
B
R

IC
S

R
S

-95-21
H

enriksen
etal.:

M
O

N
A

:M
onadic

S
econd-O

rderLogic
in

P
ractice

BRICS
Basic Research in Computer Science

MONA: Monadic Second-Order Logic
in Practice

Jesper G. Henriksen
Ole J. L. Jensen
Michael E. Jørgensen
Nils Klarlund
Robert Paige
Theis Rauhe
Anders B. Sandholm

BRICS Report Series RS-95-21

ISSN 0909-0878 May 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

MONA: MONADIC SECOND-ORDER LOGIC
IN PRACTICE1

JESPER GULMANN HENRIKSEN2, JAKOB JENSEN2,
MICHAEL JØRGENSEN2, NILS KLARLUND3, ROBERT PAIGE4,

THEIS RAUHE2, AND ANDERS SANDHOLM2

Abstract. The purpose of this article is to introduce Monadic Second-
order Logic as a practical means of specifying regularity. The logic is a
highly succinct alternative to the use of regular expressions. We have built a
tool MONA, which acts as a decision procedure and as a translator to finite-
state automata. The tool is based on new algorithms for minimizing finite-
state automata that use binary decision diagrams (BDDs) to represent
transition functions in compressed form. A byproduct of this work is a
new bottom-up algorithm to reduce BDDs in linear time without hashing.

The potential applications are numerous. We discuss text processing,
Boolean circuits, and distributed systems. Our main example is an auto-
matic proof of properties for the “Dining Philosophers with Encyclopedia”
example by Kurshan and MacMillan. We establish these properties for the
parameterized case without the use of induction.

Our results show that, contrary to common beliefs, high computational
complexity may be a desired feature of a specification formalism.

1. Introduction.

In computer science, regularity amounts to the concept that a class of structures
is recognized by a finite-state device. Often phenomena are so complicated that
their regularity either

• may be overlooked, as in the case of parameterized verification of distributed
finite-state systems with a regular communication topology; or

1This article is a heavily revised version of [10].
2BRICS, Centre of the Danish National Research Foundation for Basic Research in Com-

puter Science, Department of Computer Science, University of Aarhus.
3The corresponding author is Nils Klarlund, who is with BRICS, Department of

Computer Science, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C. E-mail:
klarlund@daimi.aau.dk.

4Department of Computer Science, CIMS, New York University, 251 Mercer St. New
York, New York, USA; research partially supported by ONR grant N00014-93-1-0924,
AFOSR grant AFOSR-91-0308, and NSF grant MIP-9300210.

1

• may not be exploited, as in the case when a search pattern in a text editor
is known to be regular, but in practice inexpressible as a regular expression.

In this paper we argue that the Monadic Second-Order Logic or M2L can help
in practice to identify and to use regularity. In M2L, one can directly mention
positions and subsets of positions in the string. This feature distinguishes the logic
from regular expressions or automata. Together with quantification and Boolean
connectives, an extraordinary succinct formalism arises.

Although it has been known for thirty-five years that M2L defines regular lan-
guages (see [16]), the translator from formulas to automata that we describe in this
article appears to be one of the first implementations.

The reason such projects have not been pursued may be the staggering theoretical
lower-bound: any decision procedure is bound to sometimes require as much time
as a stack of exponentials that has height proportional to the length of the formula.

It is often believed that the lower the computational complexity of a formalism
is, the more useful it may be in practice. We want to counter such beliefs in this
article — at least for logics on finite strings.

Why use logic? Some simple finite-state languages easily described in English
call for convoluted regular expressions. For example, the language L2a2b of all
strings over Σ = {a, b, c} containing at least two occurrences of a and at least two
occurrences of b seems to require a voluminous expression, such as

Σ∗aΣ∗aΣ∗bΣ∗bΣ∗

∪ Σ∗aΣ∗bΣ∗aΣ∗bΣ∗

∪ Σ∗aΣ∗bΣ∗bΣ∗aΣ∗

∪ Σ∗bΣ∗bΣ∗aΣ∗aΣ∗

∪ Σ∗bΣ∗aΣ∗bΣ∗aΣ∗

∪ Σ∗bΣ∗aΣ∗aΣ∗bΣ∗.

If we added ∩ to the operators for forming regular expressions, then the language
L2a2b could be expressed more concisely as (Σ∗aΣ∗aΣ∗)∩(Σ∗bΣ∗bΣ∗). Even with this
extended set of operators, it is often more convenient to express regular languages
in terms of positions and corresponding letters. For example, to express the set
Laafterb of strings in which every b is followed by an a, we would like a formal
language allowing us to write something like

“for every position p, if there is a b in p then for some position q
after p, there is an a in q.”

The extended regular languages do not seem to allow an expression that very closely
reflects this description — although upon some reflection a small regular expression
can be found. But in M2L we can express Laafterb by a formula

∀p : ′b′(p) ⇒ ∃q : p < q ∧ ′a′(q)

(Here the predicate ′b′(p) means “there is a b in position p”.) In general, we believe
that many errors can be avoided if logic is used when the description in English does
not lend itself to a direct translation into regular expressions or automata. However,

2

the logic can easily be combined with other methods of specifying regularity since
almost any such formalism can be translated with only a linear blow-up into M2L.

Often regularity is identified by means of projections. For example, if Ltrans is
regular on a cross-product alphabet Σ×Σ (e.g. describing a parameterized transition
relation, see Section 5) and Lstart is a regular language on Σ describing a set of start
strings, then the set of strings that can be reached by a transition from a start string
is π2(Ltrans ∩ π−1

1 (Lstart)), where π1 and π2 are the projections from (Σ × Σ)∗ to
the first and second component. Such language-theoretic operations can be very
elegantly expressed in M2L.

Our results. In this article, we discuss applications of M2L to text processesing
and the description of parameterized Boolean circuits. Our principal application is
a new proof technique for establishing properties about parameterized, distributed
finite-state systems with regular communication topology. We illustrate our method
by showing safety and liveness properties for a non-trivial version of the Dining
Philosophers’ problem as proposed in [11] by Kurshan and MacMillan.

We present MONA, which is our tool that translates formulas in M2L to finite-
state machines. We show how BDDs can be used to overcome an otherwise inherent
problem of exponential explosion. Our minimization algorithm works very fast in
practice thanks to a simple generalization of the unary apply operation of BDDs.

Comparisons to other work. Parameterized circuits are described using BDDs
in [8]. This method relies on formulating inductive steps as finite-state devices and
does not provide a single specification language. The work in [14] is closer in spirit
to our method in that languages of finite strings are used although not as part of a
logical framework. In [2], another approach is given based on iterating abstractions.
The parameterized Dining Philosopher’s problem is solved in [11] by a finite-state
induction principle.

A tool for M2L on finite, binary trees has been developed at the University of
Kiel [15]. Apparently, this tool has only been used for very simple examples.

In [7], a programming language for finite domains based on a fixed point logic is
described and used for verification of non-parameterized finite systems.

Contents. In Section 2, we explain the syntax and semantics of M2L on strings.
We recall the correspondence to automata theory in Section 3. We give several
applications of M2L and the tool in Section 4: text patterns, parameterized cir-
cuits, and equivalence testing. Our main example of parameterized verification is
discussed in Section 5. We give an overview of our implementation in Section 6.

2. The Monadic Second-order Logic on Strings.

Let Σ be an alphabet and let w be a string over Σ. The semantics of the logic
determines whether a closed M2L formula φ holds on w. The language L(φ) denoted
by φ is the set of strings that make φ hold. Assume now that w has length n and
consists of letters a0a1...an−1. The positions in w are then 0,...,n − 1. We can now
describe the three syntactic categories of M2L on strings.

3

A position term t is either
• the constant 0 (which denotes the position 0);
• the constant $ (which denotes the last position, i.e. n − 1);
• a position variable p (which denotes a position i);
• of the form t ⊕ i (which denotes the position j + i mod n, where j is the

interpretation of t); or
• of the form t 	 i (which denotes the position j − i mod n, where j is the

interpretation of t);
(Position terms are only interpreted for non-empty strings).
A position set term T is either

• the constant ∅ (which denotes the empty set);
• the constant all (which denotes the set {0, ..., n− 1});
• a position set variable P (which denotes a subset of positions);
• of the form T1 ∪ T2, T1 ∩ T2, or {T1 (which are interpreted in the natural

way);
• of the form T + i (which denotes the set of positions in T shifted right by

an amount of i); or
• of the form T − i (which denotes the set of positions in T shifted left by an

amount of i);
A formula φ is either of the form

• ′a′(t) (which holds if letter ai in w = a0a1 · · · is a, where i is the interpreta-
tion of t);

• t1 = t2, t1 < t2 or t1 ≤ t2 (which are interpreted in the natural way);
• T1 = T2, T1 ⊆ T2, or t∈ T (which are interpreted in the natural way);
• ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2, φ1 ⇒ φ2, or φ1 ⇔ φ2 (where φ1 and φ2 are formulas,

and which are interpreted in the natural way);
• ∃p : φ (which is true, if there is a position i such that φ holds when i is

substituted for p);
• ∀p : φ (which is true, if for all positions i, φ holds when i is substituted for

p);
• ∃P : φ (which is true, if there is a subset of positions I such that φ holds

when I is substituted for P); or
• ∀P : φ (which is true, if for all subsets of positions I , φ holds when I is

substituted for P);

3. From M2L to Automata.

In this section, we recall the method for translating a formula in M2L to an
equivalent finite-state automaton (see [16] for more details). Note that any formula
φ can be interpreted, given a string w and a value assignment I that fixes values
of the free variables. If φ then holds, we write w, I |= φ. The key idea is that
a value assignment and the string may be described together as a word over an
extended alphabet consisting of Σ and extra binary tracks, one for each variable.
By structural induction, we then define for each formula an automaton that exactly

4

recognizes the words in the extended alphabet corresponding to pairs consisting of
a string and an assignment that satisfy the formula.

Example. Assume that the free variables are P = {P1, P2} and that Σ = {a, b}. Let
us consider the string w = abaa and value assignment

I = [P1 7→ {0, 2}, P2 7→ ∅].

The set I(P1) = {0, 2} can be represented by the bit pattern 1010, since the num-
bered sequence

1
0
0
1
1
2
0
3

defines that 0 is in the set (the bit in position 0 is 1), 1 is not in the set (the bit in
position 1 is 0), etc. Similarly, the bit pattern 0000 describes I(P2) = ∅.

If these patterns are laid down as extra “tracks” along w, we obtain an extended
word α, which may be depicted as:

a b a a
1 0 1 0
0 0 0 0

Technically, we define α = α0 · · ·α3 as the word (a, 1, 0)(b, 0, 0)(a, 1, 0)(a, 0, 0)
over the alphabet Σ×B×B of extended letters , where B = {0, 1} is the set of truth
values.

This correspondence can be generalized to any w and any value assignment for a
set of variables P (which can all be assumed to be second-order).

By structural induction on formulas, we construct automata Aφ,P over alphabet
Σ×Bk—where P = {P1, · · · , Pk} is any set of variables containing the free variables
in φ—satisfying the fundamental correspondence:

w, I |= φ iff (w, I) ∈L(Aφ,P)

Thus Aφ,P accepts exactly the pairs (w, I) that make φ true.

Example. Let φ be the formula Pi = Pj + 1. Thus when φ holds, Pi is represented
by the same bit pattern as that of Pj but shifted right by one position. This can
be expressed by the automaton Aφ,P :

αi = 1 and αj = 0

αi = 0 and αj = 0 αi = 1 and αj = 1

αi = 0 and αj = 1

In this drawing, αi refers to the ith extra track. Thus, the automaton checks that
the ith track holds the same bit as the jth track the instant before.

5

4. Applications.

4.1. Text patterns. The language L2a2b of strings containing at least two occur-
rences of a and two occurrences of b can be described in M2L by the formula

(∃p1, p2 : ′a′(p1) ∧ ′a′(p2) ∧ p1 6= p2) ∧
(∃p1, p2 : ′b′(p1) ∧ ′b′(p2) ∧ p1 6= p2)

Our translator yields the minimal automaton, which contains nine states, in a frac-
tion of a second.

The language Laafterb given by the formula

∀p : ′b′(p) ⇒ ∃q : p < q ∧ ′a′(q)

is translated to the minimal automaton, which has two states, in .3 seconds.
A far more complicated language to express is L<1apart consisting of every string

over {a, b} such that for any prefix the number of a’s and b’s are at most one apart.
When using regular expressions or M2L, one needs to struggle a bit, but in M2L
there is a strategy for describing the functioning of the finite-state machine that
comes to mind.

We observe that a position p may be used to designate a prefix; for example, 0
denotes the prefix consisting of the first letter and $ (the last position) denotes the
whole input string. We may now recognize a string in L<1apart by identifying three
sets of positions: the set P0 corresponding to prefixes with an equal number of a’s
and b’s, the set P+1 corresponding to prefixes where the number of a’s is one greater
than the number of b’s, and the set P−1 corresponding to prefixes where the number
of a’s is one less than the number of b’s:

∃P0, P+1, P−1 :P0 ∪ P+1 ∪ P−1 = all
∧ 0 /∈ P0

∧ 0 ∈P+1 ⇔ ′a′(0)
∧ 0 ∈P−1 ⇔ ′b′(0)
∧ ∀p : (p > 0 ⇒

p ∈P0 ⇔ (′a′(p) ∧ p 	 1 ∈ P−1)
∨ (′b′(p) ∧ p 	 1 ∈P+1)

∧ p ∈P+1 ⇔ ′a′(p) ∧ p 	 1 ∈P0

∧ p ∈P−1 ⇔ ′b′(p) ∧ p 	 1 ∈P0)

The resulting four-state automaton is calculated in a fraction of a second.

4.2. Parameterized circuits. Assume that we are given a drawing as in Figure 1
denoting a parameterized Boolean function.

How do we describe the language Lex ⊆ B∗ of input bit patterns that make the
output true? From the drawing, no immediate description as a regular expression
or finite-state automaton is apparent. In M2L, however, it is easy to model the
outputs of the n or-gates as a second-order variable Q, which allows the language
to be described from a direct interpretation of the drawing. Note that the or-gate
at position p > 0 is true if either there is a 1 at p − 1 or p, or in other words:

6

β

α0 α1 αn−2 αn−1α2

Figure 1. A parameterized circuit.

p ∈ Q ⇔ ′1′(p 	 1) ∨ ′1′(p). Since the output is 1 if and only if all or-gates are 1,
i.e. if Q = all, the language Lex is given by the formula

∃Q : (∀p : (p = 0 ⇒ p ∈ Q ⇔ ′1′(p)) ∧
(p > 0 ⇒ (p ∈ Q ⇔ ′1′(p 	 1) ∨ ′1′(p))) ∧ Q = all)

The resulting automaton has three states and accepts the language (1∪10)∗, which
is the regular expression that one would obtain by reasoning about the circuit. For
more advanced applications to hardware verification, see [3].

4.3. Equivalence testing. A closed formula φ is a tautology if L(φ) = L(Σ∗), i.e.
if all strings over Σ satisfy φ. The equivalence of formulas φ and ψ then amounts
to whether φ ⇔ ψ is a tautology.
Example. That a set P contains exactly the even positions in a non-empty input
string may be expressed in M2L by the following two rather different approaches:
either by the formula even1 (P) ≡

0 ∈P ∧ ∀p : ((p ∈P ∧ p < $ ⇒ p ⊕ 1 /∈ P)
∧ (p /∈ P ∧ p < $ ⇒ p ⊕ 1 ∈ P)),

or as a formula even2 (P) ≡

P ∪ (P + 1) = all ∧ P ∩ (P + 1) = ∅ ∧ P 6= ∅

To show the equivalence of the two formulas, we check the truth value of the
bi-implication:

∀P : even1(P) ⇔ even2(P)

The translation of this formula does indeed produce an automaton accepting Σ∗,
and thus verifies our claim.

7

5. Dining Philosophers with Encyclopedia.

A distributed system is parameterized when the number n of processes is not
fixed a priori. For such systems the state space is unbounded, and thus traditional
finite-state verification methods cannot be used. Instead, one often fixes n to be, say
two or three. This yields a finite state space amenable to state exploration methods.
However, the validity of a property for n = 2, 3 does not necessarily imply that the
property holds for all n.

A central problem in verification is automatically to validate parameterized sys-
tems. One way to attack the problem is to formulate induction principles such
that the base case and the inductive steps can be formulated as finite-state prob-
lems. Kurshan and MacMillan [11] used such a method to verify safety and liveness
properties of a non-trivial version of the Dining Philosophers example.

Selection hungry read eat

State’

EAT

THINK READ EAT

State THINK READ

Figure 2. Dining Philosophers with Encyclopedia

In this system, symmetry is broken by an encyclopedia that circulates among
the philosophers. Thus each philosopher is in one of three states: EAT, THINK,
or READ. The global state can be described as a string State of length n over the
alphabet ΣState = {EAT, THINK, READ}, see Figure 2.

The system makes a transition according to external events that constitute a
selection. Each process is presented with an event in the alphabet ΣSelection =
{eat, think, read, hungry}. Thus the selection can be viewed as a string Selection
over ΣSelection, see Figure 2. As shown, all processes make a synchronous transition to
a new global State ′ on a selection according to a transition relation trans(State, State ′,
Selection), which is shown in Figure 31 together with an auxiliary predicate
blocking(Selection) used in its definition. Thus the new state of each process is
dependent on its old state and on the selection events presented to itself and its
neighbors. The transition relation is so complicated that it is hard to grasp the
functioning of the system.

Fortunately, the parameterized transition relation can be translated into basic
M2L on strings. For example, we encode State using two second-order variables P
and Q with the convention that

EATp(State) ≡ p ∈ P ∧ p ∈Q
READp(State) ≡ p /∈ P ∧ p ∈ Q
THINKp(State) ≡ p /∈ P ∧ p /∈ Q

1We use ’#’ in the beginning of a line to indicate that this line is a comment.

8

Similarly, State ′ and Selection can also each be encoded using two second-order
variables. Thus, the predicate trans(State, State′, Selection) becomes a formula with
six free second-order variables.

For this distributed system there are two important properties to verify:

• Safety Property : The encyclopedia is neither lost nor replicated. Thus there
is always exactly one process in state READ.

• Liveness Property: If no process remains in state EAT forever, then the
encyclopedia is passed around over and over.

In [11] both properties are proved in terms of a complicated induction hypothesis.
This hypothesis is itself a distributed system, where each process has four states.
(The Liveness Property in [11] is technically different since it is modeled in terms
of selections.)

Our strategy is fundamentally different. We cannot directly verify liveness prop-
erties. But we can easily verify properties about the transition relation in the
parameterized case and without induction as follows.

Let φ be an M2L formula about the global state. For example, we might consider
the property that if a philosopher eats, then his neighbors do not:

φmutex(State) ≡ ∀p : EATp(State) ⇒ ¬EATp	1(State) ∧ ¬EATp⊕1(State)

A property given as a formula φ can be verified using the invariance principle:

∀State , State′, Selection : φ(State) ∧ trans(State, State ′, Selection) ⇒ φ(State ′),

which is also a formula in M2L. In this way, we have verified for the parameterized
case that both φmutex and the Safety Property that exactly one philosopher reads, i.e.
∃!p : READp(State), are invariant. MONA verifies such a formula in approximately
3 seconds on a Sparc 20.

Note that this method does not rely on a state space exploration (which is im-
possible since the state space is unbounded). Instead, it is based on the Invariance
Principle: to show that a property holds for all reachable states, it is sufficient to
show that it holds for the initial state and is preserved under any transition.

Establishing the Liveness Property. The Liveness Property can be expressed
in Temporal Logic as

� (READp	1 ⇒ ♦READp),(1)

that is, it always holds that if philosopher p 	 1 reads, then eventually philosopher
p reads. We must prove this property under the assumption that no philosopher
eats forever:

� (EATp ⇒ ♦¬EATp).(2)

So assume that READp	1 holds. We must prove that ♦READp holds. There are
two cases as follows.

9

blocking(Selection) ≡
eatp⊕1(Selection) ∨ hungryp	1(Selection)
∨ eatp	1(Selection)

trans(State , State′, Selection) ≡
∀p :

#THINK → THINK :
(THINKp(State) ∧ THINKp(State′) ⇒
thinkp(Selection) ∧ ¬(readp	1(Selection))
∨
hungryp(Selection) ∧ blocking(Selection))

∧
#THINK → EAT :
(THINKp(State) ∧ EATp(State ′) ⇒
hungryp(Selection) ∧ ¬(blocking(Selection)))

∧
#THINK → READ :
(THINKp(State) ∧ READp(State′) ⇒
thinkp(Selection) ∧ readp	1(Selection))

∧
#EAT → THINK :
(EATp(State) ∧ THINKp(State ′) ⇒
thinkp(Selection) ∧ ¬(readp	1(Selection)))

∧
#EAT → EAT :
(EATp(State) ∧ EATp(State′) ⇒
eatp(Selection))

∧
#EAT → READ :
(EATp(State) ∧ READp(State ′) ⇒
thinkp(Selection) ∧ readp	1(Selection))

∧
#READ → THINK :
(READp(State) ∧ READp(State ′) ⇒
readp(Selection) ∧ thinkp⊕1(Selection))

∧
#READ → EAT :
(READp(State) ∧ EATp(State ′) ⇒
false)

∧
#READ → READ :
(READp(State) ∧ READp(State ′) ⇒
readp(Selection) ∧ ¬(thinkp⊕1(Selection)))

Figure 3. The transition relation

• Case EATp holds. By asssumption (2), there is an instant when EATp ∧
¬ ◦ EATp holds. Thus if

READp	1 ∧ EATp ∧ ¬ ◦ EATp ⇒ ◦READp(3)

is a valid property of the transition system, ♦EATp holds. In fact, we verified
using MONA that (3) indeed holds.

• Case ¬EATp holds. If EATp becomes true, then use the previous case.
Otherwise, ¬EATp continues to hold. Now, by the assumption (2) at some
point ¬EATp⊕1 will hold. We then use the property

READp	1 ∧ ¬EATp ∧ ¬ ◦ EATp⊕1 ⇒ ◦READp ∨ ◦EATp,(4)

which we have also verified using MONA, to show that eventually READp

holds (or eventually EATp holds, which contradicts the assumption that
¬EATp continues to hold).

10

6. Implementation.

MONA is our implementation of the decision procedure, which translates formulas
of M2L to finite-state automata as outlined in Section 3. Our tool is implemented
in Standard ML of New Jersey. A previous version of MONA was written in C

with explicit garbage collection and based on representing transition functions in
a conjunctive normal form. Our present tool runs up to 50 times faster due to
improved algorithms.

Representation of automata. Since the size of the extended alphabet grows ex-
ponentially with the number of variables, a straightforward implementation based
on explicitly representing the alphabet would only work for very simple exam-
ples. Instead, we represent the transition relation using Binary Decision Diagrams
(BDDs) [4, 5]. In this way, the alphabet is never explicitly represented. For the
external alphabet of ASCII-characters, we choose an encoding based on seven extra
tracks holding the binary representation. Thus, character classes such as [a-zA-Z]
become represented as very simple BDDs.

A deterministic automaton A is represented as follows. The state space is Q =
{0, 1, . . . , n − 1}, where n is size of the state space; Bk is the extended alphabet;
i0 ∈ Q is the initial state; δ : Q × Bk → Q is the transition function; and F ⊆ Q
is the set of accepting states. We use a bit vector of size n to represent F and an
array containing n pointers to roots of multi-terminal BDDs representing δ. A leaf
of a BDD holds the integer designating the next state. An internal node v is called
a decision node and contains an index denoted v.index, where 0 ≤ v.index < k, and
high and low successors v.hi and v.lo. If b is a sequence of k bits, i.e. b ∈ Bk, then
δ(q, b) is found by looking up the qth entry in the array and following the decision
nodes according to b until a leaf is reached (node v is followed by selecting the high
successor if the v.indexth component of b is 1 and the low successor if it is 0).

For example, the following finite automaton accepting all strings over B2 with at
least two occurrences of the letter “11”

0 1 2//
/.
,-
!
"

00,01,10

#
��

11
//
/.
,-
!
"

00,01,10

#
��

11
//
/.
,-
+*
()!
"

00,01,10,11

#
��

could be represented as in Figure 4.
The use of BDDs makes the representation very succinct in comparison to our

earlier attempt to handle automata with large alphabets [10]. In most cases, we
avoid the exponential blow-up associated with an explicit representation of the
alphabet. We shall see that all operations on automata needed can be performed
by means of simple BDD operations.

Another possibility would have been to use a two-dimensional array of ordinary
BDDs. But that would complicate the operations on automata, because many more
BDD operations would be needed.

11

lo

hi

lo
hi

lo

hi

lo
hi

false false true

index=
0

index=

index= index=

0

1 1

val= val= val=
0 1 2

0 1 2

Transition function:

Initial state: 0
Accepting states:

Figure 4. BDD automaton representation

Rewriting formulas. The first step in the translation consists of rewriting formu-
las so as to eliminate nested terms. Then all terms are variables and all formulas
are among a small number of basic formulas.

Translating formulas. The translation is inductive. All automata corresponding
to basic formulas have a small number of states (less than five!).

The composite formulas are translated by use of operations on automata. For ¬φ,
φ1 ∧ φ2 and ∃P : φ, which are the ones left after rewriting, we need the operations
of complement, product, projection, and determinization.

Complement. Complementation is done by simply negating the bit vector repre-
senting the set of final states.

Product. The product automaton A of two automata A1 and A2 is

(Q1 × Q2,Bk, (i1, i2), δ, F1 × F2),

where δ((q1, q2), b) = (δ1(q1, b), δ2(q2, b)). We are careful, however, to consider only
those states of A that are reachable from (i1, i2).

When considering a new state (q1, q2), we need to construct the BDD repre-
senting the corresponding part of the transition function δ. We use the binary
apply operation on the BDDs corresponding to q1 and q2. For each pair of states
(q′, q′′) encountered in a pair of leaves, we associate a unique integer in the range
{0, 1, . . .N − 1}, where N is the number of different pairs considered so far. In this
way, the new BDDs created conform with the standard representation.

12

Projection and determinization. Projection is the conversion of an automaton over
Bk+1 to a nondeterministic automaton over Bk necessary for translating a formula
of the form ∃P : φ. On any letter b ∈ Bk, there are two transitions possible in
the nondeterministic automaton corresponding to whether the P -track is 0 or 1.
Therefore this automaton is not hard to construct using the projection (restriction)
operation of BDDs.

Determinization is done according to the subset construction. The use of the
apply operation is similar to that of the product construction except that leaves
hold subsets of states.

Minimizing. Minimization seems essential in order to obtain an effective deci-
sion procedure. For example, if a tautology occurs during calculations, then it is
obviously a good idea to represent it using a one-state automaton instead of an
automaton with e.g. 10,000 states.

The difficulty in obtaining an efficient minimization algorithm stems from the
requirement to keep our shared BDDs in reduced form. Recall that a reduced
BDD has no duplicate terminals or nonterminals. Such a BDD is just a specialized
form of directed acyclic graph that has been compressed by combining structurally
isomorphic nodes (see Aho, Hopcroft, and Ullman [1] or Section 3.4 of Cai and
Paige [6]). In addition, a reduced BDD has no redundant tests [4]. Such a BDD
is obtained by repeatedly pruning every internal vertex v that has both outedges
leading to the same vertex w, and redirecting all of v’s incoming edges to w.

Suppose that the shared BDD had all duplicate terminals and nonterminals elimi-
nated, but did not have any of its redundant tests eliminated. Then it would be easy
to treat the deterministic finite automaton combined with its BDD machinery as a
single automaton whose states were the union of the BDD nodes and the original
automaton states, and whose alphabet were zero and one. If this derived automa-
ton had n states, then it could be minimized in O(nlogn) steps using Hopcroft’s
algorithm [9]. Unfortunately, such an automaton would be too big.

For our purposes, the space savings due to redundant test removal is of crucial
importance. But the important ‘skip’ states that arise from redundant test removal
complicates minimization. Our algorithm combines techniques based on [1] with
new methods adapted for use with the shared BDD representation of the transition
function. For a finite automaton with n states and a transition function represented
by m BDD nodes, the algorithm presented here achieves worst-case running time
O(max(n, m)n).

Terminology. A partition P of a finite set U is a set of disjoint nonempty subsets
of U such that the union of these sets is all of U . The elements of P are called its
blocks. A refinement Q of P is a partition of U such that any block of Q is a subset
of a block of P . If q ∈ U , then [q]P denotes the block of partition P containing the
element q, and when no confusion arises, we drop the subscript.

Let A = (Q, Bk, i0, δ, F) denote a deterministic finite automaton, and let P be
a partition of Q, and Q a refinement of P . A block B of Q respects the partition
P if for all q, q′ ∈ B and for all b ∈ Bk, [δ(q, b)]P = [δ(q′, b)]P. Thus, δ cannot

13

distinguish between the elements in B relative to the partition P . A partition Q
respects P if every block of Q respects P . A partition is stable if it respects itself.
The coarsest, stable partition Q respecting P is a unique partition such that any
other stable partition respecting P is a refinement of Q.

The refinement algorithm. The minimal automaton A′ recognizing L(A) is isomor-
phic to the automaton defined by the coarsest stable partition QA of Q respecting
the partition {F, Q \ F}. The states of A′ are QA, the transition function δ′ is
defined by δ′([p], b) = [δ(p, b)], the initial state is [i0], and the set of final states is
F ′ = {[f]|f ∈ F}.

Now we are ready to sketch our minimizing algorithm, which works by gradually
refining a current partition.

• First split Q into an initial partition Q = {F, Q \ F}. Note that QA is a
refinement of this partition.

• Now let P be the current partition. We construct the new current partition
Q so that it respects P while QA remains a refinement of Q.
For each state q in Q consider the functions fq : Bk → P defined by fq(b) =
[δ(q, b)]P for all q and b. Now let the equivalence relation ≡ be defined as
q ≡ q′ ⇔ (fq = fq′ ∧ [q]P = [q′]P). The new partition Q then consists of the
equivalence classes of ≡. By definition of the fq’s, Q respects P and is the
coarsest such partition implying the invariant.
We repeat this process until P = Q.

It can be shown that the final partition Q is obtained in at most n iterations and
equals QA. The preceding algorithm is an abstraction of the initial naive algorithm
presented in Section 4.13 of [1].

The difficult step in the above algorithm is the splitting according to the functions
fq. However, we can here elegantly take advantage of the shared BDD representa-
tion. The idea is to construct a BDD representing the functions fq for each state.
We represent a partition of the states Q, by associating with each state q ∈ Q a
block id identifying its block. The BDD for fq is calculated by performing a unary
apply on the collection of shared BDDs, where the value calculated in a leaf is the
block id. By a suitable generalization of the standard algorithm, it is possible to
carry out these calculations while visiting each node at most once (assuming that
hashing takes constant time). Thus the split operation requires time O(max(n, m)).
Since we use shared BDDs, we may use the results of the apply operations directly
as new block ids.

The Splitting Step Without Hashing. An alternative implementation of the splitting
step is possible that achieves the same worst case time bound O(max(n, m)) without
hashing. It is instructive to first consider the case in which the shared BDDs are
reduced only by eliminating redundant nodes but not by eliminating redundant
tests. In this case the BDD may be regarded as an acyclic deterministic automaton
D whose states are the BDD nodes, and whose alphabet is zero and one. Consider
a partition P ′ of the BDD nodes defined by equivalence classes of the following
relation. Two BDD leaves are equivalent iff their next states belong to the same

14

block of partition P . All decision nodes of the BDD are equivalent. The coarsest
stable partition Q′ that respects P ′ for automaton D can be solved in O(m) worst
case time by Revuz [13] and Cai and Paige [6], Sec. 3.4. Finding the equivalence
classes of states in Q that point to BDD roots belonging to the same block of Q′
(i.e., finding the coarsest partition Q that respects P) solves the splitting step in
the original automaton in time O(n).

In the case of fully reduced BDDs, the splitting step is somewhat harder, and
a closer look at the BDD structure is needed. For each decision node v, v.index
represents a position in a string of length k such that v.index < (v.lo).index ∧
v.index < (v.hi).index. For each BDD leaf v we have v.index = k, and let v.lo =
v.hi be an automaton state belonging to Q. For each BDD node v we define function
fv : Bk → P much like the way functions fq were defined earlier on automaton
states. For each nonleaf v, fv is defined by the rule fv(b) = fv.lo(b) if bv.index = 0;
fv(b) = fv.hi(b) if bv.index = 1. For each leaf v, fv is a constant function that maps
every argument into an element (i.e., a block) of partition P .

If q ∈ Q is an automaton state that points to a BDD root v, then, clearly,
fq = fv. It is also not hard to see that for any two nonleaf BDD nodes v and v′,
fv = fv′ iff either of the following two conditions hold:

(1) v.index = v′.index ∧ fv.hi = fv′.hi ∧ fv.lo = fv′.lo, or
(2) fv.hi = fv.lo = fv ∧ v.hi = v′.

This leads to the more concrete equivalence relation ≡ on BDD nodes defined as
v ≡ v′ iff fv = fv′ iff either,

(1) v.index = n′.index = k ∧ [v.lo]P = [v′.lo]P, or
(2) v.index = v′.index < k ∧ v.hi ≡ v′.hi ∧ v.lo ≡ v′.lo, or
(3) v.index < k ∧ v.lo ≡ v.hi ≡ v′.

Note that two BDD nodes of different index can be equivalent only by condition
(3). Note also, that we can strengthen condition (2) with the additional constraint
v.hi 6≡ v.lo without modifying the equivalence relation. These two observations al-
low us to construct the equivalence classes inductively using a bottom-up algorithm
that processes all BDD nodes of the same index in descending order, proceeding
from leaves to roots. The steps are sketched just below.

• In a linear time pass through all of the BDD nodes, place each node in a
bucket according to its index. An array of k+1 buckets can be used for this
purpose.

• Next, distribute the BDD leaves (contained in the bucket associated with
index k) into blocks whose nodes all have lo successors that belong to the
same block of P . This takes time proportional to the number of leaves.

• For j = k − 1, ..., 0 examine each node v with v.index = j. Both nodes v.lo
and v.hi have already been examined, and have been placed into blocks.
Hence, a streamlined form of multiset sequence discrimination [6] can be
used to place v either in an old block (according to condition (3)) or a new
block (according to condition (2)) for nodes whose children belong pair-wise
to the same old block.

15

The preceding algorithm computes the equivalence classes as the final set of
blocks in O(m) time. As before, we can use these equivalence classes to find the
coarsest partition Q that respects P , which solves the splitting step in the original
automaton, in time O(n). Thus, the total worst-case time to solve the splitting step
is O(max(n, m)) (without hashing), which seems to be new.

In an efficient implementation of finite-state automaton minimization, when the
splitting algorithm above is is performed repeatedly, we only need to perform the
first step of that algorithm (i.e., sorting BDD nodes according to index) once. Thus,
the full DFA minimization algorithm runs in worst case time O(max(n, m)n) with-
out hashing.

BDD Reduction Without Hashing. It is interesting to note that the preceding algo-
rithm can also be used with minor modification to fully reduce an arbitrary BDD
in worst case time linear in the number of BDD nodes (without hashing). Let Q′ be
the partition of BDD nodes produced by the algorithm. The states of the reduced
BDD are the blocks in Q′. For each block B ∈ Q′, B.index is the largest index of
any BDD node contained in B. Let v′ be any node belonging to B of maximum
index. If v′ is a BDD leaf, then B is a leaf in the reduced BDD (i.e., B.index = k),
and B.lo = B.hi = v′.lo. Otherwise, B.lo = [v′.lo]Q′ and B.hi = [v′.hi]Q′.
The hi and lo successor blocks can be determined during the multiset sequence
discrimination pass when a new block is first created. The index of the first node
placed in a newly created block is the index for that block.

Work is in progress for exploring the “processing the smaller half” idea found
in e.g. [12]. We should mention, however, that the current implementation of the
minimization algorithm in practice seems to run faster than the procedures for
constructing product and subset automata.

MONA features. MONA is enriched by facilities similar to those of programming
languages.

Predicates. The user may declare predicates that can later be instantiated. For
example, if the predicate P is declared by P (X, x) = (0 = x ∧ x ∈ X), then P can
be instantiated as the formula P ({Y, p ⊕ 1) with the obvious meaning.

Libraries. MONA supports creation of user-defined libraries of predicates.

Separate translation. MONA automatically stores the automaton for a translated
predicate. If there are n free variables, then there may be up to n! different automata
corresponding to different orderings of variables in the BDD representation.

To be done. In the current implementation, variables are ordered in their BDDs
according to the level of syntactic nesting in the formula; i.e. innermost variables
receive the highest index. This strategy is obviously often far from optimal and
we are working on implementing heuristics to improve variable ordering. Another
orthogonal optimization strategy is to reorder the product constructions by heuris-
tics. In both cases, however, it is not hard to see that finding optimal orderings is
NP-complete.

16

Acknowledgements. We are thankful to Vladimiro Sassone for comments on an
earlier version, and to Andreas Potthoff for his advice based on the M2L implemen-
tation at the University of Kiel.

References

1. A. Aho, J. Hopcroft, and J. Ullman. Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

2. F. Balarin and A.L. Sangiovanni-Vincentelli. An iterative approach to language con-
tainment. In Computer Aided Verification, CAV ’93, LNCS 697, pages 29–40, 1993.

3. D. Basin and N. Klarlund. Hardware verification using monadic second-order logic.
Technical Report RS-96-7, BRICS, 1995.

4. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing surveys, 24(3):293–318, September 1992.

5. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, Aug 1986.

6. J. Cai and R. Paige. Using multiset discrimination to solve language process-
ing problems without hashing. to appear Theoretical Computer Science, 1994.
also, U. of Copenhagen Tech. Report, DIKU-TR Num. D-209, 94/16, URL
ftp://ftp.diku.dk/diku/semantics/papers/D-209.ps.Z.

7. M-M Corsini and A. Rauzy. Symbolic model checking and constraint logic programming:
a cross-fertilisation. In 5th. Europ. Symp. on Programming, LNCS 788, pages 180–194,
1994.

8. A. Gupta and A.L. Fisher. Parametric circuit representation using inductive boolean
functions. In Computer Aided Verification, CAV ’93, LNCS 697, pages 15–28, 1993.

9. J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton. In Z. Ko-
havi and Paz A., editors, Theory of machines and computations, pages 189–196. Aca-
demic Press, 1971.

10. J. Jensen, M. Jørgensen, and N. Klarlund. Monadic second-order logic for parameterized
verification. Technical report, BRICS Report Series RS-94-10, Department of Computer
Science, University of Aarhus, 1994.

11. B. Kurshan and K. MacMillan. A structural induction theorem for processes. In Proc.
Eigth Symp. Princ. of Distributed Computing, pages 239–247, 1989.

12. R. Paige and R. Tarjan. Three efficient algorithms based on partition refinement. SIAM
Journal of Computing, 16(6), 1987.

13. D. Revuz. Minimisation of acyclic deterministic automata in linear time. Theoretical
Computer Science, 92(1):181–189, 1992.

14. J-K. Rho and F. Somenzi. Automatic generation of network invariants for the verifica-
tion of iterative sequential systems. In Computer Aided Verification, CAV ’93, LNCS
697, pages 123–137, 1993.

15. M. Steinmann. Übersetzung von logischen Ausdrücken in Baumautomaten: Entwick-
lung eines Verfahrens und seine Implementierung. Unpublished, 1993.

16. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133–191. MIT Press/Elsevier, 1990.

17

Recent Publications in the BRICS Report Series

RS-95-21 Jesper G. Henriksen, Ole J. L. Jensen, Michael E. Jør-
gensen, Nils Klarlund, Robert Paige, Theis Rauhe, and
Anders B. Sandholm. MONA: Monadic Second-Order
Logic in Practice. May 1995. 17 pp.

RS-95-20 Anders Kock.The Constructive Lift Monad. March 1995.
18 pp.

RS-95-19 François Laroussinie and Kim G. Larsen.Compositional
Model Checking of Real Time Systems. March 1995. 20 pp.

RS-95-18 Allan Cheng. Complexity Results for Model Checking.
February 1995. 18pp.

RS-95-17 Jari Koistinen, Nils Klarlund, and Michael I.
Schwartzbach. Design Architectures through Category
Constraints. February 1995. 19 pp.

RS-95-16 Dany Breslauer and Ramesh Hariharan.Optimal Paral-
lel Construction of Minimal Suffix and Factor Automata.
February 1995. 9 pp.

RS-95-15 Devdatt P. Dubhashi, Grammati E. Pantziou, Paul G.
Spirakis, and Christos D. Zaroliagis.The Fourth Moment
in Luby's Distribution. February 1995. 10 pp. To appear
in Theoretical Computer Science.

RS-95-14 Devdatt P. Dubhashi. Inclusion–Exclusion(3) Implies
Inclusion–Exclusion(n). February 1995. 6 pp.

RS-95-13 Torben Bräuner. The Girard Translation Extended with
Recursion. 1995. Full version of paper to appear in
Proceedings of CSL '94, LNCS, 1995.

RS-95-12 Gerth Stølting Brodal. Fast Meldable Priority Queues.
February 1995. 12 pp.

RS-95-11 Alberto Apostolico and Dany Breslauer. An Optimal
O(log logn) Time Parallel Algorithm for Detecting all
Squares in a String. February 1995. 18 pp. To appear
in SIAM Journal on Computing.

