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Tables should be sorted
(on random access machines)

Faith Fich and Peter Bro Miltersen
Department of Computer Science,

University of Toronto.

Abstract

We consider the problem of storing an n element subset S of a uni-
verse of size m, so that membership queries (is x ∈ S?) can be answered
efficiently. The model of computation is a random access machine with
the standard instruction set (direct and indirect adressing, conditional
branching, addition, subtraction, and multiplication). We show that if s
memory registers are used to store S, where n ≤ s ≤ m/nε, then query
time Ω(logn) is necessary in the worst case. That is, under these con-
ditions, the solution consisting of storing S as a sorted table and doing
binary search is optimal. The condition s ≤ m/nε is essentially optimal;
we show that if n+m/no(1) registers may be used, query time o(logn) is
possible.

1 Introduction

In Yao’s influential paper “Should tables be sorted?” [Yao81], the following
basic data structure problem was considered: Given a subset S of size n of the
universe U = {0, . . . , m−1}, store it as a data structure φ(S) in the memory of a
unit cost random access machine, using few memory registers, each containing
an element of U , so that membership queries “Is x ∈ S?” can be answered
efficiently for any value of x. The set S can be stored as a sorted table using n
memory registers. Then queries can be answered using binary search in O(log n)
time. Yao considered the possibility of improving this solution.

One of Yao’s results was that, if for each S, φ(S) is a table of size n containing
the elements of S in some order (i.e. the data structure is implicit) and m is
sufficiently large compared to n, then query time Ω(log n) is necessary and the
sorted table is optimal. The proof is an elegant Ramsey theoretic argument.
The lower bound holds in the cell probe model, i.e. only the number of memory
cells accessed is considered.

However, Yao also observed that by allowing one extra element of U to be
stored (which is interpreted as the name of a hash function), the lower bound can
be beaten and constant query time is possible, if m is sufficiently large compared
to n. This result was improved by Tarjan and Yao [TY79] and Fredman, Komlòs
and Szemerédi [FKS84]. The latter paper shows that, for all values of m and n,
there is a storage scheme using n + o(n) memory cells, so that queries can be
answered in constant time.

For most practical purposes, this answers the question of whether tables
should be sorted: they should not. However, there are still some questions that
remain unanswered. One concerns the exact amount of extra memory needed
to get constant query time. The upper bound in [FKS84] has been improved by
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[FNSS92] and [BM94]. It is still an open problem when exactly n memory cells
are sufficient. In particular, Yao’s lower bound does not apply if the implicitness
restriction on φ is removed. Fiat, Naor, Schmidt, and Siegel [FNSS92], [FN93]
consider bounds on the size of the universe m as a function of n for which there
is an implicit data structure with constant query time. However, there is still a
wide gap between their upper and lower bounds.

Instead of putting a restriction on the data structure, we can put a restriction
on the query algorithm. The technique of [FKS84] is based on the family of hash
functions hk(x) = (kx mod p) mod s, i.e. integer division is used. However, the
only arithmetic operations usually included in the instruction set of random
access machines are addition, subtraction and multiplication. What can be
done if only the standard instruction set is available? In this paper, we address
this question, showing that on a unit cost random access machine with the
standard instruction set, tables should be sorted. More precisely, we show:

• Let U = {0, . . . , m − 1} and let n ≤ s ≤ m/nε for some constant ε > 0.
There is an n-element subset S of U , so that for any representation φS ∈ Zs

of S as a sequence of s integers, the following is true. Consider any RAM
program that, on inputs x and φS , accepts if x ∈ S and rejects if x 6∈ S.
Then, for some x ∈ U , the program uses Ω(log n) steps on inputs x and
φS .

We first prove that, for any suggested representation scheme, some set is hard
(i.e. query time is Ω(log n) in the worst case). Then, using the universality
of the RAM model, we show that some specific set is hard no matter what
representation is used.

Note that we do not restrict the contents of the registers in the data structure
to be elements from the universe U , as in the cell probe model. These values
can be arbitrary integers, as is customary in the random access machine model.
Furthermore, we do not require any bound on the complexity of constructing
φS from S. Finally, the space bound s only refers to the data structure itself.
We do not need to limit the number of registers used by the query algorithm.

In Section 3, we show that there is a data structure for the membership
problem using space O(max(n, m/2t)) and with query time O(t). Thus, the
space upper bound s ∈ m/nΩ(1) in our theorem is essentially optimal.

Our proof technique has a strong communication complexity flavor and can,
in fact, be viewed as a modification of the richness technique used for showing
lower bounds on the communication complexity of membership in [MNSW95].
Communication complexity has previously been used for showing lower bounds
for data structure problems in the cell probe model [MNSW95]. Our proof is
the first application of this kind of technique taking advantage of a restricted
instruction set, while allowing memory registers to contain arbitrary integers.
Another lower bound proof technique has previously been transferred from the
cell probe model to the random access machine model: Ben-Amram and Galil
[BG91] modified Fredman and Saks’ time stamp technique for the cell probe
model [FS89] to obtain the same lower bounds for the random access machine
model, with registers that can contain arbitrarily large integers. An interesting
feature of our technique is that we can get larger lower bounds in the random
access machine model than in the cell probe model (where the complexity of
membership is constant).
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Instruction Semantics
load k The accumulator is assigned the integer constant k.
direct read k The accumulator is assigned the value in register k.
indirect read The accumulator is assigned the value in the register whose

index is the value in the pointer.
direct write k Register k is assigned the value in the accumulator.
indirect write The register whose index is the value in the pointer is as-

signed the value in the accumulator.
swap The accumulator and the pointer exchange values.
add k The value in register k is added to the accumulator.
subtract k The value in register k is subtracted from the accumulator.
multiply k The accumulator is multiplied by the value in register k.
conditional jump j If the value in the accumulator is positive, then the program

counter is assigned the value j.
accept The program halts in the accept state.
reject The program halts in the reject state.

Table 1: RAM Instruction Set

2 The Random Access Machine Model

The random access machine (RAM) is an important and well studied model of
sequential computation, first formalized by Cook and Reckow [CR73]. It has an
infinite sequence of registers, indexed by the integers. Each register can contain
an arbitrarily large integer. For ease of presentation, we include in our version
of the RAM model two additional registers, the accumulator and the pointer.
The accumulator is where arithmetic operations are performed. The pointer is
used for indirect addressing.

The instruction set is described in Table 1. Here, as in [PS82, BG91, Maa88],
we assume that addition, subtraction, and multiplication can be performed. In
other papers, the RAM instruction set does not include multiplication [CR73]
or restricts multiplication to reasonably small operands [AHU74].

A RAM program is a finite sequence of instructions. The program counter
indicates which instruction to execute. In most cases, the program counter is
incremented at the completion of each instruction. However, if the instruction
conditional jump j is performed and the value in the accumulator is posi-
tive, the program counter is assigned the value j. The program counter is not
updated when the instruction accept or reject is performed. We say that
a computation accepts if the program counter eventually points to an accept
instruction and that the computation rejects if the program counter eventually
points to a reject instruction. The running time of a computation is the num-
ber of instructions executed until the program counter points to an accept or
reject instruction. Thus accept and reject are free and all other instructions
have unit cost.

3 Upper bounds

In this section, we present data structures for representing a set S and algorithms
that query these data structures to determine if a given element x is in S.
Initially, register 0 contains the input x and registers 1, . . . , s contain the cells
of the data structure φ(S). All other registers have initial value 0. A correct
algorithm must accept inputs x and φ(S) if x ∈ S and must reject them if x 6∈ S.
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Although binary search normally involves division by 2, it can be imple-
mented on a RAM. The idea is to precompute the first blog2 nc powers of 2.
The initial comparison is performed at location 2blog2 nc and the locations of sub-
sequent comparisons are obtained by either adding or subtracting successively
smaller powers of 2. (See [Knu73, vol. 3 pages 413-414].) Alternatively, the full
binary search tree containing the values in S can be represented implicitly with
the left and right children of the node in location l at locations 2l and 2l + 1,
respectively (as in a heap). (See [Ben86, pages 136,183–184] and [Knu73, vol. 1
page 401, vol. 3 pages 422,670].) Then the equivalent of binary search can be
carried out using no extra registers.

Constant query time is possible with a bit vector representation, using m
registers. By packing many bits together in one word, it is possible to use less
space at the expense of more time. To do this, it is helpful to implement some
functions which are not part of the standard RAM instruction set. We use the
notation [a..b] to denote the set of integers between a and b, inclusive.

Proposition 1 A RAM can compute the quotient and remainder of x divided
by y in time O(log(x/y)).

Proof: By repeated doubling, we construct an array containing the values y,
2y, 4y, . . . , 2t−1y, where t is the smallest value such that 2ty > x. Note that
t ∈ O(log(x/y)). The quotient q of x divided by y is the largest integer such
that q ·y ≤ x. Using the array and a variant of binary search, q as well as qy can
be computed in O(t) steps. Then we can compute the remainder by subtracting
qy from x. 2 A RAM can shift a number left k bit positions by multiplying the
number by 2k. This takes constant time, if the number 2k is available. Shifting
right is harder, but it can be done in constant time in restricted situations.

Proposition 2 With tables of size 22t and 2t−1, a RAM can shift a (2t −k)-bit
number right k bit positions in constant time, for any k ∈ [1..2t−1].

Proof: Use a table containing the first 2t−1 powers of 2 and a lookup table of
size 22t whose l’th entry is the left half (i.e. the 2t−1 most significant bits) of l,
when viewed as a 2t-bit number. Then a 2t-bit number can be shifted right by
2t−1 positions using one indirect read operation.

A (2t −k)-bit number can be shifted right by k positions by first multiplying
the number by 22t−1−k (to shift it left 2t−1 − k positions) and then shifting the
result right 2t−1 positions using the lookup table, as above. 2

Proposition 3 There is a data structure for storing subsets of [0..m− 1] using
m/2t + 22t + 2t−1 + O(1) registers and O(t) query time on a RAM.

Proof: The main part of the data structure φ(S) is an array of dm/2te cells,
each containing a 2t-bit non-negative integer. Together, the bits of these integers
form a bit vector representation of S, as follows: Let q and r denote the quotient
and remainder when x is divided by dm/2te. Then x ∈ S if and only if the
(q + 1)’st least significant bit in cell r + 1 of the array is 1. For example, if
m = 20 and t = 2, the set S = {0, 1, 2, 3, 4, 5, 9, 11, 14, 19} is represented by the
following array.

0011 0101 0001 0001 1111

Given x, Proposition 1 can be used to compute r and q in time O(t). Then the
(q +1)’st least significant bit is extracted from the 2t-bit integer in cell r +1, as
follows: Using Proposition 2, first shift the integer right q+1 positions, then shift
it left q + 1 positions, and subtract the result from the integer. The resulting
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value is shifted right q positions to get the desired bit. 2 Division can be
combined with binary search to obtain the following data structure. It improves
the solution in Proposition 3 for most natural choices of the parameters.

Proposition 4 There is a data structure for storing n-element subsets of
[0..m − 1] using m/2t + n + O(1) registers and O(t) query time on a RAM.

Proof: The data structure φ(S) representing S consists of three arrays. One ar-
ray contains the elements of S, arranged so that all elements that are equivalent
modulo dm/2t+1e are grouped together and, within each group, the elements
are in sorted order. The second array consists of dm/2t+1e pointers to the be-
ginning of the regions of the first array that contain elements equivalent to r
modulo dm/2t+1e for r ∈ [0..dm/2t+1e − 1]. The third array contains the num-
ber of elements in S equivalent to r modulo dm/2t+1e for r ∈ [0..dm/2t+1e− 1].
In this representation, with m = 20, t = 1, and S = {0, 1, 2, 3, 4, 5, 9, 11, 14, 19},
this is what φ(S) looks like.

0 5 1 11 2 3 4 9 1419
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To determine whether x is in S, the remainder r of x divided by dm/2t+1e is
computed in time O(t) using Proposition 1. A pointer to the beginning of the
relevant region of the first array and the size of this region are obtained from
the second and third arrays. Binary search is then performed within this region.
Since there are at most 2t+1 elements of S in the region, the search takes O(t)
time. 2

4 Lower Bounds

Throughout this section, we use the notation U (n) to denote the set of n-element
subsets of U . We begin with two simple lemmas about low-degree polynomials.

Lemma 5 Let D, R ⊆ R and let p(x) ∈ R[x] be a polynomial of degree at most
d. If there are more than d · #R elements of D that are mapped to R by the
polynomial p, then p is a constant polynomial.

Proof: Let D′ = {x ∈ D | p(x) ∈ R} and suppose #D′ > d · #R. Then there
are at least d + 1 elements in D′ that are mapped to the same element of R by
p. Since p has degree at most d, it follows that p is constant. 2

Lemma 6 Let Z ⊆ Z be a set of integers at least distance g apart from one
another (i.e. if x, y ∈ Z are distinct integers, then |x − y| ≥ g). Let p(x) ∈ Z[x]
be a nonconstant polynomial of degree at most d. If d · s ≤ g, then at most d
elements of Z are mapped to [1..s] by p.

Proof: Suppose, to the contrary, that d · s ≤ g, but there exist d + 1 integers
x0 < x1 < · · · < xd ∈ Z that are all mapped to [1..s] by p.

Let i ∈ [1..d]. Since p is nonconstant, it follows from Lemma 5 (with D =
[xi−1..xi] and R = [0..s − 1]) that there is an integer x ∈ [xi−1..xi] such that
p(x) 6∈ [1..s]. If p(x) ≤ 0, then there are two real numbers z2i−1 and z2i such that
xi−1 < z2i−1 < x < z2i < xi and p(z2i−1) = p(z2i) = 1

2 . Otherwise p(x) ≥ s+1,
since p has integer coefficients. In this case, there are two real numbers z2i−1
and z2i such that xi−1 < z2i−1 < x < z2i < xi and p(z2i−1) = p(z2i) = s + 1

2 .
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Furthermore, since p is a nonconstant polynomial,

lim
x→∞

p(x), lim
x→−∞

p(x) ∈ {−∞, ∞}.

Hence, there exist real numbers z0 < x0 and z2d+1 > xd such that p(z0), p(z2d+1) ∈
{ 1

2 , s + 1
2}. It follows from Lemma 5 (with D = {z0, z1, . . . , z2d+1} and R =

{ 1
2 , s + 1

2}) that p is constant, which is a contradiction. 2

We are now ready to present our main lemma, which is the same as our main
theorem, except that the order of two quantifiers is switched; it states that in
any representation, some set is hard.

Lemma 7 Let φ : U (n) → Zs be a map that defines a representation of any n-
element subset of U = [0..m−1] as a sequence of s integers. Consider any correct
RAM program for querying this data structure. For any ε > 0, if n ≤ s ≤ m/nε,
there is a constant δ > 0, an element x ∈ U , and a set S ∈ U (n) so that the
program uses more than δ logn steps on inputs x and φ(S).

Proof: Let l = bnε/4c. We assume, without loss of generality, that ε < 1/10
and l ≥ 10.

An essential part of our proof technique is to consider a subdomain of U
where the elements are spaced widely apart. Then Lemma 6 can be applied to
show that indirect reads to locations that are non-constant functions of x can
essentially be ignored. This is because the range [1..s], where the data structure
is stored, is accessed for relatively few values of x. To achieve the optimal space
bound s ≤ m/nε, we need wider spacing than can be achieved in a set of size n.
Therefore, we restrict our attention to sets of size l. Since log l ∈ Ω(log n), the
lower bound is not affected by more than a constant factor.

The data structure defined by φ can also be used for l-element sets from the
universe [0..m− (n − l) − 1]. The representation φ′(S) of such a set S is simply
φ(S ∪ [m − (n − l)..m − 1]). The original program is correct on all inputs x and
φ′(S), where x ∈ [0..m − (n − l) − 1] and S ∈ [0..m − (n − l) − 1](l).

Let g = l · s and U ′ = {0, g, 2g, . . . , (l2 − 1)g}. Note that (l2 − 1)g ≤ l3s ≤
n3/4εs ≤ m/nε/4 ≤ m/l ≤ m − n, so U ′ ⊆ [0..m − (n − l) − 1].

Let T = b log l
10 c. To achieve a contradiction, suppose that on all inputs x

and φ′(S), where S is an l-element subset of U ′, the RAM program reaches an
accept or reject instruction within T steps.

At each step t, we choose a subdomain Ut ⊆ U ′, a collection Vt of l-element
subsets of U ′, and, for each S ∈ Vt, a small set of bad elements BS,t ⊆ Ut with
the following property. For all S ∈ Vt and all x ∈ Ut − BS,t, the same sequence
of instructions are performed and the outcomes of all tests are the same during
the first t steps of the computation on inputs x and φ′(S). For each set S ∈ Vt,
it is convenient to represent the values of the accumulator and the pointer at
the end of step t by low degree polynomials, aS,t and pS,t. The other regis-
ters to which values have been written are represented by a small set QS,t of
low degree integer polynomials. Specifically, for each element x ∈ Ut − BS,t,
{q(x) | q ∈ QS,t} is the set of registers to which the algorithm writes during the
first t steps on inputs x and φ′(S). In addition, for each polynomial q ∈ QS,t,
the value of these cells is described by a low degree integer polynomial vS,q,t

(i.e. vS,q,t(x) is the value in cell q(x) after step t is performed on inputs x and
φ′(S)). The above discussion is formalized in the following claim.

Claim For each integer t ∈ [0..T ], there exist

• a subdomain Ut ⊆ U ′,

• a collection Vt of l-element subsets of U ′,
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• a set of bad elements BS,t ⊆ Ut for each S ∈ Vt

• two polynomials aS,t and pS,t for each set S ∈ Vt.

• a set of polynomials in QS,t ⊆ Z[x] for each set S ∈ Vt,

• a polynomial vS,q,t(x) ∈ Z[x] for each set S ∈ Vt and each polynomial
q ∈ QS,t, and

• an integer ct,

such that, for each set S ∈ Vt,

• #(Ut ∩ S) ≥ l/2t,

• #Vt ≥ (l2

l )2−2t(l2)1−2t,

• #BS,t < 22t,

• degree(aS,t), degree(pS,t) ≤ 2t.

• #QS,t ≤ t + 1,

• degree(q), degree(vS,q,t) ≤ 2t for every polynomial q ∈ QS,t, and

• q(x) 6= q′(x) for all x ∈ Ut −BS,t and all distinct polynomials q, q′ ∈ QS,t,

and, for each set S ∈ Vt and each element x ∈ Ut − BS,t, after t steps on inputs
x and φ′(S),

• the program counter has value ct,

• the accumulator has value aS,t(x) and the pointer has value pS,t(x).

• register q(x) has value vS,q,t(x) for each polynomial q ∈ QS,t,

• each register r ∈ [1..s] − {q(x) | q ∈ QS,t} has value φ′(S)r , and

• each register r 6∈ [1..s] ∪ {q(x) | q ∈ QS,t} has value 0.

Proof:[of claim] By induction on t.
When t = 0, U0 = U ′, V0 is the collection of all l-element subsets of U ′,

BS,0 = ∅ for all S ∈ V0, and c0 is the initial value of the program counter, which
is the same for all inputs. For each S ∈ V0, let aS,t = pS,t = 0, QS,t = {0},
and vS,0,0 = x. Here 0 denotes the constant polynomial with value 0. In
general, we will use k to denote the polynomial with constant value k. Then,
#V0 = (#U ′

l ) = (l2

l ) = (l2

l )2−2·0(l2)1−20
and for each set S ∈ V0 we have

#(U0 ∩ S) = #S = l = l/20, #BS,t = 0 < 22·0, and #QS,t = 1.
Now let t < T and assume the claim is true for t. Since the program counter

has the same value ct for all S ∈ Vt and x ∈ Ut − BS,t, the same instruction is
performed at step t + 1 on all these inputs. We consider a number of different
cases, depending on this instruction. To avoid tedious repetition, we will only
mention explicitly those things which change. For example, if Vt+1 = Vt, we
will not mention this. Also, unless we state otherwise, ct+1 = ct + 1.

The accept and reject instructions do not change the value of the program
counter or the contents of any register. Thus everything can remain unchanged.

When the load k instruction is performed, the accumulator is assigned the
constant value k. We let aS,t+1 = k.

The swap instruction swaps the values of the accumulator and pointer. Thus
pS,t+1 = aS,t and aS,t+1 = pS,t.

7



When direct write k is performed, the value aS,t(x) in the accumulator is
written to register k. If QS,t contains the constant polynomial k, then no new
polynomial is added to this set, but vS,k,t+1 = aS,t.

Otherwise, QS,t+1 = QS,t ∪ {k}, vS,k,t+1 = aS,t, and BS,t+1 = BS,t ∪ {x ∈
Ut| q(x) = k for some q ∈ QS,t}. Since there are at most t + 1 polynomials in
QS,t, each having degree at most 2t, it follows that #BS,t+1 ≤ #BS,t+(t+1)2t ≤
22(t+1).

When direct read k is performed, the value in register k is written to the
accumulator. We will deal with each S ∈ Vt+1 = Vt one at a time. There are
three cases: If k ∈ QS,t, then aS,t+1 = vS,k,t. If k ∈ [1..s]−QS,t, let aS,t+1 be the
constant polynomial with value φ′(S)k. If k 6∈ QS,t ∪ [1..s], then let aS,t+1 = 0.
In the last two cases, BS,t+1 = BS,t ∪{x ∈ Ut| q(x) = k for some q ∈ QS,t} and,
as above, #BS,t+1 ≤ 22(t+1).

The add k, subtract k, and multiply k instructions are handled similarly
to direct read k, except that the polynomial assigned to aS,t+1 is first added
to, subtracted from, or multiplied by the polynomial aS,t. For example, for
the case of add k, if k ∈ QS,t, let aS,t+1 be the polynomial vS,k,t + aS,t. The
degree can increase only when multiply is performed. In this case, since the
multiplicands each have degree at most 2t, the product has degree at most 2t+1.

When indirect write is performed, the value in the accumulator is writ-
ten to the register specified by the contents of the pointer. When pS,t(x) is a
constant polynomial with value k, the operation is equivalent to direct write
k and is handled in the same way. If pS,t ∈ QS,t, the polynomial vS,q,t+1 de-
scribing the contents of the cells {q(x) | x ∈ Ut − BS,t} is set equal to the
polynomial aS,t. Otherwise, let QS,t+1 = QS,t ∪ {pS,t} (so #QS,t+1 ≤ t + 2),
vS,pS,t,t+1 = aS,t, and

BS,t+1 = BS,t ∪ {x ∈ Ut| pS,t(x) = q(x) for some q ∈ QS,t}.

By construction, pS,t(x) 6= q(x) for each q ∈ QS,t and x ∈ Ut+1 − BS,t+1.
Each polynomial q ∈ QS,t has degree at most 2t, so pS,t and q intersect in
at most 2t places. Since #QS,t ≤ t + 1, it follows that #{x ∈ Ut| pS,t(x) =
q(x) for some q ∈ QS,t} ≤ (t + 1)2t. Thus #BS,t+1 < 22t + (t + 1)2t < 22(t+1).

When indirect read k is performed, the value in the register specified by
the contents of the pointer is written to the accumulator. If pS,t(x) is a constant
polynomial with value k, the operation is equivalent to direct read k and is
handled in the same way. If pS,t ∈ QS,t, the polynomial aS,t+1 is set equal to
the polynomial vS,pS,t,t. Otherwise,

BS,t+1 = BS,t ∪ {x ∈ Ut| pS,t(x) ∈ [1..s]}
∪ {x ∈ Ut| pS,t(x) = q(x) for some q ∈ QS,t}.

In this case, the value of the indirect read is 0 for all x ∈ Ut − BS,t+1, so the
polynomial aS,t+1 is the constant 0 polynomial. Since pS,t has degree at most
2t ≤ g/s, it follows from Lemma 6 that #{x ∈ Ut| pS,t(x) ∈ [1..s]} ≤ 2t. So we
have #BS,t+1 < 22t + 2t + (t + 1)2t < 22(t+1).

Finally, suppose the instruction executed is conditional jump j. For each
S ∈ Vt, consider the sequence of test outcomes (either aS,t(x) > 0 or aS,t(x) ≤
0), for x ∈ Ut taken in increasing order. Since a polynomial of degree at most
2t has at most 2t roots and, hence, can change sign at most 2t times along any
increasing sequence of domain points, there are

2
2t∑

i=0

(#Ut
i ) < 2 · (#Ut)2t ≤ 2(l2)2t
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different sequences of test outcomes that can occur. Let V ′ be the largest
subcollection of Vt such that all sets S ∈ V ′ produce the same sequence of test
outcomes. Then #V ′ ≥ #Vt/2(l2)2t .

Let Y = {x ∈ Ut | aS,t(x) > 0 for all S ∈ V ′} and N = {x ∈ Ut | aS,t(x) ≤
0 for all S ∈ V ′}. Then Y ∪N = Ut. For each S ∈ V ′, the induction hypothesis
says that #(Ut ∩ S) ≥ l/2t; so either #(Y ∩ S) ≥ l/2t+1 or #(N ∩ S) ≥ l/2t+1.
If #(Y ∩ S) ≥ l/2t+1 for at least half the sets S ∈ V ′, then Ut+1 = Y , Vt+1 =
{S ∈ V ′ | #(Y ∩ S) ≥ l/2t+1}, #Vt+1 ≥ #V ′/2, and #(Ut+1 ∩ S) ≥ l/2t+1

for all sets S ∈ Vt+1. Also, for each element x ∈ Ut+1 − BS,t ⊆ Y and each
set S ∈ Vt+1, the test succeeds (i.e. aS,t(x) > 0), so the jump is performed
and the program counter is assigned the value j (i.e. ct+1 = j). Otherwise,
#(N ∩ S) ≥ l/2t+1 for at least half the sets S ∈ V ′. Then Ut+1 = N , Vt+1 =
{S ∈ V ′ | #(N ∩ S) ≥ l/2t+1}, #Vt+1 ≥ #V ′/2, and #(Ut+1 ∩ S) ≥ l/2t+1 for
all sets S ∈ Vt+1. For each element x ∈ Ut+1 and each set S ∈ Vt+1, the test
fails (i.e. aS,t(x) ≤ 0), so the jump is not performed and the program counter
is incremented (i.e. ct+1 = ct + 1). In both cases, BS,t+1 = BS,t ∩ Ut+1 (so
#BS,t+1 ≤ 22t) and

#Vt+1 ≥ #V ′/2 ≥ #Vt/4(l2)2t ≥ (l2

l )2−2(t+1)(l2)1−2t+1
.

Since all the desired conditions are true no matter which instruction is per-
formed at step t+1, the claim is true for t+1 and, by induction, for all integers
t ∈ [0..T ]. 2

To end the proof, we consider the meaning of the claim for t = T . We
have a subdomain UT ⊆ U ′, a collection VT of l-element subsets of U ′, and, for
each S ∈ VT , a set of bad points BS,T ⊆ UT satisfying the following properties:
For each set S ∈ VT and each element x ∈ UT − BS,T , #(UT ∩ S) ≥ l/2T ,
#VT ≥ (l2

l )2−2T (l2)1−2T , #BS,T < 22T , and, after T steps on inputs x and
φ′(S), the program counter has value cT .

By assumption, cT is either an accept or reject instruction. For any S ∈
VT ,

#((UT − BS,T ) ∩ S) = #((UT ∩ S) − BS,T ) ≥ l/2T − 22T > 0,

so there is some x ∈ UT − BS,T , such that x ∈ S. Thus cT is an accept
instruction.

In other words, the program accepts inputs x and φ′(S) for all S ∈ VT and
x ∈ UT −BS,T . Since the program is correct, we must have x ∈ S for all S ∈ VT

and x ∈ UT − BS,T . Thus UT − BS,T ⊆ S ⊆ U ′ for all S ∈ VT . Furthermore,
#UT ≥ l/2T and |U ′| = l2. It follows that

#VT ≤
22T∑
i=0

(l/2T

i )(l2−l/2T

l−l/2T +i
) ≤ 2(l/2T

22T )(l2−l/2T

l−l/2T +22T ).

Combined with the lower bound #VT ≥ (l2

l )2
−2T (l2)1−2T , this yields

(l2

l )2−2T (l2)1−2T ≤ 2(l/2T

22T )(l2−l/2T

l−l/2T+22T ).

By elementary estimates of binomial coefficients, this inequality can be shown
to be false for T = b log l

10 c. Therefore, our assumption that the program always
accepts or rejects within T steps must be false. This concludes the proof of
Lemma 7. 2 Our main theorem follows easily from Lemma 7.

Theorem 8 Let n ≤ s ≤ m/nε for some constant ε > 0. There is a set
S ∈ U (n), so that for any representation φS ∈ Zs the following is true. Consider

9



any RAM program that, on inputs x and φS, accepts if x ∈ S and rejects if
x 6∈ S. Then, for some x ∈ U , the program uses Ω(log n) steps on inputs x and
φS.

Proof: Given a program A with p instructions, we can encode A as a string of
2p integers, representing each instruction by an integer in [1..12] that specifies
the instruction type (i.e. 1 for load, 2 for direct read, etc.) and its argument,
if any. Denote this encoding by τ(A). Cook and Rechow [CR73] show that there
exists a universal RAM interpreter with the property that if the interpreter is
executed with inputs z ∈ Z∗ and τ(A) (stored in an interleaved fashion), the
result is the same as if A was executed on input z. Furthermore, if A uses times
T , then the interpreter uses time O(T ).

Given any positive constant ε ≤ 1
2 , let ε′ = ε/2. Let n, m, and s be given and

assume, without loss of generality, that nε′ ≥ 3. Suppose that, for all S ⊆ U ,
there exists a representation φS and a program AS that runs in time T < log n

2
and accepts inputs x and φS if and only if x ∈ S. We can assume, without loss
of generality, that AS contains at most 2T < n1/2 instructions. For any S, define
φ(S) to consist of τ(AS) and φS interleaved. The size of this data structure is
at most s′ = 2 max(2n1/2, s) < m/nε′ . When the interpreter is run on inputs
x ∈ U and φ(S), it accepts if and only if x ∈ S. Furthermore, it accepts or
rejects within O(T ) steps. From Lemma 7, it follows that T ∈ Ω(logn). 2
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