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e-mail: acheng@cs.cornell.edu
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e-mail: mn@daimi.aau.dk

Abstract. The notion of bisimilarity, as defined by Park and Milner,
has turned out to be one of the most fundamental notions of operational
equivalences in the field of process algebras. Not only does it induce
a congruence (largest bisimulation) in CCS which have nice equational
properties, it has also proven itself applicable for numerous models of
parallel computation and settings such as Petri Nets and semantics of
functional languages. In an attempt to understand the relationships and
differences between the extensive amount of research within the field,
Joyal, Nielsen, and Winskel recently presented an abstract category-
theoretic definition of bisimulation. They identify spans of morphisms
satisfying certain “path lifting” properties, so-called open maps, as a
possible abstract definition of bisimilarity. In [JNW93] they show, that
they can capture Park and Milner’s bisimulation. The aim of this pa-
per is to show that the abstract definition of bisimilarity is applicable
“in practice” by showing how a representative selection of well-known
bisimulations and equivalences, such as e.g. Hennessy’s testing equiva-
lence, Milner and Sangiorgi’s barbed bisimulation, and Larsen and Skou’s
probabilistic bisimulation, are captured in the setting of open maps and
hence, that the proposed notion of open maps seems successful. Hence,
we confirm that the treatment of strong bisimulation in [JNW93] is not
a one-off application of open maps.

1 Introduction

As a response to some of the numerous models for concurrency proposed in
the literature Winskel and Nielsen have used category theory as an attempt to
understand the relationship between models like event structures, Petri nets,
trace languages, and asynchronous transition systems [WN94]. From the alge-
braic point of view many of the operators of CCS like process algebras have been
recasted using category-theoretic concepts such as products, co-products. How-
ever, a similar convincing category-theoretic way of adjoining abstract equiva-
lences to a category of models had been missing until Joyal, Nielsen, and Winskel
? This work has been supported by The Danish Research Councils, The Danish Re-
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proposed the notion of span of open maps [JNW93]. They show how these can
capture Park and Milner’s strong bisimulation and identify a new bisimulation,
strong history-preserving bisimulation, on models with independence like event
structures and Petri nets.

As a measure of the applicability of open maps as an abstract definition of
equivalences we show that it is possible to capture not only Park and Milner’s
strong bisimulation but a representative selection of well-known bisimulations,
such as e.g. Milner and Sangiorgi’s barbed bisimulation and Larsen and Skou’s
probabilistic bisimulation. The presentation also serves as a tutorial on how
open maps are applied. Although we do not identify new bisimulations, the
reader should have no trouble using this setting on his or hers favourite model of
computation. As an exercise, the reader is encouraged to prove the claims and
proofs which are left out. Along, we make several observations clear which are
either rather implicit in [JNW93, JNW94] or not mentioned at all.

The rest of the paper is structured as follows. In the next section we give
a short stepwise introduction to open maps as presented in [JNW93, JNW94].
Then, in the subsequent sections, we apply the theory of open maps by instantiat-
ing the definitions with different models and notions of (simulation) morphisms
and characterise the obtained abstract notion of equivalence operationally. It
turns out that our choices of categories, which are guided by our intuitive un-
derstanding of what it means for a system to simulate another, yield well known
notions of equivalence. More specifically, the following Sect. 3 to Sect. 7 are
devoted to trace equivalence, weak bisimulation, testing equivalence, barbed
bisimulation, and probabilistic bisimulation. In each of the sections we follow
the steps presented in Sect. 2, the section recalling the general theory. Finally,
in Sect. 8 we conclude with some remarks and hints for future research.

2 Open Maps, an Introduction

In this section we briefly recall the basic definitions from [JNW93].
As presented there, the general setting requires several steps. First, a category

which represents a model of computation has to be identified. We denote this
category M. A morphism m : X −→ Y in M should intuitively be thought
of as a simulation of X in Y . Then, within M we choose a subcategory of
“observation objects” and “observation extension” morphisms between these
objects. We denote this category of observations by P. Given an observation
(object) P in P and a model X in M. P is said to be an observable behaviour
of X if there exists a morphism p : P −→ X in M.

Next, we identify morphisms m : X −→ Y which have the property that
whenever an observable behaviour of X can be extended via f in Y then that
extension can be matched by an extension of the observable behaviour in X.

Definition1. Open Maps
A morphism m : X −→ Y in M is said to be P-open if whenever f : O1 −→ O2
in P, p : O1 −→ X, q : O2 −→ Y in M, and the diagram
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O1

��

f

//p
X

��

m

O2 //
q Y

(1)

commutes, i.e. m ◦ p = q ◦ f , there exists a morphism h : O2 −→ X in M such
that the two triangles in the diagram

O1

��

f

//p
X

��

m

O2

>>

h

~~~~~~~~~~~
//

q Y

(2)

commute, i.e. p = h ◦ f and q = m ◦ h. When no confusion is possible, we refer
to P-open morphisms as open maps.

The abstract definition of bisimilarity is as follows.

Definition2. P-bisimilarity
Two models X and Y inM are said to be P-bisimilar, written X ∼P Y , if there
exists a span of open maps from a common object Z:

Z

��

m

~ ~
~ ~
~ ~
~ ~
~ ~

��

m′

@@
@@
@@
@@
@@

X Y

(3)

Notice that ifM has pullbacks, it can be shown that ∼P is an equivalence rela-
tion. The important observation is that pullbacks of open maps are themselves
open maps. For more details, the reader is referred to [JNW93].

In the next sections, we proceed by following the above presented steps.
As a preliminary example of a category of models of computation M we

present labelled transition systems.

Definition3. A labelled transition system over Act is a tuple

(S, i, Act,−→) , (4)
where S is a set of states with initial state i, Act is a set of actions ranged
over by α, β, . . . , and −→⊆ S × Act × S is the transition relation. For the
sake of readability we introduce the following notation. Whenever (s0, α1, s1),
(s1, α2, s2), . . ., (sn−1, αn, sn) ∈−→ we denote this as s0

α1−→ s1
α2−→ · · · αn−→ sn

or s0
v−→ sn where v = α1α2 · · ·αn ∈ Act∗. Also, we assume that all states s ∈ S

are reachable from i, i.e. there exists a v ∈ Act∗ such that i v−→ s.

3



Let us briefly remind the reader about Park and Milner’s definition of strong
bisimulation.

Definition4. Let T1 = (S1, i1, Act,−→1) and T2 = (S2, i2, Act,−→2). A strong
bisimulation between T1 and T2 is a relation R ⊆ S1 × S2 such that

(i1, i2) ∈ R , (5)

((r, s) ∈ R ∧ r
α−→1 r

′) ⇒ for some s′, (s α−→2 s
′ ∧ (r′, s′) ∈ R) , (6)

((r, s) ∈ R ∧ s
α−→2 s

′) ⇒ for some r′, (r α−→1 r
′ ∧ (r′, s′) ∈ R) . (7)

T1 and T2 are said to be strongly bisimilar if there exists a strong bisimulation
between them.

Henceforth, whenever no confusion is possible we drop the indexing subscripts
on the transition relations and write −→ instead.

By defining morphisms between labelled transition systems we can obtain a
category of models of computation, LTS, labelled transition systems.

Definition5. Let T1 = (S1, i1, Act,−→1) and T2 = (S2, i2, Act,−→2). A mor-
phism m : T1 −→ T2 is a function m : S1 −→ S2 such that

m(i1) = i2 , (8)

s
α−→1 s

′ ⇒ m(s) α−→2 m(s′) . (9)

Composition of morphisms is defined as the usual composition of functions.
The intuition behind this specific choice of morphism is that an α labelled tran-
sition in T1 must be simulated by an α labelled transition in T2.

If, as done in [JNW93], one chooses P as the full subcategory of M whose
objects are finite synchronisation trees with at most one maximal branch, i.e.
labelled transition systems of the form

i
α1−→ s1

α2−→ · · · αn−→ sn ,

P-bisimilarity corresponds to Park and Milner’s strong bisimulation. This follows
from the following characterisation of P-open maps [JNW93].

Lemma 6. A morphism m : T1 −→ T2 is P-open if and only if it satisfies the
following “zig-zag” property:

If m(r) α−→ s then there exists an r′ such that r α−→ r′ and m(r′) = s.

In the following sections we shall “rediscover” well-known behavioural equiv-
alences by varyingM and P. In the following, whenever we write e.g.M, P, or
P-bisimilarity they refer to the specific choices of categories made in the section
they appear.
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3 Trace Equivalence

In this section we show how trace equivalence between two labelled transition
systems can be captured by open maps. Trace equivalence is perhaps the first
and simplest equivalence between labelled transition systems that one can think
of. The result is based on the following important fact: Two labelled transi-
tion systems are trace equivalent if and only if their underlying deterministic
transition systems are bisimilar.

First, we present the category LTS1 of labelled transition systems, which will
corresponds toM. Then, we identify a subcategory, P, of observations. Finally,
we show that P-bisimilarity corresponds to trace equivalence.

The object of LTS1 are the labelled transition systems (lts) from Definition
3. The following definition is needed in the definition of the morphisms in LTS1.

Definition7. Given an lts T = (S, i, Act,−→). For nonempty sets X, Y ⊆ S,
we define X α−→ Y if Y = {r′ ∈ S | ∃ r ∈ X. r α−→ r′}. Notice that this transition
relation is deterministic. As before, the transition relation can be generalised
to a relation X

v−→ Y , where v ∈ Act∗. Furthermore, we define RS(T ), the
reachability set of T , to be the least subset of 2S/{∅}, such that

{i} ∈ RS(T ) , (10)

X ∈ RS(T ) and X α−→ Y implies Y ∈ RS(T ) . (11)

Next, we define morphisms between two lts’s.

Definition8. Given two lts’s, Tj = (Sj , ij, Act,−→j), j = 1, 2. A morphism m
between T1 and T2 is a function m from RS(T1) to RS(T2), such that

m({i1}) = {i2} , (12)

X
α−→ Y impliesm(X) α−→ m(Y ) . (13)

Composition of morphisms is defined as the usual composition of functions.
This defines the category LTS1.

The intuition behind this definition of (simulating) morphism is that one is
only interested in what action sequences an lts can perform. After performing a
sequence σ = α1 · · ·αn of actions from the initial state i one may in general end
up in several different states of T , i.e. a set X of states of T . These sets of states
are exactly the elements of RS(T ). Extending the sequence σ by performing
another action α then corresponds to performing an α transition from X.

Next step is to define P.

Definition9. Let P be the full subcategory of LTS1 whose objects are of the
form

i
α1−→ r1

α2−→ · · · αn−→ rn , (14)

where all states are distinct.
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Apart from showing that LTS1 has pullbacks, the construction in the fol-
lowing lemma will be referred to in the main theorem of this section. Also, it
follows at once from the remarks in Sect. 2 that P-bisimilarity is an equivalence
relation. We will also be able to conclude this after proving the main theorem of
this section; it states that P-bisimilarity coincides with trace equivalence, which
is know to be an equivalence relation. However, in general one cannot expect
that P-bisimilarity coincides with a known equivalence relation. Lemmas as the
following are sufficient for P-bisimilarity to be an equivalence relation.

Lemma 10. LTS1 has pullbacks.

Proof. Given a diagram
T1

��
m1 <<
<<
<<
<<
< T2

��
m2

� �
� �
� �
� �
�

T

Define an lts T ′ = (S′, i′, Act,−→′) as follows. S′ ⊆ RS(T1) × RS(T2) and
−→′⊆ (RS(T1) × RS(T2)) × Act × (RS(T1) × RS(T2)) are the least sets such
that

– i′ = ({i1}, {i2}) ∈ S′
– If (X, Y ) ∈ S′, X α−→ X′, Y α−→ Y ′

then (X′, Y ′) ∈ S′ and ((X, Y ), α, (X′, Y ′)) ∈−→′.

Notice that because the transition relations on the reachability sets are deter-
ministic it is the case that m1(X) = m2(Y ) for any (X, Y ) ∈ S′ and RS(T ′)
contains only singletons. Let π1 : T ′ −→ T1 be defined as π1({(X, Y )}) = X. It
can be shown that π1 is well defined and is a morphism from T ′ to T1. We can
define π2 : T ′ −→ T2 in a similar way.

Given an lts T ′′ and two morphisms f1 : T ′′ −→ T1 and f2 : T ′′ −→ T2
such that m1 ◦ f1 = m2 ◦ f2. Define h : T ′′ −→ T ′ by h(Z) = (f1(Z), f2(Z))
for Z ∈ RS(T ′′). From the definition of T ′ is should be easy to see that h is a
morphism; the initial state of T ′′ is mapped to that of T ′ and transitions are
preserved. Furthermore we also have f1 = π1 ◦ h and f2 = π2 ◦ h. This is trivial,
since there is at most one morphism between any two objects in LTS1. Hence,
h is also unique. This gives us the desired pullback. ut

The next lemma characterises the open maps in LTS1.

Lemma 11. A morphism m : T1 −→ T2 is P-open if and only if m : RS(T1) −→
RS(T2) has the following ”zig-zag” property

If m(X) α−→ Y ′, then there exists an X′ such that X α−→ X′ and m(X′) = Y ′.

Proof. Assume m is P-open and m(X) α−→ Y ′. Then it must be the case that
X0

α1−→ X1
α2−→ · · · αn−→ Xn for some X0, . . . , Xn ∈ RS(T1), where X0 = {i1} and
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Xn = X. Also, we have Y0
α1−→ Y1

α2−→ · · · αn−→ Yn
α−→ Y ′, where Yj = m(Xj ) for

0 ≤ j ≤ n. Let O1 be the observation

i
α1−→ s1

α2−→ · · · αn−→ sn ,

and O2 be the observation

i′
α1−→ s′1

α2−→ · · · αn−→ s′n
α−→ s′n+1 .

Now let f denote the unique morphism from O1 to O2, p denote the morphism
that maps {i} to {i1} and {sj} to Xj for 1 ≤ j ≤ n, and q denote the morphism
that maps {i′} to {i2}, {s′j} to Yj for 1 ≤ j ≤ n, and {s′n+1} to Y ′. We then
have m ◦ p = q ◦ f . From our assumptions it then follows that there exists
a morphism h : O2 −→ T1 such that p = h ◦ f and q = m ◦ h. We now
conclude h({s′n}) = h(f({sn})) = p({sn}) = X, h({s′n})

α−→ h({s′n+1}), and
m(h({s′n+1})) = q({s′n+1}) = Y ′. Now choose X′ as h({s′n+1}).

Conversely, assume m has the “zig-zag” property and we are given a com-
muting diagram

O1

��

f

//p
X

��

m

O2 //
q Y

where O1 is an observations of the form

i
α1−→ s1

α2−→ · · · αn−→ sn ,

and O2 an observation of the form

i′
α1−→ s′1

α2−→ · · · αm−→ s′m ,

and n ≤ m. Notice f is uniquely determined (maps {sj} to {s′j} for 1 ≤ j ≤ n).
We will show how to define a morphism h : O2 −→ T1 such that p = h ◦ f
and q = m ◦ h. We start by defining h({i′}) = {i1} and h({s′j}) = p({sj}) for
1 ≤ j ≤ n. Notice that we now already have p = h◦ f for the partially defined h.
Consequently, q = m ◦ h on {i′}, {s′1}, . . . , {s′n} because of the way f is defined
and m ◦ p = q ◦ f . Now assume n < m. Since m(p({sn})) = q(f({sn})) =
q({s′n})

αn+1−→ q({s′n+1}) we know there must exist an X′ such that p({sn})
αn+1−→

X′ and m(X′) = q({s′n+1}). Now define h({s′n+1}) = X′. Then m(h({s′n+1})) =
q({s′n+1}). Continuing this way for the remaining {s′n+2}, . . . , {s′m} we obtain
the desired morphism. ut
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Definition12. Given an lts T = (S, i, Act,−→). The traces/language of T , de-
noted L(T ), is defined as

L(T ) = {v ∈ Act∗ | i v−→ r for some r ∈ S} . (15)

Two lts’s, T1 and T2, are said to be trace equivalent if L(T1) = L(T2).

Theorem13. Given two lts’s T1 and T2. Then:

T1 and T2 are trace equivalent if and only if they are P-bisimilar.

Proof. The “if” direction follows from Lemma 11. For the “only if” direction, let
F1 be the functor from LTS1 to LTS which sends an object T to (RS(T ), {i},
Act,−→), where −→ was defined in Definition 7, and an morphism m : T −→ T ′

to the obvious morphism between F1(T ) and F1(T ′) defined by m : RS(T ) −→
RS(T ′). Let F2 be the functor from LTS to LTS1 which maps an object to
itself and a morphism m : T −→ T ′ to the morphism determined uniquely by
the induced function m : RS(T ) −→ RS(T ′). Since all observations of LTS1 are
isomorphic to their image under F1 and there is at most one morphism between
any two objects in LTS1, we conclude, using Lemma 6, that F2 preserves open
maps. So assume that T1 and T2 are trace equivalent. We then know that F1(T1)
and F1(T2) are strong bisimilar. From Sect. 2 this implies that there exists a span
of open maps in LTS, m1 : T −→ F1(T1) and m2 : T −→ F1(T2). Also, there
clearly exist isomorphisms p1 : F2(F1(T1)) −→ T1 and p2 : F2(F1(T2)) −→ T2.
Since isomorphisms are always open maps we have the following span of open
maps:

F2(T )

zz

F2(m1)

t t t
t t t
t t t
t t

$$

F2(m2)

JJJ
JJJ

JJJ
JJ

F2(F1(T1))

{{

p1

w w w
w w w
w w w
w w

F2(F1(T2))

##

p2

GGG
GGG

GGG
GG

T1 T2

We conclude that T1 and T2 are P-bisimilar. Observe that a construction
similar to the one used in Lemma 10 would also have provided a span of open
maps. ut

Having identified trace equivalence we now continue by exploring other pos-
sibilities. In the next section we try to take “invisible” or “silent” actions into
account.

4 Weak Bisimulation (Milner)

In this section we show that Milner’s weak bisimulation [Mil89] can be charac-
terised using the general setting of Sect. 2.
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Weak bisimulation differs from strong bisimulation in at least two respects.
First, a special “invisible” action, usually denoted τ , is required to be a member
of the set of labels. Second, an α labelled transition in one labelled transition
system is no longer required to be simulated exactly by an α labelled transition
in the other system. It may be preceded and succeeded by several τ transition.
We write r t=⇒ r′ if r τ∗−→ r1

α1−→ r′1
τ∗−→ · · · τ∗−→ rn

αn−→ r′n
τ∗−→ r′ for some

r1, · · · , r′n. Furthermore, a τ transition needn’t be simulated by any transitions
at all.

We start by defining a category LTS2, labelled transition systems, and a
subcategory of observations, P, in LTS2. Then, we show that P-bisimilarity
corresponds to Milner’s weak bisimulation.

The objects of LTS2 are the same as those from LTS. However, we assume
that the set of actions Act contains a special “invisible” action τ . Guided by
our intuitive understanding of how an action may be simulated, we define the
morphisms between two lts’s as follows.

Definition14. Given two lts’s, Tj = (Sj , ij,Act,−→j), j = 1, 2. A morphism
between T1 and T2, m : T1 −→ T2, is a function m from S1 to S2, such that

m(i1) = i2 , (16)

r
α−→ r′ impliesm(r) α̂=⇒ m(r′) . (17)

The function ̂ : Act∗ −→ Act∗ removes all τ ’s from its argument [Mil90].

Composition of morphisms is defined as the usual composition of functions.
This defines the category LTS2. P, the category of observations, is defined as
follows.

Definition15. Let P be the subcategory of LTS2 whose objects are of the form

i
α1−→ r1

α2−→ · · · αn−→ rn , (18)
where all the states are distinct. Moreover, there will be a morphism f from an
observation

i
α1−→ r1

α2−→ · · · αn−→ rn (19)
to another observation

i′
α1−→ r′1

α2−→ · · · αn−→ r′n
αn+1−→ · · · αn+k−→ r′n+k , (20)

if f(i) = i′, f(rj) = r′j for 1 ≤ j ≤ n, and k ≥ 0.

Notice that morphisms between observations are required to simulate action
in the “strong” sense — e.g. no additional τ ’s may be added. In the conclusion,
Sect. 8, we will comment on this interesting choice. Allowing any morphism
between two observations will in fact make P-bisimilarity stronger than weak
bisimulation; the reader should have no major difficulties in going through the
proofs. Lemma 17 will no longer be true, neither will the “only if” in Theorem
19.

Having defined M as LTS2 and P we now show that LTS2 has pullbacks.

9



Lemma 16. The category LTS2 has pullbacks.

Proof. Given a diagram
T1

��
m1 <<
<<
<<
<<
< T2

��
m2

� �
� �
� �
� �
�

T

Define T ′ = (S′, i′,Act,−→′) as follows. S′ ⊆ S1 × S2 and −→′⊆ (S1 × S2) ×
Act× (S1 × S2) are the least sets such that

– i′ = (i1, i2) ∈ S′

– If (r, s) ∈ S′, r α̂=⇒ r′, s α̂=⇒ s′, and m1(r′) = m2(s′) then (r′, s′) ∈ S′ and
((r, s), α, (r′, s′)) ∈−→′.

Define π1 : T ′ −→ T1 and π2 : T ′ −→ T2 as π1((r, s)) = r and π2((r, s)) = s.
We now show that this defines a pullback. Clearly, π1 and π2 are morphisms.

Assume we have a commuting diagram

T ′′

��

f

//g
T2

��

m2

T1
//

m1
T

Define h : S′′ −→ S1 × S2 as h(v) = (f(v), g(v)) for v ∈ S′′. It should be
easy to see, using the commutativity of the diagram and the definition of T ′,
that h(v) ∈ S′, since v is reachable from i′′, and that v α−→ v′ in T ′′ implies
h(v) α−→ h(v′) in T ′. h is then a well defined morphism from T ′′ to T ′. Also,
f = π1 ◦ h and g = π2 ◦ h and moreover these equations determine h uniquely.
Hence, T ′, π1, and π2 constitute a pullback. ut

Next, we characterise the open maps.

Lemma 17. A morphism m : T1 −→ T2 is P-open if and only if it satisfies the
following “zig-zag” property:

If m(r) α−→ s then there exists an r′ such that r α̂=⇒ r′ and m(r′) = s.

Proof. Assume m is open and i1
α1−→ r1

α2−→ · · · αn−→ rn = r. Let O1 be the
observation

i
α1−→ r′1

α2−→ · · · αn−→ r′n ,

O2 be the observation

i′
α1−→ r′′1

α2−→ · · · αn−→ r′′n
α−→ s′′ ,

10



and f the unique morphism from O1 to O2. Let p : O1 −→ T1 be the morphism
which sends r′j to rj for 1 ≤ j ≤ n, and q : O2 −→ T2 the morphism that sends
r′′j to m(rj) for 1 ≤ j ≤ n and s′′ to s. Then m ◦ p = q ◦ f and since m is an
open map there exists a morphism h : O2 −→ T1 such that the two triangles in
the diagram

O1

��

f

//p
T1

��

m

O2

>>

h

}}}}}}}}}}}
//

q T2

commutes. Since h(r′′n) α̂=⇒ h(s′′), h(r′′n) = h(f(r′n)) = p(r′n) = rn, and s =

q(s′′) = m(h(s′′)), we conclude that h(r′′n) = rn = r
α̂=⇒ h(s′′) and m(h(s′′)) = s.

Hence, there exists a r′ = h(s′′) such that r α̂=⇒ r′ and m(r′) = s.
For the other direction, assume m has the “zig-zag” property and we are

given a commuting diagram of the form

O1

��

f

//p
T1

��

m

O2 //
q T2

where O1 is an observation of the form

i
α1−→ r1

α2−→ · · · αn−→ rn ,

O2 is an observation of the form

i′
α1−→ r′1

α2−→ · · · αn−→ r′n
αn+1−→ · · · αn+k−→ r′n+k ,

and f : O1 −→ O2 is the uniquely determined morphism which sends rj to r′j
for 1 ≤ j ≤ n.

We show that there exists a morphism h : O2 −→ T1 such that p = h ◦ f
and q = m ◦ h. Apart from defining h(r′j) = p(rj) for 1 ≤ j ≤ n, and of course

h(i′) = i1, let us consider which value we should give h(r′n+1). Assume q(r′n)
α̂n+1=⇒

q(r′n+1) because q(r′n)
β1−→ v1

β2−→ · · · βl−1−→ vl−1
βl−→ q(r′n+1), where l ≥ 0 and

α̂n+1 = ̂β1 · · ·βl. By commutativity we have m(p(rn)) = q(r′n) and by repeated
use of the “zig-zag” property we conclude that there exist states wj such that

p(rn)
β̂1=⇒ w1

β̂2=⇒ · · · β̂l=⇒ wl, m(wj) = vj for 1 ≤ j < l, and m(wl) = q(r′n+1).

Define h(r′n+1) = wl. Then h(r′n)
α̂n+1=⇒ h(r′n+1) and m(h(r′n+1)) = m(wl) =

q(r′n+1). Continuing this process for the remaining r′n+2, . . . , r
′
n+k it is easy to

see that we obtain a morphism h : O2 −→ T1 such that p = h ◦ f and q = m ◦h.
Hence, m is an open map. ut
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For the sake of completeness we give Milner’s definition of weak bisimulation
[Mil89], here adapted to the case where we consider initial states of lts’s.

Definition18. Given two lts’s T1 and T2. A relation R ⊆ S1 × S2 is said to be
a weak bisimulation over T1 and T2 if

(i1, i2) ∈ R , (21)

((r, s) ∈ R ∧ r
α−→ r′) ⇒ for some s′, (s α̂=⇒ s′ ∧ (r′, s′) ∈ R) , (22)

((r, s) ∈ R ∧ s
α−→ s′) ⇒ for some r′, (r α̂=⇒ r′ ∧ (r′, s′) ∈ R) . (23)

T1 and T2 are said to be weakly bisimilar if there exists a weak bisimulation
as defined above.

We now show that P-bisimilarity coincides with weak bisimulation.

Theorem19. Given two lts’s T1 and T2. Then,

T1 and T2 are weakly bisimilar if and only if T1 and T2 are P-bisimilar.

Proof. Assume R is a weak bisimulation over T1 and T2. Define T ′ = (S′, i′,Act,
−→′), where S′ ⊆ S1×S2, as follows. Let S′ and −→′ be the least sets such that

– i′ = (i1, i2) ∈ S′

– If (r, s) ∈ S′, r α̂=⇒ r′, s α̂=⇒ s′, and (r′, s′) ∈ R,
then (r′, s′) ∈ S′ and ((r, s), α, (r′, s′)) ∈−→′.

Notice that S′ ⊆ R. Now define p : T ′ −→ T1 as p((r, s)) = r and q : T ′ −→ T2
as q((r, s)) = s. From the definitions and the above observation it should be easy
to see that p and q are open maps, i.e. T1 and T2 are P-bisimilar.

Assume T1 and T2 are P-bisimilar, i.e. there exist a span of open maps
T

��

m1

~ ~
~ ~
~ ~
~ ~
~ ~

��

m2

@@
@@
@@
@@
@@

T1 T2

It is enough to show that T and T1 are weakly bisimilar since weak bisimulation
is an equivalence relation. Define R to be the least relation in S × S1 such that

– (i, i1) ∈ R,
– If (r, s) ∈ R and r α−→ r′ then (r′, m1(r′)) ∈ R, and
– If (r, s) ∈ R and s

α−→ s′ then (r′, s′) ∈ R where r′ is any state such that

r
α̂=⇒ r′ and m1(r′) = s′. Such a state exists by Lemma 17.

Notice that (r, s) ∈ R implies m1(r) = s. Hence, in the last item s = m1(r) α̂=⇒
m1(r′). It is now easy to show that R is a weak bisimulation over T and T1. ut

12



5 Testing Equivalence (Hennessy)

In this section we modify the category from Sect. 3 (basically) only with respect
to the morphisms. We then choose a new subcategory P of observations. This
time the elements of P will reflect a special type of branching structure. Then we
show that the obtained P-bisimilarity coincides with Hennessy’s testing equiv-
alence [Hen88]. Testing equivalence is slightly stronger than trace equivalence,
due to an extra requirement on the set of possible actions, so-called acceptance
sets, from states reached by performing a sequence of actions/labels.

We continue by defining a new category LTS3 of transition systems. The
objects are those from LTS1 which are finitely branching, i.e. from every state
only finitely many actions can be taken. Before defining the morphisms we need
some definitions, inspired by [Hen88].

Definition20. Let T = (S, i, Act,−→) be an lts. Let RS(T ) denote the reach-
ability set of T . For r ∈ S, X ∈ RS(T ), and s ∈ Act∗ let

ST (r) = {α ∈ Act | ∃r′. r α−→ r′} , (24)

AT (r, s) = {ST (r′) | r s−→ r′} , (25)

ST (X) = {ST (r) | r ∈ S} . (26)

Notice that if {i} s−→ X for s ∈ Act∗ then {ST (X)} = AT (i, s). ST (X) is the
acceptance set of X.

The morphisms are now defined as follows.

Definition21. Given two lts’s, Tj = (Sj , ij, Act,−→j), j = 1, 2. A morphism m
between T1 and T2 is a function m from RS(T1) to RS(T2), such that

m({i1}) = {i2} , (27)

X
α−→ X′ impliesm(X) α−→ m(X′) , (28)

m(X) = Y ⇒ ∀A′ ∈ ST2(Y ). ∃A ∈ ST1(X). A ⊆ A′ . (29)

Notice how the definition of morphisms intuitively simulates Hennessy’s <<MAY
and <<MUST pre-orders. Being guided by the definitions in [Hen88] and our
results from Sect. 3, (27) and (28) reflect that we want traces to be simulated, and
(29) reflects how acceptance sets are to be matched. Composition of morphisms
is defined as the usual composition of functions. This defines the category LTS3.

The subcategory P of observations will not consist of finite paths, but of
trees consisting of a “trunk” and “branches” of length one, except for the “top”
of the tree, where a more general branching structure is allowed.
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Definition22. Let P be the full subcategory of LTS3 whose objects are of the
form

·

i //α1,1

##
α1,m1 FFF

FFF
FFF

FFF
· //α2,1

##
α2,m2 FFF

FFF
FFF

FFF
· · //αn,1

##
αn,mn

FFF
FFF

FFF
FFF

·

<<
β1,1

xxxxxxxxxxxx //
β1,k1

·

· · · //βmn,1

##
βmn,kmn GGG

GGG
GGG

GGG
·

·

where 0 ≤ m1, . . . , mn, k1, . . . , kmn and all states are distinct.

Intuitively, the “trunk” corresponds to the observations in Sect. 3, i.e. it will
ensure the existence of certain traces. The “top” of the the tree will ensure the
existence of acceptance sets. The branches along the trunk are merely there for
technical reasons. Think of a tree that has a trunk and only branches (of length
one) at the top. Then allow branches of length one (“acceptance sets”) to “grow”
at any node. This will produce an observation in P.

Lemma 23. The category LTS3 has pullbacks.

Proof. Assume we are given a diagram
T1

  
m1 AA
AA
AA
AA

T2

~~
m2} }
} }
} } }
}

T0

where Tj = (Sj , ij, Act,−→j), j = 0, 1, 2.
We start be defining an lts T = (S, i, Act,−→) as follows. S will consist of

triples whose first, second, and third components are elements from RS(T1),
RS(T2), and subsets of Act, respectively. S and −→ are defined to be the least
set such that

– i = ({i1}, {i2}, ST1(i1) ∩ ST2(i2)) ∈ S
– If (X, Y, C) ∈ S, α ∈ C, X α−→ X′, and Y

α−→ Y ′ then (X′, Y ′, C ′) ∈ S for
all C ′ ∈M(X′, Y ′), where M(X′, Y ′) = {A′ ∩ (

⋃
ST2(Y ′)) |A′ ∈ ST1(X′)} ∪

{B′ ∩ (
⋃
ST1(X′)) |B′ ∈ ST2(Y ′)}. Also, (X, Y, C) α−→ (X′, Y ′, C ′) for all

C ′ ∈M(X′, Y ′).

It should be easy to see that T is an lts. For later use we notice the following
facts.
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– For (X, Y, C) ∈ S it is the case that ST ((X, Y, C)) = C. This follows from
the definition of C.

– It is the case that L(T ) = L(T1)∩L(T2). To see this note that L(T ) ⊆ L(T1)∩
L(T2) clearly holds. So choose any v ∈ L(T1) ∩ L(T2), where v = α1 · · ·αn,
n ≥ 0. Then there exists X0

α1−→ · · · αn−→ Xn in T1 and Y0
α1−→ · · · αn−→ Yn in

T2, where X0 = {i1} and Y0 = {i2}. Also, there must exists Aj ∈ ST1(Xj)
such that αj+1 ∈ Aj for 0 ≤ j < n and clearly we have αj+1 ∈

⋃
ST2(Yj) for

0 ≤ j < n. So (X0, Y0, A0∩
⋃
ST2(Y0)) α1−→ · · · αn−→ (Xn, Yn, An∩

⋃
ST2(Yn)).

Hence, v ∈ L(T ).
– Given Z ∈ RS(T ). Then there exist an X ∈ RS(T1) and a Y ∈ RS(T2) such

that Z = {(X, Y, C) |C ∈ M(X, Y )}. This follows from that fact that the
transitions are deterministic on RS(T1) and RS(T2).

Let us define π1 : T −→ T1 as follows (π2 is defined in a similar fashion).
Given Z ∈ RS(T ) let π1(Z) = X, where X is the unique first component of the
elements of Z. We now show that π1 is a morphism.

– Clearly π1({i}) = {i1}.
– Assume Z α−→ Z′, for Z, Z′ ∈ RS(T ). Then by definition π1(Z) α−→ π1(Z′).
– Assume A ∈ ST1(X), where X = π1(Z). By definition (X, Y, A∩

⋃
ST2(Y )) ∈

Z, where π2(Z) = Y . Also, ST ((X, Y, A ∩
⋃
ST2(Y )) = A ∩

⋃
ST2(Y ) ⊆ A.

Hence, there exists an C ∈ ST (Z) such that C ⊆ A.

Having argued for that π1 and π2 are morphisms it trivially follows that m1◦π1 =
m2 ◦ π2.

Now assume that we are given a commuting square of the form
T ′′

~~

f1

| |
| | |
| |
|

  

f2

BB
BBB

BB
B

T1

  
m1 AA
AA
AA
AA

T2

~~
m2} }
} }
} }
} }

T0

We will show that there exists a morphism h : T ′′ −→ T . We then necessarily
have f1 = π1 ◦ f1 and f2 = π2 ◦ f2. Hence, we will have the desired pullback.
Define h : T ′′ −→ T by h(V ) = {(X, Y, C) |C ∈ M(X, Y )}, where X = f1(V )
and Y = f2(V ).

– Clearly h({i′′}) = i.
– If V α−→ V ′ in T ′′ then f1(V ) α−→ f1(V ′) and f2(V ) α−→ f2(V ′), and hence,

by previous facts we conclude that h(V ) α−→ h(V ′).
– Assume C ∈ ST (Z), where Z = h(V ). By the previous facts we conclude that

(X, Y, C) ∈ Z, where f1(V ) = X and f2(V ) = Y . Without loss of generality
we may assume C is of the form A ∩

⋃
ST2(Y ) for A ∈ ST1(X). Since f1 is

a morphism we know there exists a D ∈ ST ′′(V ) such that D ⊆ A. Also,
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D ⊆
⋃
ST2(Y ) because f2 simulates the transitions from V by transitions

from Y . Hence, D ⊆ A ∩
⋃
ST2(Y ).

This shows that h is a morphism and completes the proof of the lemma. ut

Having defined M and P we now characterise the open maps.

Lemma 24. A morphism m : T1 −→ T2 is P-open if and only if m : RS(T1) −→
RS(T2) has the following ”zig-zag” property

If m(X) α−→ Y ′, then there exists an X′ such that X α−→ X′ and m(X′) = Y ′,

and ∀A ∈ ST1(X). ∃A′ ∈ ST2(m(X)). A′ ⊆ A .

Proof. Assume m is P-open.

– If m(X) α−→ Y ′ then there exists

X0
α1−→ X1

α2−→ · · · αn−→ Xn ,

with {i1} = X0 and X = Xn in T1. Let Yj = m(Xj ) for 0 ≤ j ≤ n
and Yn+1 = Y ′. Let O1 denote the following observation. For the sake of
completeness we show the underlying deterministic transition system and
right below the associated acceptance sets.

i //α1

##
α1 GGG
GGG

GGG
GGG

s1 //α2

$$
α2 HHH
HHH

HHH
HH

//αn

##
αn GGG
GGG

GGG
GGG

sn

v1 v2 vn

{i} α1−→ {s1, v1}
α2−→ · · · αn−1−→ {sn−1, vn−1}

αn−→ {sn, vn}

{{α1}} {∅, {α2}} · · · {∅, {αn}} {∅}

Let O2 denote the following observation.

i′ //α1

""
α1

EEE
EEE

EEE
EEE

s′1
//α2

##
α2

FFF
FFF

FFF
FFF

//αn

""
αn

DD
DD
DDD

DD
DDD s′n

//α

$$
α HHH
HHH

HHH
HHH

sn+1

v′1 v′2 v′n v′n+1

{i′} α1−→ {s′1, v′1}
α2−→ · · · αn−→ {s′n, v′n}

α−→ {s′n+1, v
′
n+1}

{{α1}} {∅, {α2}} · · · {∅, {α}} {∅}

It should be easy to see that there exists a unique morphism from O1 to O2.
Denote it f : O1 −→ O2. Also, defining p : O1 −→ T1 by p({i}) = {i1} and
p({sj , vj}) = Xj for 1 ≤ j ≤ n yields a morphism. Similarly, q : O2 −→ T2
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defined by q({i′}) = {i2} and q({s′j , v′j}) for 1 ≤ j ≤ n + 1 is a morphism.
Since there is at most one morphism between any two objects in LTS3 we
conclude that m ◦ p = q ◦ f . Since m is P-open there exists a morphism
h : O2 −→ T1 such that p = h ◦ f and q = m ◦ h. Now h({s′n, v′n}) =
h(f({sn, vn})) = p({sn, vn}) = Xn and since {s′n, v′n}

α−→ {s′n+1, v
′
n+1}

we conclude h({s′n, v′n})
α−→ h({s′n+1, v

′
n+1}).Also,m(h({s′n+1, v

′
n+1})) =

q({s′n+1, v
′
n+1}) = Yn+1. So we conclude that there exists an X′ such that

X
α−→ X′ and m(X′) = Y ′.

– Let A ∈ ST1(X). We have to show that there exists an A′ ∈ ST2(m(X)) such
that A′ ⊆ A. As before, assume

X0
α1−→ X1

α2−→ · · · αn−→ Xn ,

with {i1} = X0 and X = Xn in T1. Let Y0, . . . , Yn denotem(X0), . . . , m(Xn).
Let O1 denote the following observation.

i //α1

##
α1 GGG
GGG

GGG
GGG

s1 //α2

$$
α2 HHH
HHH

HHH
HH

//αn

##
αn GGG
GGG

GGG
GGG

sn

v1 v2 vn

Let O2 denote

i′ //α1

""
α1

EEE
EEE

EEE
EEE

s′1
//α2

""
α2

FFF
FFF

FFF
FFF

//αn−1

##
αn−1 FFF

FFF
FFF

FFF
s′n−1

//αn

%%
αn JJJ
JJJ

JJJ
JJJ

T(n,1)

v′1 v′2 v′n−1 T(n,k)

where k = |ST2(Y ) |, and if ST2(Y ) = {A1, . . . , Ak} then T(n,j) denotes a
tree of depth one, whose branches are labelled by Aj, for 1 ≤ j ≤ k. For
completeness have show the reachability sets and the associated acceptance
sets.

{i′} α1−→ {s′1, v′1} · · · {s′n−1, v
′
n−1}

αn−→ {i(n,1), . . . , i(n,k)} . . . X′1
. . . X′k

{{α1}} {∅, {α2}} · · · {∅, {α}} ST2(Y ) ∅

For the sake of clarity we have used X′1, . . . , X
′
k to denote the remaining

reachability sets.
As before, it should be easy to see that there exists a unique morphism
f : O1 −→ O2. Define p : O1 −→ T1 as before. Finally, define q({i′}) = Y1,
q({s′j , v′j}) = Yj for 1 ≤ j ≤ n − 1, q({i(n,1), . . . , i(n,k)}) = Yn, and since
the transitions from {i(n,1), . . . , i(n,k)} can all be matched by those of Yn
(ST2(Y ) = SO2({i(n,1), . . . , i(n,k)})) it is possible to extend q uniquely to a
morphism q : O2 −→ T2. Notice how the requirements on the acceptance
sets are fulfilled. As noted before, we then necessarily have m◦p = q ◦ f and
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therefore the existence of a morphism h : O2 −→ T1 such that p = h ◦ f and
q = m ◦ h. Now the first equation tells us that h({i(n,1), . . . , i(n,k)}) = Xn.
Since A ∈ ST1(Xn) there must exist an A′ ∈ SO2({i(n,1), . . . , i(n,k)}) such
that A′ ⊆ A. But since SO2({i(n,1), . . . , i(n,k)}) = ST2(Yn) = ST2(m(X)), we
are done.

Assume m has the “zig-zag” property. Given a commuting diagram

O1

��

m

//p
T1

��

m

O2 //
q T2

Since m has the property that m(X) α−→ Y ′ implies there exists X α−→ X′

such that m(X′) = Y ′, transitions on the reachability sets are deterministic,
and RS(O1) together with the transitions has a tree structure, we can define
h : O2 −→ T1 inductively as follows.

– h({i′}) = {i1}
– If h(Y ) has been defined, Y α−→ Y ′, and h has not been defined on Y ′ then

define h(Y ′) as follows. By induction we may assume q(Y ) = m(h(Y )) and
we know q(Y ) α−→ q(Y ′). Then there must exist a (necessarily unique) X′

such that h(Y ) α−→ X′ and m(X′) = q(Y ′). Define h(Y ′) = X′. Notice also
that for all A′ ∈ ST1(h(Y ′)) there exists an A ∈ SO2(Y ′) such that A ⊆ A′.
This follows from m being P-open and q being a morphism; There must
exist an A′′ ∈ ST2(m(h(Y ′))) = ST2(q(Y ′)) such that A′′ ⊆ A′ and also an
A ∈ SO2(Y ′) such that A ⊆ A′′.

Checking that h : O2 −→ T1 is a morphism is now routine work. The equations
p = h ◦ f and q = m ◦ h now follows trivially. ut

We continue by defining Hennessy’s testing equivalence.

Definition25. Given two lts’s, Tj = (Sj , ij, Act,−→j), j = 1, 2. i1 is said to be
testing equivalent to i2 if

L(T1) = L(T2) , (30)

and for any s ∈ L(T1)

∀A′ ∈ A(i2, s). ∃A ∈ A(i1, s). A ⊆ A′ , (31)

∀A ∈ A(i1, s). ∃A′ ∈ A(i2, s). A′ ⊆ A . (32)

The above definition follows from Definition 2.8.8 in [Hen88]. Using the no-
tation from [Hen88] the above definition can be rewritten to i1 <<MAY i2,
i2 <<MAY i1, i1 <<MUST i2, and i2 <<MUST i1.

With the given choice of M and P it turns out that testing equivalence
corresponds to P-bisimilarity.
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Theorem26. Given two lts’s T1 and T2. Then,

T1 and T2 are testing equivalent if and only if T1 and T2 are P-bisimilar.

Proof. Assume T1 and T2 are testing equivalent. Define T = (S, i, Act,−→), π1
and π2 as in the proof of Lemma 23. By symmetry it is enough to show that π1
is P-open.

Let X = π1(Z) for Z ∈ RS(T ) and assume X
α−→ X′. Assume X0

α1−→
X1

α2−→ · · · αn−→ Xn
α−→ X′, where X0 = {i1} and Xn = X. Since L(T1) = L(T2)

we know that there exist Y0
α1−→ Y1

α2−→ · · · αn−→ Yn
α−→ Y ′ in T2, where Y0 =

{i2}. Then necessarily Z
α−→ Z′, where Z′ = {(X′, Y ′, C) |C ∈M(X′, Y ′)} and

π1(Z′) = X′.
Let C ∈ ST (Z), where Z ∈ RS(T ). We conclude that (X, Y, C) ∈ Z, where

Y = π2(Z). There exists a v ∈ L(T ) such that {i1} v−→ X and {i2} v−→ Y .
Without loss of generality assume C is of the form A ∩

⋃
ST2(Y ), where A ∈

ST1(X), Consider any minimal (with respect to set inclusion) Amin ∈ ST1(X)
such that Amin ⊆ A. Since ST1(X) = A(i1, v) = A(i2, v) = ST2(Y ), we conclude
Amin ∈ ST2(Y ) and hence, Amin ⊆

⋃
ST2(U). Hence, Amin ⊆ C, i.e. there exists

an A′ ∈ ST1(X) such that A′ ⊆ C.
Next, assume T1 and T2 are P-bisimilar, i.e. there exists a span of open maps

T

��

m1

~ ~
~ ~
~ ~
~ ~
~ ~

��

m2

@@
@@
@@
@@
@@

T1 T2

It is enough to show that T and T1 are testing equivalent. By Lemma 24 it follows
easily that L(T ) = L(T1). Given an s ∈ L(T ). Assume A ∈ A(i, s). We have to
show that there exists an A1 ∈ A(i1, s) such that A1 ⊆ A. Let X be the unique
element in RS(T ) such {i} s−→ X. Then A ∈ ST (X). Since m1 is an open map
there exists an A1 ∈ ST1(m(X)) such that A1 ⊆ A. Since A(i1, s) = ST1(m(X))
we are done.

Now assume A1 ∈ A(i1, s). We have to show that there exists an A ∈ A(i, s)
such that A ⊆ A1. Let X1 be the unique element from RS(T1) such that {i1} s−→
X1. Then A1 ∈ ST1(X1). Since m1 is open there exists an X ∈ RS(T ) such that
{i} s−→ X and m1(X) = X1. By the definition of morphisms there exists an
A ∈ ST (X) such that A ⊆ A1. But since ST (X) = A(i, s) we are done. Hence,
T1 and T2 are testing equivalent. ut

6 Barbed Bisimulation (Milner & Sangiorgi)

In this section we show how we can obtain Milner and Sangiorgi’s barbed bisim-
ulation [MS92].

Barbed bisimulation differs from strong bisimulation in three obvious ways.
First, as in the case of weak bisimulation, we distinguish between “visible” and
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“invisible” actions. Second, only τ transitions are required to be (bi)simulated.
And third, only the existence of a “visible” transition has to be matched.

We start by defining the category of models LTS4, then the subcategory of
observations P, and finally we characterise the P-open maps and prove that
P-bisimilarity coincides with barbed bisimulation.

Let LTS4 be the category of labelled transition systems (lts) whose objects
are those from LTS. Again we assume that Act contains a special “invisible”
action denoted τ . Before defining the morphisms of LTS4 we need the following
definition.

Definition27. Given an lts T = (S, i, Act,−→). Rτ (T ), the set of τ -reachable
states of T , is defined to be the set {s ∈ S | i τ−→ · · · τ−→ s}. We use the notation
s↓ if there exist an α ∈ Act− {τ} and an s′ ∈ S such that s α−→ s′.

Morphisms between two lts in LTS4 are defined as follows:

Definition28. Given two lts’s, T1 = (S1, i1, Act,−→1) and T2 = (S2, i2, Act,
−→2). A morphism m from T1 to T2 is a function m : Rτ(T1) −→ Rτ(T2) such
that

m(i1) = i2 , (33)

r
τ−→ r′ impliesm(r) τ−→ m(r′) , (34)

r↓ implies m(r)↓ . (35)

This definition reflects that we only want to simulate τ ’s and preserve the
↓ predicate. This corresponds well to our intuitive understanding of barbed
(bi)simulation. Composition of morphisms is defined as the composition of the
functions between the underlying τ -reachable states.

Next we define the category of observations.

Definition29. Let P be the subcategory of LTS4 whose objects are of the form

i
τ−→ r1

τ−→ · · · τ−→ rn−1
α−→ rn , (36)

where α ∈ Act and all states are distinct.

Notice how the observations correspond to the τ -reachability of a state (rn, when
α = τ) and the ↓ predicate holding at it (rn−1, when α 6= τ).

Having defined M as LTS4 and P we show that LTS4 has pullbacks.

Lemma 30. The category LTS4 has pullbacks.
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Proof. Given a diagram

T1

��
m1 <<
<<
<<
<<
< T2

��
m2

� �
� �
� �
� �
�

T

Define S′ ⊆ Rτ(T1) ×Rτ(T2) and −→′ as the least sets such that

– (i1, i2) ∈ S′
– If (r, s) ∈ S′, r τ−→ r′, s τ−→ s′, and m1(r′) = m2(s′)

then (r′, s′) ∈ S′ and ((r, s), τ, (r′, s′)) ∈−→′.

Intuitively, S′ is the τ -reachable states of the lts that will constitute the pullback.
Now choose any α ∈ Act− {τ} and define

– S′′ = {(r′, s′)|∃(r, s) ∈ S′. r β−→ r′ ∧ s
γ−→ s′ ∧ β 6= τ ∧ γ 6= τ}

– −→′′= {((r, s), α, (r′, s′)) | (r, s) ∈ S′ ∧ (r′, s′) ∈ S′′ ∧
∃β 6= τ, γ 6= τ. r

β−→ r′ ∧ s γ−→ s′}

S′′ and −→′′ ensure that the ↓ predicate has the desired value at the states
in S′. Now define T ′ = (S′ ∪ S′′, (i1, i2), −→′ ∪ −→′′, Act), π1 : T ′ −→ T1 as
π1((r, s)) = r, and π2 : T ′ −→ T2 as π2((r, s)) = s. It can be shown that T ′, π1,
and π2 constitute a pullback of the above diagram. ut

Next, we characterise the open maps.

Lemma 31. A morphism m : T1 −→ T2 is P-open if and only if it satisfies the
following “zig-zag” property:

If m(r) τ−→ s then there exists an r′ such that r τ−→ r′ and m(r′) = s.

Also, m(r)↓ implies r↓.

Proof. Assume m is open, r ∈ Rτ (T1), and m(r) τ−→ s. We first prove the
existence of the above mentioned r′. Assuming i1

τ−→ r1
τ−→ · · · τ−→ rn = r, let

O1 be the observation
i

τ−→ s1
τ−→ · · · τ−→ sn ,

and O2 the observation

i′
τ−→ s′1

τ−→ · · · τ−→ s′n
τ−→ s′ .

Let f : O1 −→ O2 be the unique function from O1 to O2 which sends sj to s′j ,
p : O1 −→ T1 the morphism which sends sj to rj for 1 ≤ j ≤ n, and q : O2 −→ T2
the morphism which sends s′j to m(rj), for 1 ≤ j ≤ n, and s′ to s. Then the
diagram
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O1

��

f

//p
T1

��

m

O2 //
q T2

commutes, and there exists a morphism h : O2 −→ T1 such that p = h◦f and q =
m ◦ h. Observe that h(s′n) = h(f(sn)) = p(sn) = rn. Hence, r = rn = h(s′n) τ−→
h(s′). Also, m(h(s′)) = q(s′) = s. Now choose r′ = h(s′). Finally, assume m(r)↓
because m(r) α−→ s for α 6= τ . Choosing O2 as i′ τ−→ s′1

τ−→ · · · τ−→ s′n
α−→ s′

and the other components as before (adjusting the morphisms in the obvious
way) we obtain another commuting diagram and a morphism h′ : O2 −→ T1
such that the triangles commute. So h′(s′n) = h′(f(sn)) = p(sn) = rn = r and
since s′n ↓ we have r↓.

Assume m has the “zig-zag” property and the diagram

O1

��

f

//p
T1

��

m

O2 //
q T2

commutes. We proceed by a case analysis on the shape of the observations O1
and O2.

– Assume O1 is of the form i
τ−→ s1

τ−→ · · · τ−→ sn and O2 of the form
i′

τ−→ s′1
τ−→ · · · τ−→ s′n

τ−→ · · · τ−→ s′n+k, where k ≥ 0.
Define h(s′j) = p(sj) for 1 ≤ j ≤ n. Next, we define h on s′n+1. Since q(s′n) =
q(f(sn)) = m(p(sn)), p(sn) ∈ Rτ(T1), and m(p(sn)) τ−→ q(s′n+1) there exists
a r′ such that p(sn) τ−→ r′ and m(r′) = q(s′n+1). Define h(s′n+1) = r′.
Continuing this way for the remaining state s′n+2, . . . , s

′
n+k it can be shown

that the produced h is a morphism from O2 to T1 such that p = h ◦ f and
q = m ◦ h.

– Assume O1 is of the form i
τ−→ s1

τ−→ · · · τ−→ sn−1
α−→ sn and O2 of the

form i′
τ−→ s′1

τ−→ · · · τ−→ s′m−1
β−→ s′m, where α 6= τ and β 6= τ .

Since f is a morphism we conclude n = m and f(sj ) = s′j for 1 ≤ j ≤ n.
It is then easy to see that h(s′j) = p(sj) for 1 ≤ j ≤ n defines a morphism
from O2 to T1 such that p = h ◦ f and q = m ◦ h.

– Finally assume O1 is of the form i
τ−→ s1

τ−→ · · · τ−→ sn and O2 of the form
i′

τ−→ s′1
τ−→ · · · τ−→ s′m−1

α−→ s′m, where α 6= τ .
As before, we conclude m > n. Using the same procedure as in case 1, only
this time observing that m(h(s′m−1)) = q(s′m−1) ↓ implies h(s′m−1) ↓, we
obtain a morphism h : O2 −→ T1 such that the two triangles in the diagram
commute.

We conclude that m is P-open. ut
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We now give Milner and Sangiorgi’s definition of barbed bisimulation adapted
to the case where the labelled transition systems have initial states.

Definition32. Given T1 and T2. A barbed bisimulation over T1 and T2 is a
relation R ⊆ Rτ(T1) ×Rτ(T2) such that

(i1, i2) ∈ R , (37)

((r, s) ∈ R ∧ r
τ−→ r′) ⇒ for some s′ (s τ−→ s′ ∧ (r′, s′) ∈ R) , (38)

((r, s) ∈ R ∧ s
τ−→ s′) ⇒ for some r′ (r τ−→ r′ ∧ (r′, s′) ∈ R) , (39)

(r, s) ∈ R ⇒ (r↓ ⇔ s↓) . (40)

T1 and T2 are said to be barbed bisimilar if there exists such an R.

And now to the theorem relating P-bisimilarity to barbed bisimilarity.

Theorem33. Given two lts’s, T1 and T2. Then:

T1 is barbed bisimilar to T2 if and only if T1 and T2 are P-bisimilar.

Proof. Assume R is a barbed bisimulation over T1 and T2 and γ ∈ Act − {τ}.
Now define

– S′ = {(r, s) ∈ R | ∃(r1, s1), . . . , (rn−1, sn−1) ∈ R.
i1

τ−→ r1
τ−→ · · · τ−→ rn−1

τ−→ r ∧
i2

τ−→ s1
τ−→ · · · τ−→ sn−1

τ−→ s},
– −→′= {((r, s), τ, (r′, s′)) | (r, s), (r′, s′) ∈ S′ ∧ r

τ−→ r′ ∧ s
τ−→ s′},

– S′′ = {(r′, s′) ∈ S1 × S2 | ∃(r, s) ∈ S′, α, β ∈ Act− {τ}.r α−→ r′ ∧ s
β−→ s′},

– −→′′= {((r, s), γ, (r′, s′)) | (r, s) ∈ S′ ∧ (r′, s′) ∈ S′′ ∧
∃α, β ∈ Act− {τ}.r α−→ r′ ∧ s

β−→ s′},
– T = (S′ ∪ S′′, (i1, i2), Act,−→′ ∪ −→′′),
– π1 : T −→ T1 by π1((r, s)) = r, and
– π2 : T −→ T2 by π1((r, s)) = s.

It can be shown that T is a lts and that π1 and π2 are morphisms. Without loss
of generality we show that π1 is open. Choose any (r, s) ∈ Rτ(T ).

– Assume π1((r, s)) = r
τ−→ r′. Since Rτ(T ) = S′ ⊆ R and R was a barbed

bisimulation over T1 and T2, we know that there exists a s′ such that s τ−→ s′

and (r′, s′) ∈ R. But by definition of S′ we conclude (r′, s′) ∈ S′ and also
(r, s) τ−→ (r′, s′) in T , where π1((r′, s′)) = r′.

– Assume that π1((r, s)) = r ↓, i.e. there exists an r′ such that r α−→ r′ and
α 6= τ . Since (r, s) ∈ Rτ(T ) we know that r ↓⇒ s↓, i.e. there exists s′ such

that s
β−→ s′ and β 6= τ . But then (r′, s′) ∈ S′′ and ((r, s), γ, (r′, s′)) ∈−→′′,

i.e. (r, s)↓.
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Assume T1 and T2 are P-bisimilar. Then there must exist a span of open
maps:

T

��

m1

~ ~
~ ~
~ ~
~ ~
~ ~

��

m2

@@
@@
@@
@@
@@

T1 T2

It is sufficient to show that if m1 : T −→ T1 (m2 : T −→ T2) is open then T
and T1 (T2) are barbed bisimilar, since being barbed bisimilar is an equivalence
relation. So define R1 = {(r,m1(r)) | r ∈ Rτ (T )}. We claim that R1 is a barbed
bisimulation over T and T1, namely;

– (i, i1) ∈ R1,
– (r, s) ∈ R1 and r τ−→ r′ implies s = m1(r) τ−→ m1(r′) and (r′, m1(r′)) ∈ R1,
– if (r, s) = (r,m1(r)) ∈ R1 and m1(r) τ−→ s′ then there exists an r′ such that
r

τ−→ r′ and m1(r′) = s′, since m1 is open, and (r′, s′) = (r′, m1(r′)) ∈ R1,
and

– if (r, s) ∈ R1 and r↓ then s = m1(r)↓ since m1 is a morphism and if s↓ then
r↓ since m1(r) = s, r ∈ Rτ(T ), and m1 is open.

This concludes the proof. ut

7 Probabilistic Transition Systems (Larsen & Skou)

In this section we show that the probabilistic bisimulation of Larsen and Skou
[LS91] can be characterised using the general setting in Sect. 2. We will however
apply the theory in a slightly different way. Until now, we have tried to charac-
terise P-bisimilarity between objects ofM, for the specific choices of P andM.
In this section we will focus on P-bisimilarity between objects of a subcategory
ofM. This application of the theory of open maps still turns out “successful”.

Intuitively, Larsen and Skou’s probabilistic bisimulation differs from strong
bisimulation in at least two respects. First, to each labelled transition there is
associated a real number from the interval [0; 1] which is to be understood as the
probability with which the transition can be performed. Second, it is no longer
single labelled transitions between two states that have to be matched but a
set of identically labelled transitions into an equivalence class of probabilistic
bisimilar states.

Based on [LS91] we start by defining a category PPTS, partial probabilistic
transition systems, corresponding to M, and a subcategory of observations, P,
in PPTS. Then, we show that P-bisimilarity in the full subcategory of prob-
abilistic transition systems, PTS, in PPTS, corresponds to Larsen and Skou’s
probabilistic bisimulation. Contrary to Larsen and Skou we do not assume lower
limit on the probability of transitions. Because we wish to allow arbitrary small
probabilities and for technical reasons, we consider IR∗, the field of hyperreal
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numbers, instead of IR, the field of real numbers. IR∗ is the proper ordered ex-
tension of IR containing infinitesimals. An element ε ∈ IR∗ is infinitesimal if
0 < |ε| < r for all positive real numbers r. We reserve the symbol ε to denote
infinitesimals. For a thorough presentation the reader is referred to [Kei76].

Definition34. A partial probabilistic transition system (ppts) is a tuple

T = (Pr, i, Act,Can, µ) , (41)

where Pr is a set of processes (or states), i is the initial state, Act is the set of
observable actions that processes may perform, Can is an Act-indexed family of
sets of processes, and µ is a family of partial probability distributions indexed by
states and actions. For any action a ∈ Act and any process r ∈ Pr, r ∈ Cana
indicates that the process r can perform an a-action, in which case µr,a : Pr→
[0; 1]⊆ IR∗ is a function such that

∑
r′ µr,a(r′) ≤ 1.

In general, we do not require the sum to be equal to 1; hence the name partial
probability distribution. If all µr,a are probability distributions, i.e. µr,a maps
into the real numbers and

∑
r′ µr,a(r′) = 1, we leave out the term partial and

refer to T as a probabilistic transition system (pts). µr,a(r′) = µ can intuitively
be read as “r can perform the action a and with probability µ become r′ ”.

Given a ppts T. We shall use the following notations:

r
a−→µ r

′ whenever r ∈ Cana and µr,a(r′) = µ

r
a−→ r′ whenever r a−→µ r

′ for some µ > 0
r

a−→ whenever r ∈ Cana
r 6 a−→ whenever r 6∈ Cana
r

a−→µ S whenever S is any set of processes,
r ∈ Cana and µ =

∑
r′∈S µr,a(r′).

We assume the set Act to be fixed and that all processes in Pr are reachable
from the initial state via transitions having non-zero probabilities. Finally, two
ppts will be said to be distinct if their sets of processes are disjoint.

Next, we define morphisms between ppts’s.

Definition35. A ppts-morphism f between two ptts’s, Tj = (Prj, ij, Act,Canj ,
µj), j = 1, 2, is a function between Pr1 and Pr2 such that

f(i1) = i2 , (42)

f(r) a−→ f(r′) whenever r a−→ r′ , (43)

If r a−→ r′ and f(r) a−→µ′ f(r′) then
∑

r
a
−→µr′′f(r′′)=f(r′)

µ ≤ µ′ . (44)
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The intuition behind (44) is that all transitions from r in T1 which are sim-
ulated by a transition from f(r) can occur with a probability which is no higher
than the probability of the simulating transition from f(r).

Let PPTS denote the category of partial probabilistic transition systems,
whose objects are ppts’s and morphisms are ppts-morphisms, with composition
of morphisms defined as the usual composition of functions. Let PTS denote the
full subcategory of PPTS whose objects are pts’s.

In our model of computation, PPTS, we identify the following subcategory
P of observations.

Definition36. Let P be the full subcategory of PPTS whose objects are ppts’s
of the following form

i
a1−→ε1 r1

a2−→ε2 · · ·
an−→εn rn , (45)

for some natural number n, distinct states, and actions a1, . . . , an ∈ Act. Notice
that all the probabilities are infinitesimals.

The intuition behind using only infinitesimals on the transitions is that we
will only be interested in whether or not a transition can occur rather the proba-
bility with which is occurs. This is only true because PTS are the models which
we consider.

This time, we postpone the investigation of the existence of pullbacks in
PPTS. Instead, we now try to characterise the P-open maps in PPTS between
any two pts’s.

Lemma 37. A morphism m : T1 −→ T2 between two pts’s is P-open if and only
if it is “zig-zag” in the following sense:

If m(r) a−→ s then there exists an r′ such that r a−→ r′ and m(r′) = s.

Proof. Assume m is P-open and m(r) a−→ s. Since r is reachable from i1 there
exists

i1 = r0
a1−→ r1

a2−→ · · · an−→ rn = r

in T1. Let O1 be any observation of the form

i
a1−→ε1 s1

a2−→ε2 · · ·
an−→εn sn ,

and O2 any observation of the form

i′
a1−→ε′1

s′1
a2−→ε′2

· · · an−→ε′n
s′n

a−→ε′ s
′ ,

where εj ≤ ε′j for 1 ≤ j ≤ n. Let h denote the unique morphism between O1 and
O2, f denote the morphism from O1 to T1 which maps sj into rj for 1 ≤ j ≤ n,
and g denote the morphism from O2 to T2 which maps O2 into

i2 = m(r0) a1−→ m(r1) a2−→ · · · an−→ m(rn) = m(r) a−→ s .

It is easy to see, that the square
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O1

��

h

//f
T1

��

m

O2 //
g T2

commutes. But since m is P-open there exists a morphism m′ : O2 −→ T1 such
that m′ ◦ h = f and m ◦m′ = g. This implies the existence of an r′ such that
r

a−→ r′ and m(r′) = s.
Conversely, assume that m is “zig-zag”. Let O1 and O2 be any two observa-

tions and f , g, and h any morphisms such that the square

O1

��

h

//f
T1

��

m

O2 //
g T2

commutes. We now define a morphism m′ from O2 to T1 such that m′ ◦ h = f
and m ◦m′ = g.

Assume O1 has the form

i
a1−→ε1 r1

a2−→ε2 · · ·
an−→εn rn ,

and O2 has the form

i′
a1−→ε′1

r′1
a2−→ε′2

· · · an−→ε′n
r′n

an+1−→ε′
n+1
· · · an+k−→ ε′

n+k
r′n+k ,

where εj ≤ ε′j for 1 ≤ j ≤ n. Apart from m′(i′) = i1, we must define m′(r′j) =

f(rj) for 1 ≤ j ≤ n. Since g(r′n) = m(f(rn))
an+1−→ g(r′n+1) and m is “zig-

zag”, there exists an s such that f(rn)
an+1−→ s and m(f(s)) = g(r′n+1). Define

m′(rn+1) = s. Continuing this process for the remaining r′n+2, . . . , r
′
n+k we ob-

tain the map m′ : O2 −→ T1. It is now easy to show that m′ is indeed a mor-
phism, since the transitions in the observations have infinitesimal probabilities,
and that the “triangles” in the diagram commute. Hence, m must be P-open ut

Going through the proof the reader should be able to realise why only in-
finitesimal probabilities are allowed on the observations from P. Allowing arbi-
trary probabilities would imply that two pts’s which are related by an open map
m would be locally isomorphic in the following sense: if m(r) a−→µ s

′, then there
exists an r

a−→µ r
′ such that m(r′) = s′.

From the definition of the morphisms in PPTS one observes the following
facts:

– If m : T1 −→ T2 and T1 is a pts then T2 must also be a pts.
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– PPTS does not have pullbacks, neither does PTS. Consider the following
example which illustrates three pts’s.

i

��
1 a

i′

��

0.55
a

� �
� �
� �
� �

��0.45
a

>>
>>
>>
>> i′′

~~

0.5
a

~ ~
~ ~ ~
~ ~
~

  0.5
a

AA
AA
AA
AA

r s s′ s′′ s′′′

Let T , T1, and T2 denote the pts’s from left to right. Clearly there are
uniquely determined morphisms from T1 to T and from T2 to T . Together,
they form a diagram which does not have a pullback.

However, for P-bisimilarity to be an equivalence relation (a transitive rela-
tion, to be more precise) it is in general not necessary for the category M to
have pullbacks. The following weaker result suffices.

Theorem38. Given two P-open morphisms between pts’s, m1 : T1 −→ T0 and
m2 : T2 −→ T0. There exists a pts T and P-open morphisms π1 and π2 such
that

T

~~

π1

} }
} }
} }
} }

  

π2

AA
AA
AA
AA

T1

  
m1 AA
AA
AA
AA

T2

~~
m2} }
} }
} }
} }

T0

is a commuting square.

Proof. We define a pts, T = (Pr, i, Act,Can, µ), and two maps π1 : T −→ T1,
π2 : T −→ T2 with the desired properties.

– Define S = {m−1
1 (r)×m−1

2 (r) | r ∈ Pr0}.
– Let Pr ⊆ S and ;⊆ S ×Act × [0; 1]× S be the least sets such that
• i = (i1, i2) ∈ Pr
• If (r, s) ∈ Pr, r a−→µ1 r′, µ1 > 0, s a−→µ2 s′, µ2 > 0, m1(r′) =
m2(s′), and µ′ = µ1µ2

µ , where µ > 0 is uniquely determined by m1(r) =

m2(s) a−→µ m2(s′) = m1(r′), then (r′, s′)∈ Pr and ((r, s), a, µ′, (r′, s′))∈
;, written (r, s) a

;µ′ (r′, s′).
– Now for (r, s) ∈ Pr, a ∈ Act define (r, s) ∈ Cana if (r, s) a

;µ (r′, s′) for some
(r′, s′) ∈ Pr. Also, define µ(r,s),a((r′, s′)) = µ′ > 0 if (r, s) a

;µ′ (r′, s′) and
otherwise 0.

– Define π1 : T −→ T1 by π1((r, s)) = r and π2 : T −→ T2 by π2((r, s)) = s.

It can be shown that π1 and π2 are morphisms. Here we merely show that T is
a pts.
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Clearly, all states in Pr are reachable from the initial state. Since m1 and m2
form a co-span of open maps between pts’s we know e.g. that if m1(r) a−→µ v
then

µ =
∑

r′m1(r′)=v

µr,a(r′) =
∑

r
a
−→µr′m1(r′)=v

µ .

Also, if (r, s) ∈ Cana then (r, s) a
;µ′ (r′, s′) for some µ′ > 0 and we have to show∑

(r′,s′)

µ(r,s),a((r′s′)) = 1 .

It follows from the definition that r ∈ Cana and s ∈ Cana. We then have∑
(r′,s′)

µ(r,s),a((r′s′))

=
∑
I1

∑
I2

∑
I3

µ1µ2

µ

=
∑
I1

∑
I2

µ1

µ

∑
I3

µ2

=
∑
I1

∑
I2

µ1

µ
µ

=
∑
I1

∑
I2

µ1

=
∑
I1

µ

= 1 .

where the index sets are

I1 = {v |m1(r) a−→µ v ∧ µ > 0} ,

I2 = {r′ | r a−→µ1 r
′ ∧ m1(r′) = v} ,

and
I3 = {s′ | s a−→µ2 s

′ ∧ m2(s′) = v} .

ut

Noticing that the composition of two open maps is itself an open map
[JNW93], we obtain the following corollary.

Corollary 39. P-bisimilarity between pts’s is an equivalence relation.
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If, as done by Larsen and Skou in [LS91], we had assumed a lower limit
γ on the probability of transitions (minimal probability assumption) and only
considered the field of real numbers it would have been hard to obtain a result
as the above, at least for us. The problem is that “pullback like” constructions
of T involves expressions of the type µ1µ2

µ which may denote values smaller than
γ.

Next, we recall the definition of probabilistic bisimulation from [LS91]. We
have adapted it to the case where the probabilistic transition systems have initial
states.

Definition40. Let Tj = (Prj, ij, Act,Canj , µj), where j = 1, 2, be two distinct
pts’s. A probabilistic bisimulation between T1 and T2 is an equivalence ≡ on
Pr = Pr1 ∪Pr2 such that i1 ≡ i2 and whenever r ≡ s, then the following holds:

∀a ∈ Act. ∀S ∈ Pr/≡. r
a−→µ S ⇔ s

a−→µ S , (46)

where the notation r a−→µ S was defined after Definition 34.

Now to the main result of this section.

Theorem41. Given two pts’s, T1 and T2. Then :

T1 is probabilistic bisimilar to T2 if and only if T1 is P-bisimilar to T2.

Proof. Assume ≡ is a probabilistic bisimulation between T1 and T2. We define
a pts T = (Pr, i, Act,Can, µ) and two P-open morphisms, m1 : T −→ T1 and
m2 : T −→ T2, which constitute a span of open maps, showing that T1 and T2
are P-bisimilar.

– Let S = {(r, s) ∈ Pr1 × Pr2 | r ≡ s}.
– Let Pr ⊆ S and ;⊆ S ×Act × [0; 1]× S be the least sets such that
• i = (i1, i2) ∈ Pr
• If (r, s) ∈ Pr, r a−→µ1 r′, µ1 > 0, s a−→µ2 s′, µ2 > 0, r′ ≡ s′,

and µ′ = µ1µ2
µ , where µ > 0 is uniquely determined by r

a−→µ [r′]
and [r′] is the equivalence class of r′ under ≡, then (r′, s′) ∈ Pr and
((r, s), a, µ′, (r′, s′)) ∈;, written (r, s) a

;µ′ (r′, s′).
– Now for (r, s) ∈ Pr, a ∈ Act define (r, s) ∈ Cana if (r, s) a

;µ (r′, s′) for some
(r′, s′) ∈ Pr. Also, define µ(r,s),a((r′, s′)) = µ′ > 0 if (r, s) a

;µ′ (r′, s′) and
otherwise 0.

– Define m1 : T −→ T1 by m1((r, s)) = r and m2 : T −→ T2 by m2((r, s)) = s.

It can be shown that T is a pts, that m1 and m2 are open maps, and that
together they constitute the desired span of open maps.

Now assume there is a span of open maps:

T

��

m1

~ ~
~ ~
~ ~ ~
~

��

m2

@@@
@@
@@
@

T1 T2
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Define the relation ∼ ⊆ Pr× Pr as

r ∼ r′ if and only if m1(r) = m1(r′) or m2(r) = m2(r′) ,

and let ≈=∼∗. Now define an equivalence relation ≡ on Pr1 ∪ Pr2 whose set of
equivalence classes are

{m1(S′) ∪m2(S′) |S′ ∈ Pr/≈} .

That ≡ is indeed an equivalence relation on Pr1 ∪ Pr2 follows from the
definition of ≈ and that m1 and m2 are P-open morphisms, which implies that
they are surjective functions.

We now claim that ≡ is a probabilistic bisimulation between T1 and T2. This
follows from the following observations (without loss of generality stated for T1).

– i1 ≡ i2.
– If s ∈ Pr1, a ∈ Act, and S is an equivalence class of ≡ then s

a−→µ S if
and only if s a−→µ (S ∩ Pr1). Also, for any r ∈ m−1

1 (s), s a−→µ S implies
r

a−→µ S
′ for the unique equivalence class S′ = m−1

1 (S ∩ Pr1) ∈ Pr/≈, and
r

a−→µ S
′ for S′ ∈ Pr/≈ implies m1(r) a−→µ m1(S′).

– For r1 ≈ r2 in T and any S′ ∈ Pr/≈ we have r1
a−→µ S′ if and only if

r2
a−→µ S

′.
ut

8 Conclusion

In this paper we have tried in practice to investigate the applicability of Joyal,
Nielsen, and Winskel’s theory of open maps which was proposed as an abstract
definition of equivalence in categories of models of computations.

Guided by our intuitive understanding of what it means for a system X
to be simulated by a system Y we defined different categories of models of
computation. Our choices of (sub)categories of observations were also guided by
which behaviours ought to be observable.

It turned out that we could identify well-know notions of behavioural equiv-
alences. We started by the most fundamental (or coarsest) namely, trace equiva-
lence. Then, we considered “invisible” actions and identified weak bisimulation,
testing equivalence, and barbed bisimulation.

Finally, in a more technical section, we showed how the theory of open maps
could be relaxed and we identified Larsen and Skou’s probabilistic bisimulation.
For technical reasons we applied the theory to a category in which the sub-
category of observations was disjoint from the subcategory of models we were
interested in.

Our results have shown that the theory of open maps does give meaningful
equivalences when applied to well know models of computation.

We also noticed that the equivalences we identified could be captured by
several different choices of observations. E.g., from the proofs in Sect. 5 it is clear
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that we could choose a smaller subcategory of observations; binary branching
along the “trunks” of the trees is sufficient. A similar observation has been made
in [JNW94] in connection with strong history preserving bisimulation. On the
other hand, consider the characterisation of strong bisimulation from [JNW93]
(see also Sect. 2). Had P been chosen to be of the form

sn,1

i //α1 s1 //α2 //αn−1 sn−1

55αn,1 jjjjjjjjjj

))αn,m TTTT
TTTTT

T

sn,m

then an P-open map m would have been characterised by the usual “zig-zag”
property

if m(r) α−→ s′, then there exists an r′ such that r α−→ r′ and m(r′) = s′,

and the additional “local bijection” property

for any α ∈ Act, {r′ | r α−→ r′} is in bijective correspondence with

{s′ |m(r) α−→ s′} under m.

So apart from helping identifying “characterising observations” for behavioural
equivalences, the theory of open maps also allows us to test how “robust” an
equivalence is against different choices of observations.

Also, the choice of simulating morphisms turned out to be important. In
the category of labelled transition systems LTS we didn’t expect to be able
to capture weak bisimulation just by changing the choice of observations. We
defined new morphisms which intuitively corresponded to a “weak simulation”.

As for future work, the section on weak bisimulation can be seen as starting
point to understand how weak bisimulations can be obtained abstractly from
(strong) bisimulations using category theory. Glynn Winskel has observed that
one can motivate the choice of morphism between the observations (which were
the same as those used for characterising strong bisimulation in [JNW93]) from
a category theoretical point of view using monads.
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[JNW94] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open
maps. Research Series RS-94-7, BRICS, Department of Computer Science,
University of Aarhus, May 1994. 42 pp. Journal version of LICS ’93 paper.

32



[Kei76] H. Jerome Keisler. Foundations of Infinitesimal Calculus. Prindle, Weber &
Schmidt, Incorporated, 1976.

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through Probabilistic Testing.
Information and Computation, 94:1–28, 1991.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall International
Series In Computer Science, C. A. R. Hoare series editor, 1989.

[Mil90] Robin Milner. Operational and Algebraic Semantics of Concurrent Processes,
chapter 19. Elsevier Science Publishers, 1990. in Handbook Of Theoretical
Computer Science, editor J. van Leeuwen.

[MS92] Robin Milner and Davide Sangiorgi. Barbed Bisimulation. In Automata,
Languages and Programming, 19th International Colloquium, Wien, Austria
(Proc. ICALP’92), pages 685–695. Springer-Verlag (LNCS 623), July 1992.

[WN94] Glynn Winskel and Mogens Nielsen. Models for concurrency. Research Series
RS-94-12, BRICS, Department of Computer Science, University of Aarhus,
May 1994. 144 pp. To appear as a chapter in the Handbook of Logic and the
Foundations of Computer Science, Oxford University Press.

This article was processed using the LATEX macro package with LLNCS style

33



Recent Publications in the BRICS Report Series

RS-95-23 Allan Cheng and Mogens Nielsen.Open Maps (at) Work.
April 1995. 33 pp.
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