0, 1

2 · (mA × 1
2 · (m1 + mA∞)) (〈b, 0〉, 〈a, · · ·〉)}

= max {0, 1
2 · max {mA (b, a), 1

2 · mA∞ (0, · · ·)}}
= max {0, 1

2 · max {1, 1
2 · 1}}

= 1
2 .

In the second step, the linear domain L is defined in terms of the singleton
metric space 1, the complete metric space A∞, and the operations + and Pnk

(see Definition A.7).

Definition 1.2 The complete metric space (L ∈)L is defined by

L = 1 + Pnk (A∞).

The elements of the linear domain, the linear processes, can be viewed as sets
of sequences. The element 0 of the singleton metric space 1 can be seen as the
singleton set consisting of the empty sequence. All other elements of the linear
domain can be viewed as nonempty and compact (see Definition A.6) sets of
nonempty sequences.

In Section 5, we will discuss (half of) the metric mL in some detail (see
Property 5.3).

The elements of the linear domain L represent (infinitary completed) trace
equivalence classes (see, e.g., Section 2.7 of Van Glabbeek’s [Gla90]). Let (C, A, →)
be a finitely branching labelled transition system (see Definition B.1 and B.2).

3We shall treat the isometry as an identity and thus elide its use. It can be put in without
any difficulties, but will clutter up the presentation.
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According to Property B.3, the labelled transition system induces a contractive
(see Definition A.12) function Φ(C,A,→) from the nonempty complete metric space
C → L to itself. From Banach’s theorem we can deduce that the function has a
unique fixed point

fix (Φ(C,A,→)) : C → L.

One can easily verify that, for all c0, c1 ∈ C, c0 and c1 are trace equivalent if and
only if

fix (Φ(C,A,→))(c0) = fix (Φ(C,A,→))(c1).

That is, there is a one-to-one correspondence between the trace equivalence classes
(of the labelled transition system (C, A, →)) and the linear processes (in the image
of fix (Φ(C,A,→))).

2 A branching domain

The branching domain B is defined in terms of the complete metric space A, the
singleton metric space 1, and the operations 1

2 ·, ×, +, and Pnk .

Definition 2.1 The complete metric space (B ∈)B is the unique complete met-
ric space satisfying

B ∼= 1 + Pnk (A × 1
2 · B).

Again we conclude from Theorem 4.4 of [AR89] that such a complete metric
space exists.

The elements of the branching domain, the branching processes, can be viewed
as labelled trees with the following three properties. First of all, the labelled trees
are commutative, i.e. for all nodes of a tree, its subtrees are not ordered. For
example, the labelled trees

·

��
a
� � �

� � � ��
b

===

===

·

��
a
� � �

� � � ��
b

===

===

·

· ·

and

·

��
b
� � �

� � � ��
a
===

===

· ·

��
b
� � �

� � � ��
a
===

===

· ·

are identified by commutativity, and both correspond to the branching process

{〈a, {〈a, 0〉, 〈b, 0〉}〉, 〈b, 0〉}.

6



Second, the labelled trees are absorptive, i.e. for all nodes of a tree, the collection
of its subtrees contains no duplicates. For example, the labelled tree

·

��
a
===

===��
a

��
a
� � �

� � �·

��
b

===

===��
b

��
b
� � �

� � �

· ·

· · ·

is not absorptive. By absorption we obtain the tree

·

��
a
===

===��
a
� � �

� � �·

��
b

·

·

This labelled tree corresponds to the branching process

{〈a, {〈b, 0〉}〉, 〈a, 0〉}.

From the first and the second property we can conclude that, for all nodes of a
labelled tree, the collection of its subtrees is a set. Third, the trees are compactly
branching, i.e. for all nodes of a tree, the set of its subtrees—corresponding to
branching processes—is compact (with respect to the metric mB). For example,
the labelled tree

·

ww
a p
p p p
p p

p p p
p p p ��

a
� � �

� � � ��
· · ·a

&&
a
MMM

MMM

MMM
MMM

· ·

��
a

·

��
a

·

��
a

· ·

��
a

·

��
a

· ·...
including the infinite branch is compactly branching. It corresponds to the
branching process

{〈a, 0〉, 〈a, {〈a, 0〉}〉, 〈a, {〈a, {〈a, 0〉}〉}〉, . . . , 〈a, {〈a, {〈a, · · ·〉}〉}〉}.

If we would leave out the infinite branch, the labelled tree would not be compactly
branching any more.

The branching domain B has been introduced by De Bakker and Zucker (see
Theorem 3.2 of [BZ83]). In Section 5 we will discuss (half of) the metric mB (see
Property 5.3).
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Van Glabbeek and Rutten [GR89] have shown that the elements of the branch-
ing domain B represent bisimulation equivalence classes—bisimulation is a notion
due to Milner and Park [Mil80, Par81, Mil94]. Let (C, A, →) be a finitely branch-
ing labelled transition system. According to Property B.4, the labelled transition
system induces a contractive function Ψ(C,A,→) from the nonempty complete met-
ric space C → B to itself. As a consequence of Banach’s theorem the function
has a unique fixed point

fix (Ψ(C,A,→)) : C → B.

Van Glabbeek and Rutten have proved in Theorem 1 of [GR89] that, for all c0,
c1 ∈ C, c0 and c1 are bisimilar if and only if

fix (Ψ(C,A,→)) (c0) = fix (Ψ(C,A,→)) (c1),

i.e. there is a one-to-one correspondence between the bisimulation equivalence
classes (of the labelled transition system (C, A, →)) and the branching processes
(in the image of fix (Ψ(C,A,→))).

3 A linearize operator

The linearize operator is defined by means of the theory of (metric) labelled tran-
sition systems. As De Bakker, Bergstra, Klop, and Meyer noted in Remark 4.3
of [BBKM84], the branching domain B can be viewed as a labelled transition
system. The configurations of the labelled transition systems are the branching
processes. As action set we take the set A. The transition relation is presented
in

Definition 3.1 The transition relation → ⊆ B × A × B is defined by

B
a

−→ B′ if and only if 〈a, B′〉 ∈ B.

There exists a function

fix (Φ(B,A,→)) : B → L
according to Property B.3 and Banach’s theorem, provided that the labelled
transition system is finitely branching (see Definition B.2). However, the labelled
transition system is not finitely branching. For example,

{〈a, 0〉, 〈a, {〈a, 0〉}〉, 〈a, {〈a, {〈a, 0〉}〉}〉, . . . , 〈a, {〈a, {〈a, · · ·〉}〉}〉}

ss

a f f f f
f f f f f f

f f f f

f f f f f f
f f f f f f

f f
uu

a l l
l l l l
l l l

l l l l l ��
a

,,
aYYY

YYYYYYY
YYYYYYY

YYYYYYY
YY

0 {〈a, 0〉}oo a {〈a, {〈a, 0〉}〉}oo a · · · {〈a, {〈a, {〈a, · · ·〉}〉}〉}
G F E Da B C

oo

By endowing the branching processes with their metric mB and the actions
with the discrete metric we obtain a metric labelled transition system (see Def-
inition B.5). This metric labelled transition system is compactly branching (see
Definition B.6).
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Property 3.2 The metric labelled transition system (B, A, →) is compactly
branching.

Proof We have that, for all B ∈ B,

T (B) =
{

∅ if B = 0
B otherwise

Obviously, the metric labelled transition system is compactly branching. 2

According to Property B.7 and Banach’s theorem, there exists a function

fix (Υ(B,A,→)) : B →1 L.

This is the aimed for linearize operator.

Definition 3.3 The function lin : B →1 L is defined by

lin = fix (Υ(B,A,→)).

The function lin is the unique function lin : B →1 L satisfying

lin (B) =


0 if B = 0
{ 〈a, σ〉 | 〈a, B′〉 ∈ B ∧ σ ∈ lin (B′) }∪
{ 〈a, 0〉 | 〈a, 0〉 ∈ B } otherwise

For example, to the branching process

{〈a, {〈b, 0〉}〉, 〈a, {〈b, {〈a, 0〉, 〈b, 0〉}〉}〉}

corresponding to the labelled tree

·

��
a
� � �

� � � ��
a
===

===

·

��
b

·

��
b

· ·

��
a
� � �

� � � ��
b

===

===

· ·

the linearize operator assigns the linear process

{〈a, 〈b, 0〉〉, 〈a, 〈b, 〈a, 0〉〉〉, 〈a, 〈b, 〈b, 0〉〉〉}

corresponding to the set of sequences

{ab, aba, abb}.
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The technique of viewing the branching domain as a compactly branching
metric labelled transition system and deriving from it a linearize operator as
described above can also be applied to more involved branching domains.

In Definition 7.1 of [Rut90], Rutten has introduced the linearize operator abstr
to abstract from the branching structure of a branching domain (introduced in
Definition 5.1 of [Rut90]).The well-definedness proof of abstr is far from trivial
(cf. Appendix II of [Rut90]). The branching domain can be viewed as a compactly
branching metric labelled transition system and the linearize operator abstr can
be defined as fix (Υ ).

The branching domain introduced by De Bakker and the author in Defini-
tion 4.5 of [BB93] can also be linearized in this way. For details we refer the reader
to Chapter 10 of [Bre94b] (see Definition 10.4.14 and Proposition 10.4.15).

4 Two branch operators

The two branch operators branch0 and branch1 are both defined by means of the
theory of (metric) labelled transition systems. As in the previous section, we view
the linear domain as a labelled transition system. This time, the linear processes
are the configurations of the labelled transition system. Again we take the set A
as the action set. Two transition relations are presented in

Definition 4.1

• The transition relation →0 ⊆ L × A × L is defined by

L
a

−→0 L′ if and only if L′ = a\L, or 〈a, 0〉 ∈ L and L′ = 0,

where

a\L = {σ | 〈a, σ〉 ∈ L }.

• The transition relation →1 ⊆ L × A × L is defined by

L
a

−→1 L′ if and only if 〈a, σ〉 ∈ L and L′ = {σ}, or 〈a, 0〉 ∈ L and L′ = 0.

The first transition relation “branches as late as possible” and the second one
“branches as soon as possible”. For example, the transition relation →0 gives rise

10



to
{〈a, 〈b, 0〉〉, 〈a, 〈b, 〈a, 0〉〉〉, 〈a, 〈b, 〈b, 0〉〉〉}

��
a

{〈b, 0〉, 〈b, 〈a, 0〉〉, 〈b, 〈b, 0〉〉}

++
b
WWWWW

WWWW

WWWWW
WWWW

��

b {〈a, 0〉, 〈b, 0〉}

ss

a g g g g
g g g g g

g g g g g g
g g g g g g

g g gss

b g g g
g g g g g g

g g g g g g
g g g g g g

g g g g

0

whereas the transition relation →1 gives rise to

{〈a, 〈b, 0〉〉, 〈a, 〈b, 〈a, 0〉〉〉, 〈a, 〈b, 〈b, 0〉〉〉}

vv
a n n
n n n
n n

n n n n

��

a

((
a
PPP

PPP
P

PPPP

{〈b, 〈b, 0〉〉}

&&
b
NNNN

N

NNNN
N

{〈b, 〈a, 0〉〉}

��
b

{〈b, 0〉}

''

b
OOO

O

OOO
OOO

O

{〈a, 0〉}

��
a

0

The transition relation →0 gives rise to a finitely branching labelled transition
system.

Property 4.2 The labelled transition system (L, A, →0) is finitely branching.

Proof We have that, for all L ∈ L,

T (L) =
{

∅ if L = 0
{ 〈a, a\L〉 | a\L 6= ∅ } ∪ { 〈a, 0〉 | 〈a, 0〉 ∈ L } otherwise

Since the set A is endowed with the discrete metric and the set L, with L 6= 0, is
compact, the set T (L) is finite. 2

Property B.4 and Banach’s theorem give us the branch operator branch0.

Definition 4.3 The function branch0 : L → B is defined by

branch0 = fix (Ψ(L,A,→0)).

11



The function branch0 is the unique function branch0 : L → B satisfying

branch0 (L) =


0 if L = 0
{ 〈a, branch0 (a\L)〉 | a\L 6= ∅ }∪
{ 〈a, 0〉 | 〈a, 0〉 ∈ L } otherwise

The transition relation →1 does not give rise to a finitely branching labelled
transition system. For example,

{〈a, 0〉, 〈a, 〈a, 0〉〉, 〈a, 〈a, 〈a, 0〉〉〉, . . . , 〈a, 〈a, 〈a, · · ·〉〉〉}

ss

a g g g
g g g g g g

g g g g

g g g g g g
g g g g g g

g g
vv

a l l
l l l l
l l

l l l l ��
a

++
aXXX

XXXXXX
XXXXXX

X

XXXXXX
XX

0 {〈a, 0〉}oo a {〈a, 〈a, 0〉〉}oo a · · · {〈a, 〈a, 〈a, · · ·〉〉〉}
G F E Da B C

oo

We endow the linear processes with mL and the actions with the discrete metric.
The obtained metric labelled transition system is compactly branching.

Property 4.4 The metric labelled transition system (L, A, →1) is compactly
branching.

Proof We have that, for all L ∈ L,

T (L) =
{

∅ if L = 0
{ 〈a, {σ}〉 | 〈a, σ〉 ∈ L } ∪ { 〈a, 0〉 | 〈a, 0〉 ∈ L } otherwise

Clearly, the metric labelled transition system is compactly branching. 2

From Property B.8 and Banach’s theorem we obtain the branching operator
branch1 as follows.

Definition 4.5 The function branch1 : L →1 B is defined by

branch1 = fix (Θ(L,A,→1)).

The function branch1 is the unique function branch1 : L →1 B satisfying

branch1 (L) =


0 if L = 0
{ 〈a, branch1 ({σ})〉 | 〈a, σ〉 ∈ L }∪
{ 〈a, 0〉 | 〈a, 0〉 ∈ L } otherwise

For example, to the linear process

{〈a, 〈b, 0〉〉, 〈a, 〈c, 0〉〉}

corresponding to the set of sequences

{ab, ac}
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the branch operator branch0 assigns the branching process

{〈a, {〈b, 0〉, 〈c, 0〉}〉}

corresponding to the labelled tree

·

��
a

·

��
b
� � �

� � � ��
c
===

===

· ·

The branch operator branch1 assigns to the above linear process the branching
process

{〈a, {〈b, 0〉}〉, 〈a, {〈c, 0〉}〉}

corresponding to the labelled tree

·

��
a
� � �

� � � ��
a
===

===

·

��
b

·

��
c

· ·

Both branch0 and branch1 are a right inverse for lin.

Property 4.6 lin ◦ branch0 = idL and lin ◦ branch1 = idL.

Proof We only prove the first equality. One can easily verify that

Φ(L,A,→0) (lin ◦ branch0) = lin ◦ branch0

and

Φ(L,A,→0) (idL) = idL.

Since Φ(L,A,→0) is a contractive function from a nonempty complete metric space
to itself, it has a unique fixed point according to Banach’s theorem. Consequently,
lin ◦ branch0 and idL are equal. 2
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5 A reflection and a coreflection

The linear and the branching domain are systematically turned into a category.
We drop one half of the Hausdorff metric (see Definition A.7) in the definition
of the metrics mL and mB. Lawvere studied this half of the Hausdorff metric in
some detail (see the introduction of [Law73]). By dropping half of the Hausdorff
metric we do not obtain a metric but a generalized metric.

Definition 5.1 A (1-bounded) generalized metric space is a pair (X, gX) consist-
ing of

• a set X and

• a function gX : X × X → [0, 1], called generalized metric, satisfying, for all
x, y, z ∈ X,

∗ gX (x, x) = 0 and

∗ gX (x, z) ≤ gX (x, y) + gX (y, z).

In contrast with a metric, a generalized metric might assign to a pair (x, y),
with x 6= y, the value 0. (Furthermore, a generalized metric need not be sym-
metric.) One can easily verify that, given a generalized metric space (X, gX ),

x ≤ y if gX (x, y) = 0

defines a preorder on X (and hence a category with the elements of X as objects).
The generalized metrics on L and B are presented in

Definition 5.2

• The function gL : L × L → [0, 1] is defined by

gL (L0, L1) =


0 if L0, L1 = 0
sup { inf {mA∞ (σ0, σ1) | σ1 ∈ L1 } | σ0 ∈ L0 } if L0, L1 6= 0
1 otherwise

• The function gB : B × B → [0, 1] is the unique function satisfying

gB (B0, B1) =


0 if B0, B1 = 0
sup { inf {max {mA (a0, a1), 1

2 · gB (B′0, B′1)}
| 〈a1, B′1〉 ∈ B1 } | 〈a0, B′0〉 ∈ B0 } if B0, B1 6= 0

1 otherwise

Note that the definition of gB is recursive. This definition is justified in Ap-
pendix C.

The generalized metrics gL and gB are characterized in
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Property 5.3

1. For all L0, L1 ∈ L, with L0, L1 6= 0, and ε, with 0 ≤ ε < 1, gL (L0, L1) ≤ ε if
and only if for all σ0 ∈ L0 there exists a σ1 ∈ L1 such that mA∞ (σ0, σ1) ≤ ε.

2. For all B0, B1 ∈ B, with B0, B1 6= 0, and ε, with 0 ≤ ε < 1, gB (B0, B1) ≤ ε
if and only if for all 〈a, B′0〉 ∈ B0 there exists a 〈a, B′1〉 ∈ B1 such that
gB (B′0, B′1) ≤ 2 · ε.

Proof See Appendix C. 2

From the above property we can conclude that the morphisms of the linear
domain are inclusion functions. The morphisms of the branching domain can be
seen as simulations (see, e.g., Section 2.8 of [Gla90]) which preserve configurations
with no outgoing transitions—recall that the branching domain can be viewed as
a labelled transition system.

Having turned the linear and the branching domain into a category, we are
ready to prove the main results of this paper. In Property 5.4, we prove that

1. lin is a functor,

2. branch0 is a functor,

3. branch1 is a functor,

4. branch0 is a right adjoint for lin ,

5. branch1 is a left adjoint for lin,

6. branch0 is full, and

7. branch1 is full.

Since functors on preorders are faithful, we can conclude from 4. and 6. that lin
and branch0 form a reflection and from 5. and 7. that lin and branch1 form a
coreflection.

Property 5.4 For all L, L0, L1 ∈ L and B, B0, B1 ∈ B,

1. if gB (B0, B1) = 0 then gL (lin (B0), lin (B1)) = 0,

2. if gL (L0, L1) = 0 then gB (branch0 (L0), branch0 (L1)) = 0,

3. if gL (L0, L1) = 0 then gB (branch1 (L0), branch1 (L1)) = 0,

4. gL (lin (B), L) = 0 if and only if gB (B, branch0 (L)) = 0,

5. gL (L, lin (B)) = 0 if and only if gB (branch1 (L), B) = 0,
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6. if gB (branch0 (L0), branch0 (L1)) = 0 then gL (L0, L1) = 0, and

7. if gB (branch1 (L0), branch1 (L1)) = 0 then gL (L0, L1) = 0.

Proof We only treat the fifth case. All other cases can be dealt with similarly.
The proof is divided into two parts.

We first prove that, for all L ∈ L and B ∈ B,

if gL (L, lin (B)) = 0 then gB (branch1 (L), B) = 0.

We define, for all n ∈ IN, the function υn : L →1 B by

υn (L) =
{

0 if n = 0
Υ(L,A,→1) (υn−1)(L) otherwise

We prove that, for all n ∈ IN, L ∈ L, and B ∈ B,

if gL (L, lin (B)) = 0 then gB (υn (L), B) ≤ 2−n

by induction on n. The above is vacuously true if n = 0. Let n > 0. By definition,

υn (L) = { 〈a, υn−1 ({σ})〉 | 〈a, σ〉 ∈ L } ∪ { 〈a, 0〉 | 〈a, 0〉 ∈ L }.

According Property 5.3.2, it suffices to prove

1. if 〈a, σ〉 ∈ L then there exists a 〈a, B′〉 ∈ B such that
gB (υn−1 ({σ}), B′) ≤ 2−(n−1) and

2. if 〈a, 0〉 ∈ L then 〈a, 0〉 ∈ B.

We start with 1.

〈a, σ〉 ∈ L

⇒ 〈a, σ〉 ∈ lin (B) [gL (L, lin (B)) = 0, Property 5.3.1]
⇒ ∃〈a, B′〉 ∈ B : σ ∈ lin (B′)
⇒ ∃〈a, B′〉 ∈ B : gL ({σ}, lin (B′)) [Property 5.3.1]
⇒ ∃〈a, B′〉 ∈ B : gB (υn−1 ({σ}), B′) ≤ 2−(n−1) [induction]

We continue with 2.

〈a, 0〉 ∈ L

⇒ 〈a, 0〉 ∈ lin (B) [gL (L, lin (B)) = 0, Property 5.3.1]
⇒ 〈a, 0〉 ∈ B.
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We can conclude that, for all L ∈ L and B ∈ B, if gL (L, lin (B)) = 0 then

∀n ∈ IN : gB (υn (L), B) ≤ 2−n

⇒ lim
n

gB (υn (L), B) = 0

⇒ gB (lim
n

υn (L), B) = 0 [Property C.4]

⇒ gB ((lim
n

υn) (L), B) = 0

⇒ gB (branch1 (L), B) = 0 [Banach’s theorem]

Second, for all L ∈ L and B ∈ B,

gB (branch1 (L), B) = 0
⇒ gL (lin (branch1 (L)), lin (B)) = 0 [Property 5.4.1]
⇒ gL (L, lin (B)) = 0 [Property 4.6]

2

Of the functor category L → B we consider the full subcategory of right
inverses for lin . In this subcategory,

1. branch0 is final and

2. branch1 is initial

as is shown in

Property 5.5 For all branch : L → B, with lin ◦ branch = idL,

1. gL→B (branch, branch0) = 0 and

2. gL→B (branch1, branch) = 0.

Proof We only consider the second case. Let L ∈ L. Since gL (L, L) = 0
and lin ◦ branch = idL, we have that gL (L, lin (branch (L))) = 0. According to
Property 5.4.5, gB (branch1 (L), branch (L)) = 0. Consequently, we can conclude
that gL→B (branch1, branch) = 0. 2

Related and future work

We briefly discuss some related work.
In Section 4 and 5 of [WN94], Winskel and Nielsen have presented a category

of synchronization trees S and a category of languages L. The morphisms of the
fibred categories SA and LA are simulations and inclusion functions, respectively.
The category LA has been reflectively (but not coreflectively) embedded in SA.

LA
� � oo SA
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The categories SA and LA have been related to various other categories in [WN94]
(see also [SNW93]).

In Section 8 of [Rut95], Rutten has introduced the notion of a pair of (nonex-
pansive) functions between two generalized metric spaces being a metric adjoint
pair. Neither lin and branch0 nor lin and branch1 form a metric adjoint pair.

From Corollary 4.9 of Rutten and Turi’s [RT92] we can conclude that B forms
an initial algebra and a final coalgebra. By providing L with algebraic and
coalgebraic structures we can define the linearize and branch operators as the
unique morphisms from the initial algebra and to the final coalgebra.

Property 5.4 can also be proved by means of the ε ≤ 1
2 · ε (coinductive) proof

principle (see, e.g., page 174 of [ABKR89]).
We conclude with some topics for future research.
Besides dropping one half of the Hausdorff metric in the definitions of the

generalized metrics gL and gB, we can also drop one half of the disjoint union
(see Definition A.3):

(gX ; gY ) (v, w) =


gX (v, w) if v, w ∈ X
gY (v, w) if v, w ∈ Y
0 if v ∈ X and w ∈ Y
1 otherwise

The above can be viewed as one half of the disjoint union as we have that

mX + mY = max {mX ; mY , mY ; mX}.

The preorder corresponding to gX ; gY (see page 14) is the concatenation (as
defined, e.g., in Section 2.4 of [Pra86]) of the preorders corresponding to gX and
gY . We conjecture that in this setting Property 5.4 and 5.5 are still valid.

We are interested to see whether constructions like the sequential composi-
tion of branching processes (as defined in, e.g., Definition 2.14 of [KR90]) are
universal.
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A Metric spaces

We present some notions from metric topology and Banach’s fixed point theorem.
For further details on (metric) topology we refer the reader to Engelking’s stan-
dard work [Eng89]. We start with the definition of a basic notion: a 1-bounded
metric space.

Definition A.1 A (1-bounded) metric space is a pair (X, mX) consisting of

• a set X and

• a function mX : X×X → [0, 1], called metric, satisfying, for all x, y, z ∈ X,

∗ mX (x, y) = 0 if and only if x = y,

∗ mX (x, y) = mX (y, x), and

∗ mX (x, z) ≤ mX (x, y) + mX (y, z).

To simplify notations, we shall usually write X instead of (X, mX) and denote
the metric of a metric space X by mX .

Two examples of a metric are presented in

Definition A.2

• Let X be a set. The discrete metric mX : X × X → [0, 1] is defined by

mX (x, y) =
{

0 if x = y
1 if x 6= y

• The Euclidean metric m[0,1] : [0, 1] × [0, 1] → [0, 1] is defined by

m[0,1] (x, y) = |x − y|.

From metric spaces one can build new metric spaces by extending operations
on sets like the Cartesian product × and the disjoint union + to metrics.

Definition A.3 Let X and Y be metric spaces.

• For all ε, with 0 < ε ≤ 1, the metric ε · mX : X × X → [0, 1] is defined by

(ε · mX) (x, y) = ε · mX (x, y).

• The metric mX × mY : (X × Y ) × (X × Y ) → [0, 1] is defined by

(mX × mY ) (〈v, w〉, 〈x, y〉) = max {mX (v, x), mY (w, y) }.
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• The metric mX + mY : (X + Y ) × (X + Y ) → [0, 1] is defined by

(mX + mY ) (v, w) =


mX (v, w) if v, w ∈ X
mY (v, w) if v, w ∈ Y
1 otherwise

Below we will encounter some other operations on metrics.
The completeness of a metric space is essential in Banach’s theorem. Before

we introduce this notion, we first present the definitions of converging and Cauchy
sequence.

Definition A.4 Let X be a metric space. Let (xn)n be a sequence in X and x
an element of X.

• The sequence (xn)n is said to converge to the element x, which is denoted
by limn xn = x, if

∀ε > 0 : ∃N ∈ IN : ∀n ≥ N : mX (xn, x) ≤ ε.

• The sequence (xn)n is called Cauchy if

∀ε > 0 : ∃N ∈ IN : ∀m, n ≥ N : mX (xm, xn) ≤ ε.

As can be easily seen, every convergent sequence is Cauchy.

Definition A.5 A metric space is called complete if every Cauchy sequences in
the metric space is convergent.

As one can easily verify, the operations ε·, ×, and + preserve completeness.
Compactness, a generalization of finiteness, is introduced in

Definition A.6 A subset of a metric space is called compact if every sequences
in the set has a converging subsequence.

The set Pnk (X) of nonempty and compact subsets of the metric space X
is turned into a metric space by endowing it with the Hausdorff metric (see
Chapter VIII, § 6 of [Hau14]) introduced in

Definition A.7 Let X be a metric space. The Hausdorff metric

Pnk (mX) : Pnk (X) × Pnk (X) → [0, 1]

is defined by

Pnk (mX) (A, B) = max { sup { inf {mX (a, b) | b ∈ B } | a ∈ A },
sup { inf {mX (b, a) | a ∈ A } | b ∈ B } }.
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The operation Pnk preserves completeness (Lemma 3 of [Kur56]). The metric
space Pk (X) of compact subsets of the metric space X is defined by

Pk (X) = {∅} + Pnk (X).

The set X → Y of functions from the metric space X to the metric space Y
is turned into a metric space by endowing it with the metric introduced in

Definition A.8 Let X and Y be metric spaces. The metric

mX → mY : (X → Y ) × (X → Y ) → [0, 1]

is defined by

(mX → mY ) (f, g) = sup {mY (f (x), g (x)) | x ∈ X}.

Frequently we restrict ourselves to the subspace of nonexpansive functions.

Definition A.9 Let X and Y be metric spaces. A function f : X → Y is called
nonexpansive if, for all x, y ∈ X,

mY (f (x), f (y)) ≤ mX (x, y).

We denote the metric space of nonexpansive functions from the metric space
X to the metric space Y by X →1 Y . The operations → and →1 preserve
completeness as can easily be verified.

Next we will introduce an equivalence notion of metric spaces.

Definition A.10 Let X and Y be metric spaces. A function f : X → Y is
called isometric if, for all x, y ∈ X,

mY (f (x), f (y)) = mX (x, y).

Note that an isometric function is injective.

Definition A.11 The metric spaces X and Y are called isometric, denoted by
X ∼= Y , if there exists an isometric function from X to Y which is surjective.

Besides the completeness of the metric space, the contractiveness of the func-
tion is another essential ingredient of Banach’s theorem.

Definition A.12 Let X and Y be metric spaces. A function f : X → Y is
called contractive if there exists an ε, with 0 < ε < 1, such that

f ∈ (ε · X) →1 Y.

Instead of (ε ·X) →1 Y we usually write X →ε Y . We conclude with Banach’s
fixed point theorem.
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Theorem A.13 (Banach) Let X be a nonempty complete metric space. If the
function f : X → X is contractive then it has a unique fixed point fix (f) and,
for all x ∈ X,

fix (f) = lim
n

xn

where

xn =
{

x if n = 0
f (xn−1) otherwise

Proof See Theorem II.6 of [Ban22]. 2

B Metric labelled transition systems

We introduce some of the theory on (metric) labelled transition systems developed
in the author’s thesis [Bre94b].

Definition B.1 A labelled transition system is a triple (C, A, →) consisting of

• a set of configurations C,

• a set of actions A, and

• a transition relation → ⊆ C × A × C.

Instead of (c, a, c′) ∈ → we write c
a

−→ c′. If c
a

−→ c′ then we say that there
exists a transition from c to c′ labelled with a. If there exists a transition from
c, we write c →. Otherwise, we write c 6→.

If every configuration has only finitely many outgoing transitions, i.e. for all
c ∈ C, the set

T (c) = { 〈a, c′〉 | c
a

−→ c′ }

is finite, then the labelled transition system is called finitely branching. An
alternative formulation of this finiteness condition is presented in

Definition B.2 A labelled transition system (C, A, →) is called finitely branch-
ing if the function

T : C → P (A × C)

defined by

T (c) = { 〈a, c′〉 | c
a

−→ c′ }

is an element of C → Pf (A × C).
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For finitely branching labelled transition systems we have the following two
properties.

Property B.3 A finitely branching labelled transition system (C, A, →) induces
a function

Φ(C,A,→) : (C → L) → 1
2 (C → L)

defined by

Φ(C,A,→) (φ)(c) =


0 if c 6→
{ 〈a, σ〉 | c

a
−→ c′ ∧ σ ∈ φ (c′) }∪

{ 〈a, 0〉 | c
a

−→ c′ ∧ φ (c′) = 0} otherwise

Proof See, e.g., Theorem 4.3.6 and Proposition 4.3.7 of [Bre94b]. 2

Property B.4 A finitely branching labelled transition system (C, A, →) induces
a function

Ψ(C,A,→) : (C → B) → 1
2 (C → B)

defined by

Ψ(C,A,→) (ψ)(c) =
{

0 if c 6→
{ 〈a, ψ (c′)〉 | c

a
−→ c′ } otherwise

Proof See, e.g., Theorem 4.3.10 and Proposition 4.3.12 of [Bre94b]. 2

Both Φ and Ψ are contractive functions from a nonempty complete metric
space to itself. According to Banach’s theorem, Φ and Ψ have unique fixed points
fix (Φ) and fix (Ψ), respectively.

A metric labelled transition system is a labelled transition system with some
additional structure. That is, the set of configurations and the set of actions are
both endowed with a complete metric.

Definition B.5 A metric labelled transition system is a triple (C, A, →) consist-
ing of

• a complete metric space of configuration C,

• a complete metric space of actions A, and

• a transition relation → ⊆ C × A × C.

Because we have a metric on the sets of configurations and actions, the finite-
ness condition finitely branching can be generalized to compactly branching: ev-
ery configuration has a compact set of outgoing transitions and transitioning is
nonexpansive.
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Definition B.6 A metric labelled transition system (C, A, →) is called compactly
branching if the function

T : C → P (A × C)

defined by

T (c) = { 〈a, c′〉 | c
a

−→ c′ }

is an element of C →1 Pk (A × 1
2 · C).

Property B.3 and B.4 can be generalized as follows.

Property B.7 A compactly branching metric labelled transition system (C, A, →)
induces a function

Υ(C,A,→) : (C →1 L) → 1
2 (C →1 L)

defined by

Υ(C,A,→) (υ)(c) =


0 if c 6→
{ 〈a, σ〉 | c

a
−→ c′ ∧ σ ∈ υ (c′) }∪

{ 〈a, 0〉 | c
a

−→ c′ ∧ υ (c′) = 0 } otherwise

Proof See Theorem 7.3.8 and Proposition 7.3.10 of [Bre94b]. 2

Property B.8 A compactly branching metric labelled transition system (C, A, →)
induces a function

Θ(C,A,→) : (C →1 B) → 1
2 (C →1 B)

defined by

Θ(C,A,→) (θ)(c) =
{

0 if c 6→
{ 〈a, θ (c′)〉 | c

a
−→ c′ } otherwise

Proof See Proposition 7.4.1 and 7.4.3 of [Bre94b]. 2

As before, both Υ and Θ are contractive functions from a nonempty complete
metric space to itself. According to Banach’s theorem, Υ and Θ have unique
fixed points fix (Υ ) and fix (Θ), respectively.
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C Generalized metrics

The justification of the definition of the generalized metric gB (Definition 5.2) is
presented and the characterization of gB (Property 5.3.2) is proved.

First, we prove that there exists a unique generalized metric satisfying the
recursive equation in Definition 5.2. We show that there exists a contractive
function from a nonempty complete metric space to itself, the unique fixed point
of which satisfies the equation uniquely.

Given a set X, the set X ×X → [0, 1], with [0, 1] endowed with the Euclidean
metric (see Definition A.2), forms a nonempty complete metric space.

Property C.1 The subspace GX of generalized metrics on X is complete.

Proof Let (gn)n be a Cauchy sequence of generalized metrics on X converging
to the function g. To conclude that g is a generalized metric we prove that, for
all x, y, z ∈ X,

g (x, x)
= (lim

n
gn) (x, x)

= lim
n

gn (x, x)

= 0

and

g (x, z)
= (lim

n
gn) (x, z)

= lim
n

gn (x, z)

≤ lim
n

gn (x, y) + gn (y, z)

= lim
n

gn (x, y) + lim
n

gn (y, z)

= g (x, y) + g (y, z).

2

On the nonempty complete metric space GB we define the following contractive
function.

Definition C.2 The function G : GB → 1
2 GB is defined by

G (g) (B0, B1) =


0 if B0, B1 = 0
sup { inf {max {mA (a0, a1), 1

2 · g (B′0, B
′
1)}

| 〈a1, B′1〉 ∈ B1 } | 〈a0, B′0〉 ∈ B0 } if B0, B1 6= 0
1 otherwise
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We leave it to the reader to verify that G maps generalized metrics to gen-
eralized metrics and that it is contractive. According to Banach’s theorem, the
function G has a unique fixed point: the generalized metric gB introduced in
Definition 5.2.

We conclude this appendix with the proof of Property 5.3.2. The key step in
the proof is replacing the infimum in the definition of gB by the minimum.

Since we dropped one half of the Hausdorff metric in the definition of gB, gB
is smaller than mB.

Property C.3 For all B0, B1 ∈ B,

gB (B0, B1) ≤ mB (B0, B1).

Proof We define, for all n ∈ IN,

gn =
{

mB if n = 0
G (gn−1) otherwise

We can prove that, for all n ∈ IN and B0, B1 ∈ B,

gn (B0, B1) ≤ mB (B0, B1)

by induction on n. Consequently, for all B0, B1 ∈ B,

gB (B0, B1)
= (lim

n
gn) (B0, B1) [Banach’s theorem]

= lim
n

gn (B0, B1)

≤ mB (B0, B1).

2

A metric is nonexpansive in both its arguments. This does not hold for
generalized metrics in general. The generalized metric gB is nonexpansive (with
respect to mB), and hence continuous, in both its arguments.

Property C.4 For all B, B0, B1 ∈ B,

m[0,1] (gB (B0, B), gB (B1, B)) ≤ mB (B0, B1)
m[0,1] (gB (B, B0), gB (B, B1)) ≤ mB (B0, B1)

Proof For example,

m[0,1] (gB (B, B0), gB (B, B1))
≤ max {gB (B0, B1), gB (B1, B0)}
≤ mB (B0, B1) [Property C.3]

2
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From the above property we can conclude that we can replace the infimum in
the definition of gB by the minimum.

Property C.5 For all a0 ∈ A and B′0, B1 ∈ B, with B1 6= 0,

inf {max {mA (a0, a1), 1
2 · gB (B′0, B

′
1)} | 〈a1, B

′
1〉 ∈ B1 }

= min{max {mA (a0, a1), 1
2 · gB (B′0, B

′
1)} | 〈a1, B

′
1〉 ∈ B1 }.

Proof Because, for all a0 ∈ A, the function

λa1 ∈ A.mA (a0, a1)

is nonexpansive, and for all B′0 ∈ B, the function

λB′1 ∈ B.gB (B′0, B
′
1)

is nonexpansive (Property C.4), for all a0 ∈ A and B′0 ∈ B, the function

λ〈a1, B
′
1〉 ∈ A × 1

2 · B. max{mA (a0, a1), 1
2 · gB (B′0, B

′
1)}

is nonexpansive. Since all B1 ∈ B, with B1 6= 0, are compact subsets of
A × 1

2 · B and the nonexpansive image of a compact set is compact (a conse-
quence of Theorem III of [Ale27]), for all B1 ∈ B, with B1 6= 0, the set

{max {mA (a0, a1), 1
2 · gB (B′0, B

′
1)} | 〈a1, B

′
1〉 ∈ B1 }

is compact. Because the infimum of a compact subset of [0, 1] is the minimum,
the desired result can be concluded. 2

This brings us to the

Proof of Property 5.3.2 Let B0, B1 ∈ B, with B0, B1 6= 0, and ε, with
0 ≤ ε < 1.

gB (B0, B1) ≤ ε

⇐⇒ sup { inf {max {mA (a0, a1), 1
2 · gB (B′0, B

′
1)} | 〈a1, B

′
1〉 ∈ B1 } | 〈a0, B

′
0〉 ∈ B0 } ≤ ε

⇐⇒ ∀〈a0, B
′
0〉 ∈ B0 : inf {max {mA (a0, a1), 1

2 · gB (B′0, B
′
1)} | 〈a1, B

′
1〉 ∈ B1 } ≤ ε

⇐⇒ ∀〈a0, B
′
0〉 ∈ B0 : min{max {mA (a0, a1), 1

2 · gB (B′0, B
′
1)} | 〈a1, B

′
1〉 ∈ B1 } ≤ ε

[Property C.5]
⇐⇒ ∀〈a0, B

′
0〉 ∈ B0 : ∃〈a1, B

′
1〉 ∈ B1 : max {mA (a0, a1), 1

2 · gB (B′0, B
′
1)} ≤ ε

⇐⇒ ∀〈a0, B
′
0〉 ∈ B0 : ∃〈a1, B

′
1〉 ∈ B1 : a0 = a1 ∧ gB (B′0, B

′
1) ≤ 2 · ε

[A is endowed with the discrete metric]
⇐⇒ ∀〈a, B′0〉 ∈ B0 : ∃〈a, B′1〉 ∈ B1 : gB (B′0, B

′
1) ≤ 2 · ε.

2
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