
B
R

IC
S

R
S

-95-19
Laroussinie

&
Larsen:

C
om

positionalM
odelC

hecking
ofR

ealT
im

e
S

ystem
s

BRICS
Basic Research in Computer Science

Compositional Model Checking
of Real Time Systems

François Laroussinie
Kim G. Larsen

BRICS Report Series RS-95-19

ISSN 0909-0878 March 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Compositional Model Checking
of Real Time Systems ∗

François Laroussinie
BRICS†, Aalborg Univ., Denmark‡

Kim G. Larsen
BRICS, Aalborg Univ., Denmark

Abstract

A major problem in applying model checking to finite–state systems
is the potential combinatorial explosion of the state space arising from
parallel composition. Solutions of this problem have been attempted for
practical applications using a variety of techniques. Recent work by An-
dersen [And95] proposes a very promising compositional model checking
technique, which has experimentally been shown to improve results ob-
tained using Binary Decision Diagrams.

In this paper we make Andersen’s technique applicable to systems de-
scribed by networks of timed automata. We present a quotient construc-
tion, which allows timed automata components to be gradually moved from
the network expression into the specification. The intermediate specifica-
tions are kept small using minimization heuristics suggested by Andersen.
The potential of the combined technique is demonstrated using a prototype
implemented in CAML.

∗This work has been supported by the European Communities under CONCUR2, BRA
7166
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
‡Dept. of Computer Science, Aalborg University, Fredrik Bajers Vej 7-E, DK-9220 Aalborg,

Denmark, (email: {fl,kgl}@iesd.auc.dk) fax: (45) 98.15.81.29

1

Contents

1 Introduction 3

2 Timed Transition Systems and Automata 4

3 Timed Logic 7

4 Regions 9

5 Quotienting 12

6 Minimizations 15

7 Conclusion 17

A Proof of Theorem 2 20

2

1 Introduction

Within the last decade model checking has turned out to be a useful technique
for verifying temporal properties of finite state systems. Efficient model check-
ing algorithms for finite state systems have been obtained with respect to a
number of logics, and in the last few years, model checking techniques have
been extended to real–time systems and logics using the region technique of
Alur, Courcoubetis and Dill [ACD90]. However, the major problem in applying
model checking even to moderate–size systems is the potential combinatorial
explosion of the state space arising from parallel composition. For real–time
systems an additional explosion is induced in the number of regions. In order
to avoid this problem algorithms have been sought that avoid exhaustive state
(region) space exploration, either by symbolic representation of the states space
such as in [HNSY92] and in the use of Binary Decision Diagrams [BCM+90],
by application of partial order methods [GW91, Val90] which suppresses un-
neccesarry interleavings of transitions, or by application of abstractions and
symmetries [CFJ93, CGL92, EJ93].

So far the most successful results for larger systems have been obtained
using the heuristics of Binary Decision Diagrams. However, recent work by
Andersen [And95] introduces a new very promising heuristic model checking
technique for finite state systems, for which experimental results on specific
examples 1 shows an improvement compared with Binary Decision Diagrams.
The technique is based on compositional proof rules for parallel composition.

Our aim of this paper is to make this new successful (compositional) model
checking technique by Andersen [And95] applicable to real–time systems. For
example, consider the following typical model checking problem(

S1 | . . . | Sn

)
|= ϕ

where the Si’s are real–time systems (described as timed automata [AD94]). We
want to verify that the parallel composition of these timed automata satisfies
the formula ϕ without having to construct the complete state (region) space of
the process (S1 | . . . | Sn). We will avoid this complete construction by removing
the components Si one by one while simultaneously transforming the formula
accordingly. Thus, when removing the component Sn we will transform the
formula ϕ into the quotient formula ϕ/Sn such that(

S1 | . . . | Sn

)
|= ϕ if and only if

(
S1 | . . . | Sn−1

)
|= ϕ /Sn (1)

Now clearly, if the quotient is not much larger than the original formula we
have succeeded in simplifying the problem. Repeated application of quotienting
yields (

S1 | . . . | Sn

)
|= ϕ if and only if 1 |= ϕ/Sn /Sn−1 / . . . /S1 (2)

where 1 is the unit with respect to parallel composition.
1using a prototype implementation in Standard ML

3

For finite state systems the quotient with respect to parallel composition is
an immediate application of work on compositional reasoning due to Andersen,
Larsen, Stirling, Winskel and Xinxin [Lar86, LX91, AW92, ASW94]. However,
based on these ideas alone, (2) provides no solution to the problem as the
explosion will now occur in the size of the final quotient formula instead. The
crucial and experimentally “verified” observation by Andersen was that each
quotienting should be followed by a minimization of the formula based on a
collection of few, efficiently implementable strategies.

In this paper we provide the basis for and make an initial experimental
investigation of the application of Andersen’s compositional model checking
technique for real–time systems (timed automata). In particular,

• We give an effective construction of the quotient formula ϕ/ S satisfying
the requirement of (1) for ϕ a formula of the timed logic Lν introduced in
[LLW95] and S a real–time system given in terms of a timed automaton;

• Based on a prototype implemented in CAML we make an experimental
investigation of the above quotient construction combined with (some of)
the minimization heuristics of Andersen. In the examples we consider the
minimized quotient formulas have been subject to dramatic reductions
and are comparable in size to the original formulas. Thus, we may expect
compositional model checking to be successful also for real–time systems.

The remainder of this paper is organized as follows: in the next section we
give a short presentation of the notion of timed automata and composition used
in this paper; in section 3, the logic Lν is shortly presented, and in section 4 we
review the region technique by Alur, Courcoubetis and Dill [ACD90]. Section 5
presents the quotient construction, whereas section 6 presents and investigates
the consequences of minimization.

2 Timed Transition Systems and Automata

Let A be a finite set of actions ranged over by a, b, c, We denote by N
the set of natural numbers and by R the set of non–negative real numbers. D
denotes the set of delay actions {ε(d) | d ∈ R}, and L denotes the union A ∪ D.

Definition 1 A timed transition system over A is a tuple S = 〈S, s0,−→〉,
where S is a set of states, s0 is the initial state and −→⊆ S × L × S is a
transition relation. We require that for any s ∈ S and d ∈ R, there exists a

(unique) state sd such that s
ε(d)−→ sd. Moreover (sd)e = sd+e 2.

2The existence of sd corresponds to transition liveness, its unicity corresponds to time-
determinism and the property (sd)e = s(d + e) corresponds to time-continuity (or time-
additivity) in [Yi90].

4

Obviously, we may apply the standard notion of bisimulation [Par81, Mil89]
to timed transition systems. For S = 〈S, s0, −→〉 a timed transition system,
strong (timed) bisimulation ∼ is defined as the largest symmetric relation over
S such that whenever s1 ∼ s2 and ` ∈ A ∪ D then

• Whenever s1
`−→s′

1 then there exists s′
2 such that s2

`−→s′
2 and s′

1 ∼ s′
2.

We may compare states from different timed transition systems by considering
their disjoint union. Two timed transition systems S1 and S2 are said to be
strong (timed) bisimilar, written S1 ∼ S2, in case their initial states are strong
bisimilar.

In order to study compositionality problems we introduce a parallel compo-
sition between timed transition systems. Following [HL89] we suggest a compo-
sition parameterized with a synchronization function generalizing a large range
of existing notions of parallel compositions. A synchronization function f is a
partial function (A∪{0})×(A∪{0}) ↪→ A, where 0 denotes a distinguished no–
action symbol 3. Now, let Si = 〈Si, si,0,−→i〉, i = 1, 2, be two timed transition
systems and let f be a synchronization function. Then the parallel composition
S1 |

f
S2 is the timed transition system 〈S, s0,−→〉, where s1 |

f
s2 ∈ S whenever

s1 ∈ S1 and s2 ∈ S2, s0 = s1,0 |f s2,0, and −→ is given by the rule 4:

s1
a−→1 s′

1 s2
b−→2 s′

2

s1 |f s2
c−→ s′

1 |f s′
2

f(a, b) ' c

and the requirement that for any d ∈ R, (s1 |f s2)d = (s1
d |f s2

d).

Syntactically, timed transition systems are described by timed automata
[AD94], which are finite automata extended with a finite collection of real–
valued clocks 5. If C is a set of clocks, B(C) denotes the set of formulas built
using boolean connectives over atomic formulas of the form x ≤ m, m ≤ x,
x ≤ y + m and y + m ≤ x with x, y ∈ C and m ∈ N. Moreover BM(C) denotes
the subset of B(C) with no constant greater than M .

Definition 2 A timed automaton A over A is a tuple 〈N, η0, C,E〉 where N
is a finite set of nodes, η0 is the initial node, C is a finite set of clocks, and
E ⊆ N×N×A×2C×B(C) corresponds to the set of edges. e = 〈η, η′, a, r, b〉 ∈ E
represents an edge from the node η to the node η′ with action a, r denoting the
set of clocks to be reset and b is the enabling condition over the clocks of A.

Example 1 Consider the automata Ae, Bd and Cd,e in Figure 1 (d, e ∈ N).
The automaton Cd,e has four nodes, µ0, µ1, µ2 and µ3, two clocks x and y, and
three edges. The edge between µ1 and µ2 has b as action, {x, y} as reset set
and the enabling condition for the edge is y > d. 2

3We extend the transition relation of a timed transition system such that s
0−→ s′ iff s = s′.

4f(a, b) ' c holds if f is defined for the pair (a, b) and the result is c.
5Timed transition systems may alternatively be described using timed process calculi.

5

η2

{x}{y}

%2

η1

{x}{y}

%1

η0%0

a

b

b

c µ2

{x, y}

{y}

µ1

µ0

a

b

c {x}

µ3

tt tt

y > d x ≥ e

tt

y > d

x ≥ e

Bd Ae Cd,e

Figure 1: Three timed automata

Informally, the system starts at node η0 with all its clocks initialized to
0. The values of the clocks increase synchronously with time. At any time,
the automaton whose current node is η can change node by following an edge
〈η, η′, a, r, b〉 ∈ E provided the current values of the clocks satisfy b. With this
transition the clocks in r get reset to 0.

Formally a time assignment v for C is a function from C to R. We denote
by RC the set of time assignments for C. For v ∈ RC , x ∈ C and d ∈ R,
v + d denotes the time assignment which maps each clock x in C to the value
v(x)+d. For C ′ ⊆ C, [C ′ 7→ 0]v denotes the assignment for C which maps each
clock in C ′ to the value 0 and agrees with v over C\C ′. Whenever v ∈ RC,
u ∈ RK and C and K are disjoint vu denotes the time assignment over C ∪ K
such that (vu)(x) = v(x) if x ∈ C and (vu)(x) = u(x) if x ∈ K. Given a
condition b ∈ B(C) and a time assignment v ∈ RC, b(v) is a boolean value
describing whether b is satisfied by v or not. Finally a k–clock automata is a
timed automata 〈N, η0, C,E〉 such that |C| = k.

A state of an automaton A is a pair (η, v) where η is a node of A and v a
time assignment for C. The initial state of A is (η0, v0) where v0 is the time
assignment mapping all clocks in C to 0.

The semantics of A is given by the timed transition system SA = 〈SA, σ0,
−→A〉, where SA is the set of states of A, σ0 is the initial state (η0, v0), and
−→A is the transition relation defined as follows:

(η, v) a−→(η′, v′) iff ∃r, b. 〈η, η′, a, r, b〉 ∈ E ∧ b(v) ∧ v′ = [r → 0]v

(η, v)
ε(d)−→(η′, v′) iff η = η′ and v′ = v + d

Example 2 Reconsider the automaton Cd,e of Figure 1. The coordinate sys-
tems in Figure 2 indicates (some of) the states of Cd,e. Each point of the
coordinate systems represents a unique time assignment, with the coordinate
systems representing states involving the nodes µ0, µ1, and µ2 respectively. We

6

y

x

ε(d′)

(µ1)
y

x

ε(e′)

(µ2)
y

x

(µ3)

x

ε(f)

y (µ0)

cb

a

Figure 2: Partial Behaviour of Cd,e.

have indicated the following typical transition sequence (where f ≥ 0, d′ > d
and e′ ≥ e):

(µ0, (0,0))
ε(f)−→ (µ0, (f, f)) a−→ (µ1, (f, 0))

ε(d′)−→ (µ1, (f + d′, d′))

and (µ1, (f + d′, d′)) b−→ (µ2, (0, 0))
ε(e′)−→ (µ2, (e′, e′)) c−→

2

Parallel composition may now be extended to timed automata in the obvious
way: for two timed automata A and B and a synchronization function f , the
parallel composition A |f B denotes the timed transition system SA |f Sb. For
two automata A and B and a synchronization function f one may effectively
construct an automaton A⊗f B such that SA⊗f B is strong bisimilar to SA |f SB.
The nodes of A ⊗

f
B is simply the product of A’s and B’s nodes, the set of

clocks is the (disjoint) union of A’s and B’s clocks, and the edges are based on
synchronizable A and B edges with enabling conditions conjuncted and reset–
sets unioned.

Example 3 Let f be the synchronization function completely specified by
f(a, 0) = a, f(b, b) = b and f(0, c) = c. Then the automaton Cd,e in Fig-
ure 1 is isomorphic to the part of Bd ⊗f Ae which is reachable from (ρ0, η0).
2

3 Timed Logic

We consider a dense–time logic Lν with clocks and recursion. This logic may
be seen as a certain fragment 6 of the µ–calculus Tµ presented in [HNSY92]. In
[LLW95] it has been shown that this logic is sufficiently expressive that for any
timed automaton one may construct a single characteristic formula uniquely
characterizing the automaton up to timed bisimilarity. Also, decidability of a
satisfiability 7 problem is demonstrated.

6allowing only maximal recursion and using a slightly different notion of model
7Bounded in the number of clocks and maximal constant allowed in the satisfying automata.

7

〈s, u〉 |=D tt ⇒ true
〈s, u〉 |=D ff ⇒ false

〈s, u〉 |=D ϕ ∧ ψ ⇒ 〈s, u〉 |=D ϕ and 〈s, u〉 |=D ψ
〈s, u〉 |=D ∃∃ ϕ ⇒ ∃d ∈ R. 〈sd, u + d〉 |=D ϕ

〈s, u〉 |=D 〈a〉 ϕ ⇒ ∃ s′. s
a−→ s′ and 〈s′, u〉 |=D ϕ

〈s, u〉 |=D x+m∼y+n ⇒ u(x) + m ∼ u(y) + n
〈s, u〉 |=D x in ϕ ⇒ 〈s, u′〉 |=D ϕ where u′ = [{x} → 0]u

〈s, u〉 |=D Z ⇒ 〈s, u〉 |=D D(Z)

Table 1: Definition of satisfiability.

Definition 3 Let K a finite set of clocks, Id a set of identifiers and k an integer.
The set Lν of formulae over K, Id and k is generated by the abstract syntax
with ϕ and ψ ranging over Lν :

ϕ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | ∃∃ ϕ | ∀∀ ϕ | 〈a〉 ϕ | [a] ϕ

| x in ϕ | x + n ∼ y + m | Z

where a ∈ A; x, y ∈ K; n, m ∈ {0, 1, . . . , k}; ∼∈ {=, <, ≤, >, ≥} and Z ∈ Id.

The meaning of the identifiers is specified by a declaration D assigning a
formula of Lν to each identifier. When D is understood we write Z

def= ϕ for
D(Z) = ϕ. The K clocks are called formula clocks and a formula ϕ is said to
be closed if every formula clock x occurring in ϕ is in the scope of an “x in . . .”
operator.

Given a timed transition system S we interpret the Lν formulas over an
extended state 〈s, u〉, where s is a state of S and u is a time assignment for K.
Informally, ∃∃ ϕ holds in an extended state if there is a delay transition leading
to an extended state satisfying ϕ. Thus ∃∃ denotes existential quantification
over (arbitrary) delay transitions. Similarly, ∀∀ denotes universal quantification
over delay transitions, and 〈a〉 (resp. [a]) denotes existential (resp. universal)
quantification over a–transitions. The formula (x in ϕ) initializes the formula
clock x to 0; i.e. an extended state satisfies the formula in case the modified
state with x being reset to 0 satisfies ϕ. Introduced formula clocks are used
by formulas of the type (x + n ∼ y + m), which is satisfied by an extended
state provided the values of the named formula clocks satisfies the required
relationship. Finally, an extended state satisfies an identifier Z if it satisfies
the corresponding declaration (or definition) D(Z). Formally, the satisfaction
relation |=D between extended states and formulas is defined as the largest
relation satisfying the implications of Table 1. We have left out the cases for
∨, [a] and ∀∀ as they are immediate duals.

Any relation satisfying the implications in Table 1 is called a satisfiability
relation. It follows from standard fixpoint theory [Tar55] that |=D is the union
of all satisfiability relations and that the implications in Table 1 in fact are bi–
implications for |=D. We say that S satisfies a closed Lν formula ϕ and write

8

S |= ϕ when 〈s0, u〉 |=D ϕ for any u. Note that if ϕ is closed, then 〈s, u〉 |=D ϕ
iff 〈s, u′〉 |=D ϕ for any u, u′ ∈ RK . Similarly, we say that a timed automaton
A satisfies a closed Lν formula ϕ in case SA |=D ϕ. We write A |=D ϕ in this
case.

Example 4 Consider the following declaration F of the identifiers Xg and Zg

where g ∈ N.

F =
{

Xg
def= [a]

(
y in Zg

)
, Zg

def= (y > g) ∨
(
[c]ff ∧ [a]Zg ∧ [b]Zg ∧ ∀∀Zg

) }
That is Xg expresses the property that the accumulated time between an initial
a– and a following c–transition must exceed g. Thus for any transition sequence
of the form (where αi ∈ {a, b}):

s0
a−→ t0

ε(d1)−→ s1
α1−→ t2

ε(d2)−→ s2
α2−→ · · · tn

ε(dn)−→ sn
c−→∑

di > g. Now, reconsider the automata Ae, Bd and Cd,e of Figure 1 and Ex-
amples 1 and 2. Then it may be argued that Cd,e |=F Xd+e and (consequently),
that Bd |f Ae |=F Xd+e. 2

Combining the parameterized parallel composition with Lν we are able to
express timed bisimilarity between timed transition systems as a single for-
mula. This provides a timed extension of a similar characterization of strong
bisimilarity for finite state systems [And94]: First we close the action set A
under tagging; i.e. At = A ∪ A × {l} ∪ A × {r}. Now consider the ‘interleav-
ing’ synchronization function h over At completely defined by h(a, 0) = al and
h(0, a) = ar where a ∈ A (i.e. h is undefined for all other pairs). Consider the
following declaration E of the identifier Z :

Z def=
∧
a∈A

(
[al]〈ar〉Z ∧ [ar]〈al〉Z

)
∧ ∀∀Z

Then timed bisimilarity between timed transition systems is characterized as
follows 8:

Theorem 1 Let S be a timed transition system over A, and let s1, s2 be states
of S. Then s1 ∼ s2 if and only if s1 |

h
s2 |=E Z .

4 Regions

The model-checking problem for Lν consists in deciding if a given timed au-
tomata A satisfies a given specification ϕ in Lν. In [LLW95] this problem
has been shown decidable using the region technique of Alur and Dill [AD94,
ACD90]. The region technique provides an abstract interpretation of timed au-
tomata sufficiently complete that all information necessary for model–checking

8It may be shown that the speed relation of [FT91] is characterized in a similar manner by

Y defined recursively by Y
def=
V

a∈A([a1]∃∃〈a2〉Y ∧ [a2]〈a1〉Y) ∧ ∀∀Y .

9

with respect to Lν is maintained, yet finitary and thus enabling standard algo-
rithmic model–checking techniques to be applied.

The basic idea is that, given a timed automaton A, two states (η, v1) and
(η, v2) which are close enough with respect to their clocks values (we will say
that v1 and v2 are in the same region) can perform the same actions, and
two extended states 〈(η, v1), u1〉 and 〈(η,v2), u2〉 where v1 u1 and v2 u2 are
in the same region, satisfy the same Lν formulas 9. The notion of region is
defined as an equivalence class of a relation over time assignments [ACD90]
10 . First, for t ∈ R, let btc def= max{n ∈ N | n ≤ t} denote the integral
part of t, and let {t} def= t − btc denote its fractional part. Moreover we have:
dte def= min{n ∈ N | t ≤ n}.

Definition 4 Let k ∈ N and let C be a set of clocks. Then u, u′ ∈ RC are
equivalent with respect to k, denoted by u

.= u′ iff:

i) ∀x ∈ C. u(x) > k iff u′(x) > k

ii) ∀x ∈ C s.t. u(x) ≤ k. bu(x)c = bu′(x)c and {u(x)} = 0 ⇔ {u′(x)} = 0
iii) ∀x, y ∈ C. u(x) − u(y) > k iff u′(x) − u′(y) > k

iv) ∀x, y ∈ C s.t. 0 ≤ u(x) − u(y) ≤ k. bu(x) − u(y)c = bu′(x) − u′(y)c
and {u(x) − u(y)} = 0 ⇔ {u′(x) − u′(y)} = 0

The equivalence classes under .= are called regions, and [u] denotes the
region which contains the time assignment u. RC

k denotes the set of all regions
for a set C of clocks and the maximal constant k. From a decision point of view
it is important to note that RC

k is finite.
Note that for any condition b in B(C) with no constant greater than k, we

have b(u) ⇔ b(u′), whenever u and u′ belong to the same region in RC
k . Thus

for a region γ ∈ RC
k , we can define b(γ) as the truth value of b(u) for any u in

γ. Conversely given a region γ, we can easily build a formula of B(C), called
β(γ), such that β(γ)(u) = tt iff u ∈ γ 11. Thus, given a region γ ′, β(γ)(γ ′) is
mapped to the value tt precisely when γ = γ ′. Finally, note that β(γ) itself can
be viewed as an Lν formula.

Given a region [u] in RC
k and C ′ ⊆ C we define the following reset operator:

[C ′ → 0][u] = [[C ′ → 0]u]. Moreover, for a region [u], we define the successor
region (denoted by succ([u])) as the region [u′], where:

u′(x) =
{

u(x) + f ∀x ∈ C. u(x) > k ∨ {u(x)} 6= 0
u(x) + f/2 ∃x ∈ C. u(x) ≤ k ∧ {u(x)} = 0

where f = min{1 − {u(x)} | u(x) ≤ k} 12. Informally the change from γ to
succ(γ) correspond to the minimal elapse of time which can modify the enabled
actions of the current state.

9Without loss of generality, we will in all the following assume that that the formula clock
set K and the automaton clock set C are disjoint.

10The notion of region used in the present paper is slightly more refined.
11An obvious way of building β(γ) is to consider the conjunction of all B(C, k) formulas

satisfied by γ, where B(C, k) denotes the finite set (modulo boolean reductions) of B(C)
formulas with no constant greater than k.

12if this set is empty, then f = 0

10

0

(1)

(1)

4
5

y

x

1

2

3

7
8

9

10
6

14

. . .

0 < x < 1∧
0 < y < 1∧
y = x

β(γ0) = (x = 0 ∧ y = 0)
0 < x < 1∧
0 < y < 1∧

succ(γ0) = γ1

succ(γ5) = γ6

β(γ6) = (0 < y < 1 ∧ x = 1)

β(γ1) =

β(γ5) =
y < x

19
20

21
24

28

18

Figure 3: RC
k with C = {x, y} and k = 1

We denote by γ l the lth successor region of γ (i.e. γ l = succl(γ)). From any
region γ, it is possible to reach a region γ ′ s.t. succ(γ ′) = γ ′, and we denote by
lγ the required number of steps s.t. γ lγ = succ(γ lγ).

Example 5 Figure 3 gives an overview of the set of regions defined by two
clocks x and y, and the maximal constant 1. In this case there are 32 different
regions, of which only 17 are numbered in the figure. Corresponding B(C)–
formulas as well as successor regions are indicated for some of the regions. In
general successor regions are determined by following 45o lines upwards to the
right. 2

Given a timed automata A = 〈N, η0, C,E〉, let kA be the maximal constant
occurring in the enabling condition of the edges E. Then for any k ≥ kA we
can define a symbolic semantics of A over symbolic states [η, γ]A where η ∈ S
and γ ∈ RC

k as follows:

[η, γ]A
a−→ [η′, γ ′]A iff ∃ u ∈ γ, (η,u) a−→ (η′, u′) and u′ ∈ γ ′

[η, γ]A
χ−→ [η, succ(γ)]A iff true

Consider now Lν with respect to formula clock set K and maximal constant
kL. Also consider a given timed automata A = 〈N, η0, C,E〉 (s.t. K and C
are disjoint). Then an extended symbolic state is a pair [η, γ]A+ where η ∈ N
and γ ∈ RC∪K

k with k = max(kA, kL). Whenever γ is a region over C ∪ K
we denote by γ|C the set of time assignments in γ restricted to the (automata)
clock set C. Similarly, γ|K denotes the projection of all time assignments in γ

to the (formula) clock set K. Observe that γ|C ∈ RC and γ|K ∈ RK .
Using the finitary symbolic semantics of timed automata a symbolic in-

terpretation of Lν is defined in [LLW95] faithfully reflecting the standard in-
terpretation in Table 1. This symbolic interpretation provides the basis for
decidability of model–checking for Lν, and consequently (due to Theorem 1)
for decidability of timed bisimilarity between timed automata.

11

tt/
f
[η, γ] = tt

ff/
f
[η, γ] = ff

(ϕ1 ∧ ϕ2)/f [η, γ] = (ϕ1/f [η, γ]) ∧ (ϕ2/f [η, γ])

〈a〉ϕ/
f
[η, γ] =

∨
b,[η′,γ′]∈E(η,γ,a)

〈b〉
(
rγ′ in ϕ/

f
[η′γ ′]

)
∃∃ϕ/

f
[η, γ] = ∃∃

(∨
l=0...lγ

β(γ l) ∧ ϕ/
f
[η, γ l]

)
(x + c ∼ y + d)/

f
[η, γ] = (x + c ∼ y + d)(γ)

(x in ϕ)/
f
[η, γ] = x in

(
ϕ/

f
[η, γ ′]

)
where γ ′ = [{x} → 0]γ

Z/
f
[η, γ] = Z[η,γ]

Table 2: Structural definition of quotient, ϕ/
f
[η, γ].

5 Quotienting

Given an Lν formula ϕ, and two timed transition systems S1 and S2 we aim at
constructing a formula (called the quotient) ϕ/

f
S2 such that

S1 |
f
S2 |= ϕ if and only if S1 |= ϕ/

f
S2 (3)

The bi–implication indicates that we are moving parts of the parallel system into
the formula. Clearly, if the quotient is not much larger than the original formula,
we have simplified the task of model checking, as the (symbolic) semantics of
S1 is significantly smaller than that of S1 |

f
S2.

In general it will not be possible to express within Lν such a quotienting for-
mula. However, whenever S2 is described using a timed automata we are able
to express the quotient using the (extended) symbolic semantics of automata.
More precisely, whenever ϕ is a formula over K and A is a timed automaton
over C, we define quotient formulas ϕ/

f
[η, γ] over C ∪ K, where [η, γ] is an

extended symbolic state. For η0 the initial node of A and γ0 the initial region,
ϕ/

f
[η0, γ0] will express the sufficient and necessary requirement to a timed tran-

sition system S in order that S |
f
SA satisfies ϕ — see also Corollary 3 below.

The quotient construction is defined structurally in Table 2. We have left out
the cases for [a], ∨, and ∀∀ as they are immediate duals. The Table uses the
following notation: b, [η′γ ′] ∈ E(η,γ, a) iff [η, γ|C] c−→ [η′, γ ′

|C], γ ′
|K = γ|K and

f(b, c) ' a for some c. We denote by rγ the set of C clocks which has the
value 0 in γ. Moreover (r in ϕ) is an abbreviation for (x1 in (x2 in . . . (xn in ϕ)))
whenever r is {x1, . . . , xn}. Finally, 〈0〉ϕ = [0]ϕ = ϕ.

Note that the quotient construction for identifiers introduces new identifiers
of the form Z [η,γ], where Z ∈ Id. The definition of these are collected in the

12

(quotient) declaration DA given by:

Z[η,γ] def= D(Z)/
f
[η, γ]

The following Theorem and Corollary shows that the quotient construction
of Table 2 satisfies the requirements of (3). A proof of Theorem 2 is sketched
in Appendix A.

Theorem 2 Let S = 〈S, s0,−→〉 be a timed transition system, let A = 〈N, η0,
C,E〉 be a timed automaton, and let ϕ be an Lν formula over clock set K, all
over an action set A. Then for any s ∈ S, η ∈ N , v ∈ RC , and u ∈ RK :〈

s |
f
(η, v) , u

〉
|=D ϕ if and only if 〈 s, v u 〉 |=DA

ϕ/
f

[
η, [v u]

]
Corollary 3 Let S be a timed transition system, let A be a timed automaton
with clock set C, and let ϕ be a closed Lν formula over clock set K, all over an
action set A. Then:

S |
f
SA |=D ϕ if and only if S |=DA

ϕ/
f
A

where ϕ/
f
A abbreviates ϕ/

f
[η0, γ0] with η0 being the initial node of A and γ0

the initial region over C ∪ K.

Example 6 Recall the timed automata and declaration from Examples 1 and
4. The quotient X1/

f
A1 describes the sufficient and necessary requirement to

a timed transition system S in order that S |f SA1 satisfies X1. Clearly, we
expect the timed automata B0 to satisfy this property. Now using a CAML
prototype implementation of the quotient construction X1/f A1 is computed.
The definition of X1/

f
A1 is found in the quotient declaration FA1 part of which

is given below:

X1
/
f

A1
def= [a] y in Z

[η0,γ0]
1

Z
[η0,γ0]
1

def= ff ∨
[

tt ∧ ([b]x in Z
[η1,γ0]
1) ∧ ([a]Z[η0,γ0]

1) ∧ ∀∀
(
β(γ0) ⇒ Z

[η0,γ0]
1 ∧

β(γ1) ⇒ Z
[η0,γ1]
1 ∧ β(γ2) ⇒ Z

[η0,γ2]
1 ∧ β(γ3) ⇒ Z

[η0,γ3]
1

)]
Z

[η1,γ0]
1

def= ff ∨
[

tt ∧ tt ∧ ([a]Z[η1,γ0]
1) ∧ ∀∀

(
β(γ0) ⇒ Z

[η1,γ0]
1 ∧ β(γ1) ⇒ Z

[η1,γ1]
1 ∧

β(γ2) ⇒ Z
[η1,γ2]
1 ∧ β(γ3) ⇒ Z

[η1,γ3]
1

)]
Z

[η0,γ1]
1

def= ff ∨
[

tt ∧ ([b]x in Z
[η1,γ18]
1) ∧ ([a]Z[η0,γ1]

1) ∧ ∀∀
(
β(γ0) ⇒ Z

[η0,γ0]
1 ∧

β(γ1) ⇒ Z
[η0,γ1]
1 ∧ β(γ2) ⇒ Z

[η0,γ2]
1 ∧ β(γ3) ⇒ Z

[η0,γ3]
1

)]
Z

[η0,γ2]
1

def= ff ∨
[

tt ∧ ([b]x in Z
[η1,γ24]
1) ∧ ([a]Z[η0,γ2]

1) ∧ ∀∀
(
β(γ0) ⇒ Z

[η0,γ0]
1 ∧

β(γ1) ⇒ Z
[η0,γ1]
1 ∧ β(γ2) ⇒ Z

[η0,γ2]
1 ∧ β(γ3) ⇒ Z

[η0,γ3]
1

)]
Z

[η0,γ3]
1

def= tt ∨
[
tt ∧ ([b]x in Z

[η1,γ28]
1) ∧ ([a]Z[η0,γ3]

1) ∧ ∀∀
(
β(γ0) ⇒ Z

[η0,γ0]
1 ∧

β(γ1) ⇒ Z
[η0,γ1]
1 ∧ β(γ2) ⇒ Z

[η0,γ2]
1 ∧ β(γ3) ⇒ Z

[η0,γ3]
1

)]

13

The quotient declaration FA1 contains in total definitions of 96 identifiers.
We expect X1/f A1 to express that the accumulated time between an initial
a–action and a following b–action must be strictly greater than 0 as described
by the following property U0:

U0
def= [a]

(
y in V0

)
V0

def= (y > 0) ∨
(
[b]ff ∧ [a]V0 ∧ ∀∀V0

)
In the next section we will present effective minimization strategies, which essen-
tially transforms the large quotient declaration FA1 into the small yet equivalent
declaration above. 2

Now, let π be the synchronization function completely specified by π(0, a) =
a for all a ∈ A (i.e. the left argument to π is completely ignored). Then it
is easy to see that for any timed transition system S, SA and S |π SA satisfies
the same formulas. In particular SA and S1 |π SA satisfies the same formula,
where 1 is the 0–clock timed automaton with just one (initial) node and no
edges. Using this observation, the quotient construction can be used to obtain
alternative model–checking algorithms for Lν as follows:

Corollary 4 Let A be a timed automaton with clock set C, and let ϕ be a
closed Lν formula over clock set K, all over an action set A. Then:

A |=D ϕ if and only if 1 |=DA
ϕ/

π
A if and only if ϕ/

π
A ⇔ tt

Due to the projective nature of π it is clear that ϕ/
π

A contains no action
modalities, and it is easy to build a special purpose model checker for the simple
automata 1.

Example 7 Recall once more the timed automata and declaration from Ex-
amples 1 and 4. From these Examples we expect that C0,1 satisfies the property
X1. Now, using the Corollary 4 we may verify this by showing that the quotient
formula X1/

f
C0,1 is either valid or satisfied by 1. X1/

f
C0,1 is defined in the

following quotient declaration FC0,1
13:

X
[µ0,γ0]
1

def= x in y in Z
[µ1 ,γ0]
1

Z
[µ1,γ0]
1

def= ∀∀
(
β(γ0) ⇒ Z

[µ1,γ0]
1 ∧ β(γ1) ⇒ Z

[µ1,γ1]
1 ∧ β(γ2) ⇒ Z

[µ1,γ2]
1

)
Z

[µ1,γ1]
1

def= (x in Z
[µ2,γ18]
1) ∧ ∀∀

(
β(γ0) ⇒ Z

[µ1,γ0]
1 ∧ β(γ1) ⇒ Z

[µ1 ,γ1]
1 ∧

β(γ2) ⇒ Z
[µ1,γ2]
1

)
Z

[µ2,γ18]
1

def= ∀∀
(
β(γ18) ⇒ Z

[µ2,γ18]
1 ∧ β(γ19) ⇒ Z

[µ2,γ19]
1 ∧ β(γ20) ⇒ Z

[µ2,γ20]
1

)
Z

[µ2,γ19]
1

def= ∀∀
(
β(γ18) ⇒ Z

[µ2,γ18]
1 ∧ β(γ19) ⇒ Z

[µ2,γ19]
1 ∧ β(γ20) ⇒ Z

[µ2,γ20]
1

)
Z

[µ2,γ20]
1

def= ∀∀
(
β(γ18) ⇒ Z

[µ2,γ18]
1 ∧ β(γ19) ⇒ Z

[µ2,γ19]
1 ∧ β(γ20) ⇒ Z

[µ2,γ20]
1

)
13Found using the CAML prototype with subsequent application of boolean simplifications.

14

Z
[µ1,γ2]
1

def= (x in Z
[µ2,γ24]
1) ∧ ∀∀

(
β(γ0) ⇒ Z

[µ1,γ0]
1 ∧ β(γ1) ⇒ Z

[µ1,γ1]
1 ∧

β(γ2) ⇒ Z
[µ1,γ2]
1

)
Z

[µ2,γ24]
1

def= ∀∀β(γ24) ⇒ Z
[µ2,γ24]
1

2

Finally, combining the characterization of timed bisimulation in Theorem
1 with the quotient construct of Table 2, we can for any timed automaton A
construct a characteristic Lν formula uniquely characterizing the automaton up
to timed bisimilarity in the following manner: Let E , Z and h be as in Theorem
1. Then for any timed transition system S the following holds:

S ∼ SA if and only if S |=E Z/
h
[η0, γ0]

where η0 is the initial node of A and γ0 is the initial region over the clocks of
A (note that Z is an Lν formula over the empty set of clocks). This provides
an alternative characteristic formula construction compared with [LLW95].

6 Minimizations

It is evident from the examples in the previous section that repeated quotient-
ing leads to an explosion in the formula. A similar phenomena was observed
by Andersen for the quotient construction of modal µ–calculus formulas with
respect to finite–state systems. The crucial observation by Andersen is that
simple and cost effective transformations of the formulas in practice often lead
to significant reductions.

We have implemented in CAML the quotient construction of the previ-
ous section as well as (simplified versions of some of) Andersen’s minimization
strategies. In the investigated examples the minimization strategies lead to dra-
matic reductions. Below we describe the transformations considered in terms
of transformations on formulas and declarations (defining equations).

Reachability: When considering an initial quotient formula ϕ/
f
[η0, γ0] not all

identifiers of DA may be relevant or reachable. In our CAML implementation an
“on–the–fly” technique insures that only the reachable part of DA is generated.

Boolean Simplification: Formulas may be simplified using the following simple
boolean equations and their duals: ff ∧ ϕ ≡ ff, tt ∧ ϕ ≡ ϕ, 〈a〉ff ≡ ff, ∃∃ff ≡ ff,
x in ff ≡ ff, 〈a〉ϕ ∧ [a]ff ≡ ff.

Constant Propagation: Identifiers which are declared to either tt or ff may
be removed while substituting their definitions in the declaration of all other
identifiers.

15

Trivial Equation Elimination: Equations of the form X
def= [a]X are easily seen

to have X = tt as solution. More generally, whenever X
def= ϕ where ϕ[tt/X] 14

can be simplified to tt, we can perform a removal of the identifier X provided
the value tt is propagated to all uses of X (as under Constant Propagation).

Equivalence Reduction: If two identifiers X and Y are equivalent (i.e. are
satisfied by the same timed transition systems) we may collapse them into a
single identifier. To obtain a cost effective strategy we approximate equivalence
of identifiers with the following check: whenever X

def= ϕ and Y
def= ϑ such

that ϕ[Y/X] is syntactically identical to ϑ[Y/X] we conclude that X and Y are
equivalent and may be identified.

We apply the above transformation strategies repeatedly on quotient for-
mulas and declarations. As can be seen in Table 2, quotienting transforms
atomic propositions of the form x + c ∼ y + d into either tt or ff, thus yielding
high applicability of Boolean Simplification and Constant Propagation. Also,
quotient versions of the same original formula tend to have same structure thus
making applicability of Equivalence Reduction high.

In our CAML prototype implementation we have implemented the above re-
ported very simple strategies for Trivial Equation Elimination and Equivalence
Reduction. Generalized and more sophisticated (yet still efficient) strategies
can or course easily be given. However, even with the implemented simple ver-
sions we obtain a very high degree of reduction as observed in the following
examples.

Example 8 Recall Example 6. Applying the minimization strategies of the
CAML prototype we find that X1/f A1 is equivalent to Y0 with the following
definition:

Y0
def= [a]y in Y1

Y1
def= [b]ff ∧ [a]Y1 ∧ ∀∀

(
β(γ0) ⇒ Y1 ∧ (β(γ1) ∨ β(γ2)) ⇒ Y2

)
Y2

def= [a]Y2 ∧ ∀∀
(
β(γ0) ⇒ Y1 ∧ (β(γ1) ∨ β(γ2)) ⇒ Y2

)
During minimization only 23 identifiers of FA1 were found to be reachable
from X1/f A1, 14 respectively 3 of which were found to be equivalent to tt
respectively ff. The remaining 6 identifiers were finally partitioned into 3 classes.
Though dramatically reduced, the declaration leaves room for one additional
simplification as it may be observed that (β(γ1) ∨ β(γ2)) ⇒ Y2 is equivalent
to tt. With this observation we finally obtain:

Y ′
0

def= [a]y in Y ′
1 Y ′

1
def= [b]ff ∧ [a]Y ′

1 ∧ ∀∀
(
β(γ0) ⇒ Y ′

1

)
which clearly meets the expectations of 6. Minimization of the quotient formula
X7/f A10 leads directly to the formula tt indicating that for any timed transition

14ϕ[tt/X] is the formula obtained by substituting all occurrences of X in ϕ with the formula
tt.

16

system S the composition S |
f
SA10 satisfies X7. Intuitively this is clear as the

component A10 by itself ensures the delay required by X7. The corresponding
quotient declaration contains 3498 identifiers 617 of which were found to be
reachable. Subsequently all these were simplified to tt. 2

Example 9 Recall Example 7. Using the minimization strategies of the CAML
prototype we find directly that X1/

f
C0,1 simplifies to tt thus implying that

C0,1 satisfies the property X1. Similarly, minimization of the quotient formula
X2/

f
C0,1 yields ff confirming that C0,1 does not satisfy X2! 2

Example 10 Now we want to confirm that B0 does indeed satisfy the re-
quirement X1/f A1 and hence that B0 |

f
A1 satisfies X1. Using the equivalent,

minimized formula Y0 from Example 8 it suffices according to Corollary 4 to
verify validity of the quotient formula Y0/π B0. The CAML prototype confirms
this through immediate minimization to tt. 2

7 Conclusion

This paper has presented the basis for a compositional model checking technique
for real–time systems. Based on initial experiments with the CAML prototype
we conjecture that compositional model checking will prove not only a feasible
but also an efficient technique for real–time systems. However, it is clear that
many more experiments must be performed before the conjecture can be finally
settled, and in this process we will need to extend our prototype with more
sophisticated minimization strategies as the success of compositional model
checking is completely determined by these.

Our work on quotient formulas extends that of [AKLN95], where a quo-
tient construction for 1-clock automata has been given. Moreover it can be
generalized trivially to logics with minimal fixpoint constructs (such as Tµ in
[HNSY92]) as quotienting is easily seen to distribute over negation.

Acknowledgement

The authors would like to thank Henrik Reif Andersen for interesting and en-
lightening discussions on the topic of compositional (partial) model–checking.

17

References

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model–checking for Real–Time
Systems. In Proceedings of Logic in Computer Science, pages 414–425.
IEEE Computer Society Press, 1990.

[AD94] R. Alur and D. Dill. Automata for Modelling Real–Time Systems. Theo-
retical Computer Science, 126(2):183–236, April 1994.

[AKLN95] J. H. Andersen, K. J. Kristoffersen, K. G. Larsen, and J. Niedermann.
Automatic Synthesis of Real Time Systems. Lecture Notes in Computer
Science, 1995. To appear in Proceedings of ICALP’95.

[And94] H. R. Andersen. A Polyadic Modal µ–calculus. Id–tr: 1994–145, Depart-
ment of Computer Science, Technical University of Denmark, 1994.

[And95] H. R. Andersen. Partial Model Checking. To appear in Proceedings of
LICS’95, 1995.

[ASW94] H. R. Andersen, C. Stirling, and G. Winskel. A Compositional Proof Sys-
tem for the Modal Mu–Calculus. Logic in Computer Science, 1994.

[AW92] H.R. Andersen and G. Winskel. Compositional checking of satisfaction.
Formal Methods in Systems Design, 1992. To appear.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic Model Checking: 1)20 states and beyond. Logic in Computer
Science, 1990.

[CFJ93] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal
Logic Model Checking. Lecture Notes in Computer Science, 697, 1993.

[CGL92] E. M. Clarke, O. Grümberg, and D. E. Long. Model Checking and Ab-
straction. Principles of Programming Languages, 1992.

[EJ93] E. A. Emerson and C. S. Jutla. Symmetry and Model Checking. Lecture
Notes in Computer Science, 697, 1993.

[FT91] F.Moller and C. Tofts. Relating Processes with Respect to Speed. Technical
Report ECS–LFCS–91–143, Department of Computer Science, University
of Edinburgh, 1991.

[GW91] P. Godefroid and P. Wolper. A Partial Approach to Model Checking. Logic
in Computer Science, 1991.

[HL89] H. Hüttel and K. G. Larsen. The use of static constructs in a modal process
logic. Lecture Notes in Computer Science, Springer Verlag, 363, 1989.

[HNSY92] T. A. Henzinger, Z. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. In Logic in Computer Science, 1992.

[Lar86] K.G. Larsen. Context–Dependent Bisimulation Between Processes. PhD
thesis, University of Edinburgh, Mayfield Road, Edinburgh, Scotland, 1986.

[LLW95] F. Laroussinie, K. G. Larsen, and C. Weise. From Timed Automata to
Logic — and Back. Technical Report RS–95–2, BRICS, 1995.

[LX90] K.G. Larsen and L. Xinxin. Compositionality through an operational se-
mantics of contexts. Lecture Notes in Computer Science, Springer Verlag,
443, 1990. In Proceedings of 17th International Colloquium on Automata,
Languages and Programming 1990.

18

[LX91] K.G. Larsen and L. Xinxin. Compositionality through an operational se-
mantics of contexts. Journal of Logic and Computation, 1(6):761–795, 1991.

[Mil89] R. Milner. Communication and Concurrency. prentice, Englewood Cliffs,
1989.

[Par81] D. Park. Concurrency and automata on infinite sequences. In Proceedings
of 5th GI Conference, volume 104 of Lecture Notes in Computer Science,
Springer Verlag, Berlin, 1981. Springer.

[Tar55] A. Tarski. A lattice–theoretical fixpoint theorem and its applications. Pa-
cific Journal of Math., 5, 1955.

[Val90] A. Valmari. A Stubborn Attack on State Explosion. Theoretical Computer
Science, 3, 1990.

[Yi90] W. Yi. A Calculus of Real Time Systems. Lecture Notes in Computer
Science, 458, 1990. In Proceedings of CONCUR.

19

A Proof of Theorem 2
Proof We only sketch the proof for the identifier free formulas of Lν using
structural induction on ϕ. Consequently we drop declaration subscripts on |=.
The full proof follows the structure used in [LX90].

We consider only the cases 〈a〉ϕ, ∃∃ϕ and x in ϕ leaving the remaining more
trivial cases to the reader.

• Assume
〈

s |
f
(η, v) , u

〉
|= 〈a〉ϕ. Then we have:

〈
s |f (η, v) , u

〉
|= 〈a〉ϕ

⇔
〈

s′ |f (η′, v′) , u
〉

|= ϕ For some s
a1−→ s′ and ∃〈η, η′, a2, r, b〉 ∈ E

s.t. v′ = [r → 0]v and b(v) = tt and
f(a1, a2) ' a

⇔ 〈 s′, v′ u 〉 |= ϕ/
f
[η′, [v′ u]] by IH

⇔ 〈 s′, v u 〉 |= r in ϕ/
f
[η′, [v′ u]]

⇔ 〈 s, v u 〉 |= 〈a1〉(r in ϕ/
f
[η′, [v′ u]])

⇔ 〈 s, v u 〉 |=
∨

a1,[η′ ,[v′ u]]∈E(η,[vu],a)

〈a1〉(rv′ in ϕ/
f
[η′, [v′ u]])

⇔ 〈 s, v u 〉 |= (〈a〉ϕ)/
f

[
η, [v u]

]
• Assume

〈
s |

f
(η, v) , u

〉
|= ∃∃ϕ. Then we have:

〈
s |

f
(η, v) , u

〉
|= ∃∃ϕ

⇔
〈

sd |
f
(η, v+d) , u+d

〉
|= ϕ For some d ∈ R

⇔ 〈 sd, v+d u+d 〉 |= ϕ/
f
[η, [v+d u+d]] by IH

⇔ 〈 sd, v+d u+d 〉 |= ϕ/
f
[η, [v u]i] Where (v+d u+d) ∈ [vu]i

⇔ 〈 sd, v+d u+d 〉 |= β([v u]i) ∧ ϕ/
f
[η, [v u]i]

⇔ 〈 s, v u 〉 |= (∃∃ϕ)/
f

[
η, [v u]

]
• Assume

〈
s |

f
(η, v) , u

〉
|= x in ϕ. Then we have:

〈
s |f (η, v) , u

〉
|= x in ϕ

⇔
〈

s |f (η, v) , u′
〉

|= ϕ with u′ = [x → 0]u
⇔ 〈 s, v u′, 〉 |= ϕ/

f
[η, [v u′]] by IH

⇔ 〈 s, v u 〉 |= x in ϕ/
f
[η, [v u′]]

⇔ 〈 s, v u 〉 |= (x in ϕ)/
f

[
η, [v u]

]
2

20

Recent Publications in the BRICS Report Series

RS-95-19 François Laroussinie and Kim G. Larsen.Compositional
Model Checking of Real Time Systems. March 1995. 20 pp.

RS-95-18 Allan Cheng. Complexity Results for Model Checking.
February 1995. 18pp.

RS-95-17 Jari Koistinen, Nils Klarlund, and Michael I.
Schwartzbach. Design Architectures through Category
Constraints. February 1995. 19 pp.

RS-95-16 Dany Breslauer and Ramesh Hariharan.Optimal Paral-
lel Construction of Minimal Suffix and Factor Automata.
February 1995. 9 pp.

RS-95-15 Devdatt P. Dubhashi, Grammati E. Pantziou, Paul G.
Spirakis, and Christos D. Zaroliagis.The Fourth Moment
in Luby's Distribution. February 1995. 10 pp.

RS-95-14 Devdatt P. Dubhashi. Inclusion–Exclusion(3) Implies
Inclusion–Exclusion(n). February 1995. 6 pp.

RS-95-13 Torben Bräuner. The Girard Translation Extended with
Recursion. 1995. Full version of paper to appear in
Proceedings of CSL '94, LNCS.

RS-95-12 Gerth Stølting Brodal. Fast Meldable Priority Queues.
February 1995. 12 pp.

RS-95-11 Alberto Apostolico and Dany Breslauer. An Optimal
O(log logn) Time Parallel Algorithm for Detecting all
Squares in a String. February 1995. 18 pp. To appear
in SIAM Journal on Computing.

RS-95-10 Dany Breslauer and Devdatt P. Dubhashi.Transforming
Comparison Model Lower Bounds to the Parallel-Random-
Access-Machine. February 1995. 11 pp.

RS-95-9 Lars R. Knudsen.Partial and Higher Order Differentials
and Applications to the DES. February 1995. 24 pp.

RS-95-8 Ole I. Hougaard, Michael I. Schwartzbach, and Hosein
Askari. Type Inference of Turbo Pascal. February 1995.
19 pp.

