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Complexity Results for Model Checking?

Allan Cheng??

Computer Science Department
Cornell University

Ithaca, New York 14853, USA
e-mail:acheng@cs.cornell.edu

Abstract. The complexity of model checking branching and linear time
temporal logics over Kripke structures has been addressed in e.g. [SC85,
CES86]. In terms of the size of the Kripke model and the length of the
formula, they show that the model checking problem is solvable in poly-
nomial time for CTL and NP-complete for L(F ). The model checking
problem can be generalised by allowing more succinct descriptions of
systems than Kripke structures. We investigate the complexity of the
model checking problem when the instances of the problem consist of
a formula and a description of a system whose state space is at most
exponentially larger than the description. Based on Turing machines,
we define compact systems as a general formalisation of such system
descriptions. Examples of such compact systems are K-bounded Petri
nets and synchronised automata, and in these cases the well-known al-
gorithms presented in [SC85, CES86] would require exponential space in
term of the sizes of the system descriptions and the formulas; we present
polynomial space upper bounds for the model checking problem over
compact systems and the logics CTL and L(X,U,S). As an example of
an application of our general results we show that the model checking
problems of both the branching time temporal logic CTL and the linear
time temporal logics L(F ) and L(X,U, S) over K-bounded Petri nets are
PSPACE-complete.

1 Introduction

Formal verification techniques of distributed systems have received much atten-
tion, see for example [Lam80, SC85, CES86, Lar88, Mil89, SW89, Val90, WG93].

A predominant technique is known as model checking. The approach is as
follows. The systems one considers either explicitly or implicitly specify a state
space which can be regarded as a (labelled) graph. Viewing these graphs as
models (Kripke structures) for temporal logics, one can use logical formulas to
express properties of the graphs. The problem of verifying if a system satisfies
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a property encoded in a formula then reduces to the problem of checking if the
formula is satisfied in the systems state space.

The complexity of the model checking problem for both linear and branching
time propositional temporal logics has been investigated, among others, by Sistla
and Clarke in [SC85] and by Clarke, Emerson, and Sistla in [CES86]. Both
papers consider Kripke structures (or just structures) as models for the logics
and the complexity results are stated in terms for the sizes of the structures and
the length of the formulas. The paper [CES86] shows that the model checking
problem for the computational tree logic CTL can be solved in polynomial time
while [SC85] shows that the model checking problem for the linear time temporal
logic L(F ) is NP-complete.

There exists other well known classes of systems over which we can interpret
such logics. K-bounded Petri nets and synchronised automata are examples of
such systems. Common to these systems is that they can be viewed as compact
representations of structures. More precisely, they can specify structures whose
sizes are exponentially larger than the description of the systems. For example,
the state space of a K-bounded Petri net can be (no more than) exponentially
larger than the net. We will call such systems compact systems.

K-bounded Petri nets [JLL77] and synchronised automata [WG93] are ex-
amples of models which are widely use to specify and implement concurrent
systems. Verification techniques for these and related systems have been pre-
sented in [Lar88, SW89, Val90, WG93, ES92, Esp93, BCM+92]. Whereas the
work in [Lar88, SW89] focuses on algorithms (tableau systems) for solving the
model checking problem, the work in [Val90, WG93, ES92, Esp93, BCM+92]
is mainly motivated by the state space explosion problem and how to overcome
this problem taking time, and especially, space consumption into account. Struc-
tures such as “stubborn sets”, “persistent sets”, “net unfoldings”, and “Binary
Decision Diagrams” are proposed.

It is therefore important to evaluate these verification techniques with respect
to their space requirements. A primary measure for this evaluation is space com-
plexity. For more specific problems connected to 1-safe Petri nets, for example for
the reachability, liveness, and deadlock problem, such a study has been presented
in [CEP93].

In this paper we choose a rather general setting both in terms of the systems
considered and the problems to be solved. Namely, we formalise the notion of
compact systems and investigate what happens to the complexity of the model
checking problem in terms of the size of a compact system and the length of
the formula. We show that for the well-known temporal logics CTL, L(F ), and
L(X, U, S) and any class of compact systems, the model checking problem is in
PSPACE. Since for most nontrivial classes of compact systems the model check-
ing problem for temporal logics containing the F (future) operator is usually
PSPACE-hard, our results provide matching upper bounds. In contrast, the al-
gorithms in [SC85, CES86] for CTL and L(F ) would both require exponential
space. As an example of how our results may be applied, we consider K-bounded
Petri nets. From [CEP93] we easily conclude that the problems for CTL, L(F ),
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and L(X, U, S) are PSPACE-hard. Our results then allow us to conclude that
they that PSPACE-complete. In terms of the size of the state spaces of the
K-bounded Petri nets (and the length of the formulas) the complexities are P
[CES86], NP-complete and PSPACE-complete [SC85], respectively.

The paper is organised as follows. In Sect. 2 we give the necessary definitions.
This includes compact systems, the logics and their interpretations, and the
model checking problems. Then, in Sect. 3 we give the upper bounds on the
model checking problems. In Sect. 4 we apply our results to K-bounded Petri
nets and in Sect. 5 we conclude and give suggestions for future work.

2 Definitions

Intuitively, the systems we will consider all have the property that we can asso-
ciate to them Kripke structures which corresponds to their state space. More-
over, the size of this Kripke structure is atmost exponential in the size of the
description of the system. For example K-bounded Petri nets (Petri nets where
each place can have atmost K tokens) have this property; a net with n places
has atmost (K + 1)n reachable states. We shall refer to these systems as com-
pact systems. We continue by formalising compact systems, defining the logics
B(X, U) (CTL) and L(X, U, S) and their interpretations, and finally the model
checking problems.

2.1 The Compact Systems

A class of compact systems will be described using strings to encode the sys-
tems and a polynomial space bounded nondeterministic Turing machine which
given an encoding of a system will “simulate” it. The state space of the Tur-
ing machine will then be used to define the state space of the input string (the
compact system). In Sect. 4 we will present K-bounded Petri nets as a class of
compact systems. For the ease of the presentation we assume that the reader is
familiar with Turing machines and basic complexity theory, see [HU79] for an
introduction.

Definition1. A class of compact systems, (C, MC), is a set C = {s1, s2, . . .} of
strings referred to as systems, over some alphabet Σ, together with a polyno-
mial space bounded nondeterministic Turing machine MC with a distinguished
“signal” state q? such that

– for any s ∈ C, MC has a unique configuration3 cs, such that any computation
on s reaches cs and cs is the first configuration along the computation whose
machine state is q?. Intuitively, cs is the initial state of the system s.

– for any string s 6∈ C, MC will never enter the state q? for any computation
on input s.

3 A configuration of MC consists of the contents of the tape, a machine state, and a
postition on the tape.
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In the following we assume a fixed class of compact systems (C, MC). Since
MC is polynomial space bounded on inputs of length n, say by the polynomial
q′(n), MC has on any input s atmost exponentially many reachable configura-
tions whose machine state is q?; there exists a B > 0 and a polynomial q(n),
independent of s, such that given s there are atmost Bq(|s|) possible configura-
tions. Call the configurations whose machine state is q? signal configurations,
and let SigMC(s) = {c | c is a signal configuration of MC on input s}. We can
now define the state space associated to s ∈ C.

Definition2. For s ∈ C, let (Vs, Es, is) be the rooted graph whose nodes Vs

are SigMC(s), the signal configurations of MC on input s, whose edges are pairs
of nodes (c, c′) such that (c, c′) ∈ Es if and only if MC can reach c′ from c
without entering any other signal configurations, and whose initial/root node is
the unique configuration cs.

Remark. We shall refer to (Vs, Es, is) as the state space of the system s, whenever
s ∈ C. Also, the nodes will be refered to as states of s and will be ranged over by
v, w, . . .. Notice that any system s has atmost Bq(|s|) states. Whenever (Vs, Es, is)
is understood from the context, we will use the notation v0 → v1 → · · · → vn

instead of (v0, v1), (v1, v2), . . . , (vn−1, vn) ∈ Es. For a state v of s, we use the
notation v 6→ to indicate that there exists no state v′ ∈ Vs such that v → v′.

A run of the system s is any sequence v0 → v1 → · · · that is either infinite
or ends in a state vn such that vn 6→. The length of a finite run v0 → · · · → vn

is n. We will use Greek letters σ, γ, . . . to denote runs of the system s.

Henceforth, we assume a fixed class of compact systems (C, MC) and continue
by giving the syntax of the temporal logics we will be considering.

2.2 The Logics

Let A be a set of atomic propositions. We assume it to be fixed in the following.
We will consider the temporal logics L(X, U, S) and B(X, U), both described in
detail in [Eme90].

The formulas of the logic L(X, U, S) over A are defined inductively:

– t, f , or any p ∈ A.
– ¬φ1, φ1 ∧ φ2, X(φ1), φ1Uφ2, and φ1Sφ2 are formulas, where φ1 and φ2 are

formulas.

L(X, U, S) is a linear time temporal logic, whose formulas are interpreted over
runs of a systems s.

In order to interpret the formulas of L(X, U, S) over the runs of a system s we
need a valuation ηs : A×SigMC(s) −→ 2 which tells us if an atomic proposition
holds at a state. Furthermore, we require that the valuation etas is computable
by a polynomial space bounded deterministic Turing machine which we denote
Tηs . We assume the atomic propositions to be encoded as strings.

Given s, σ = v0 → v1 → · · · a run of s, a natural number 0 ≤ i ≤ |σ|, and
ηs. Relative to ηs we interpret the formulas of L(X, U, S) at (σ, i) as follows:
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– (σ, i) |= t and (σ, i) 6|= f .
– (σ, i) |= p iff ηs(p, vi) = 1.
– (σ, i) |= ¬φ iff (σ, i) 6|= φ.
– (σ, i) |= φ1 ∧ φ2 iff (σ, i) |= φ1 and (σ, i) |= φ2.
– (σ, i) |= X(φ) iff i < |sigma| and (σ, i + 1) |= φ.
– (σ, i) |= φ1Uφ2 iff there exists a natural number i ≤ j ≤ |σ| such that

(σ, j) |= φ2 and for all i ≤ k < j, (σ, k) |= φ1.
– (σ, i) |= φ1Sφ2 iff there exists a 0 ≤ j ≤ i such that (σ, j) |= φ2 and for all

j < k ≤ i, (σ, k) |= φ1.

The interpretation of the logic should be clear except perhaps for φ1Uφ2 and
φ1Sφ2. Intuitively the former expresses that φ2 holds somewhere in the future
and that φ1 holds “until” then; the latter expresses that somewhere in the past
φ2 holds and “since” then, φ1 holds. Remember that the “past” and “future” is
relative to σ.

Next, we consider a well-known branching time temporal logic. The formulas
of the logic B(X, U) over A (also known as CTL [CES86]) are also defined
inductively:

– t, f , or any p ∈ A.
– ¬φ1, φ1 ∧ φ2, EX(φ1), AX(φ1), E(φ1Uφ2), or A(φ1Sφ2) are formulas, where

φ1 and φ2 are formulas.

B(X, U) is a branching time logic whose formulas are interpreted at state of a
system s.

Given a system s, v a state of s, and a valuation ηs. Then, the formulas of
B(X, U) are interpreted relative to ηa as follows:

– v |= t and v 6|= f .
– v |= p iff ηs(p, v) = 1.
– v |= ¬φ iff v 6|= φ.
– v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2.
– v |= EX(φ) iff there exists v → v′ such that v′ |= φ.
– v |= AX(φ) iff for all v → v′, v′ |= φ.
– v |= E(φ1Uφ2) iff there exists v → v1 → · · · → vn such that vn |= φ2 and for

all 0 ≤ j < n, vj |= φ1, where v0 = v.
– v |= A(φ1Uφ2) iff for all v → v1 → · · · there exists an n such that vn |= φ2

and for all 0 ≤ j < n, vj |= φ1, where v0 = v.

The interpretation of the temporal formulas shows the branching nature of
B(X, U). At a state several possible successor states or paths have to be taken
into account. The intuition behind the interpretation of the “until” formulas
corresponds well to that of L(X, U, S) except that we quantify existentially or
universally over paths from the state v.

5



2.3 The Model Checking Problems

Definition3. An instance of the model checking problem for L(X, U, S) is a
tuple (s, Tηs , φ), where s ∈ C, ηs is a valuation, and φ is a L(X, U, S) formula.
The model checking problem for (s, Tηs , φ) is to decide whether or not there
exists a run σ of the system s such that (σ, 0) |= φ.

Definition4. An instance of the model checking problem for B(X, U) is a tuple
(s, Tηs , φ), where s ∈ C, ηs is a function, and φ is a B(X, U) formula. The model
checking problem for (s, Tηs , φ) is to decide whether or not is |= φ.

Remark. Notice that the valuation is usually implicitely assumed part of the
problem instances to the model checking problem [SC85] or assume to be easily
computable [CES86]. We could also have defined a valuation to be relative to
(C, MC) and A. This wouldn’t leed to any significant changes of the results.

Having given the necessary definitions, we summarize in the table below
our results and related known results [SC85, CES86] about the model checking
problem.

Logic Problem Instance Complexity

CTL R-structure (Kripke) P
and a formula

L(F ) R-structure NP-complete
and a formula

L(X,U, S) R-structure PSPACE-complete
and a formula

CTL Compact system
L(F ) and a formula PSPACE

L(X,U, S)

Fig. 1. Complexity in terms of Kripke structures and compact systems.

3 The Upper Bounds

In this section we provide PSPACE upper bounds for the model checking prob-
lems defined in Def. 3 and Def. 4. We start by L(X, U, S).

3.1 Linear Time

The results of this section is based on the idea behind the decision procedure
for the logic L(X, U, S) given in [SC85]. There, Sistla and Clarke also reduce
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the problem of determining truth in an R-structure (model checking problem
over Kripke structures) to the satisfiability problem by encoding an R-structure
into a formula. Since a compact system may have exponentially many states,
encoding the state space (Kripke structure) of a system in a formula would yield
an exponentially long formula.

Instead one could try to encode the system itself in the logic. This is easily
done for systems like 1-safe Petri nets. However, when considering other models
like K-bounded Petri nets, this encoding quickly becomes more troublesome. One
of the reasons why we have chosen the setting of (C, MC) is because describing a
class of systems as a class of compact sytems is often more straightforward and
credible.

Our solution is based on proving the existence of a run which ends in a dead
state v′, v′ 6→, or in a loop. Moreover, one has to bound the lengths of these
paths. This seems to be the only (obvious) technique applicable to solve the
problem.

Definition5. Given a system s, σ = v0 → v1 → · · · a run of s, φ a formula of
L(X, U, S), and ηs a valuation. Then, Sub(σ, i, φ) is the set of subformulas φ′ of
φ such that (σ, i) |= φ′.

Lemma6. Given a system s, σ = v0 → v1 → · · · a run of s, φ a formula of
L(X, U, S), and ηs. If Sub(σ, i, φ) = Sub(σ, j, φ), i < j ≤ |σ|, and vi = vj , then

∀0 ≤ l ≤ i. Sub(σ, l, φ) = Sub(σ′, l, φ)

∀j ≤ l ≤ |σ|. Sub(σ, l, φ) = Sub(σ′, l − (j − i), φ)

where all indices range over natural numbers and σ′ = v′0 → v′1 → · · · = v0 →
· · · → vi → vj+1 → vj+2 → · · ·.

Proof. Induction in φ. ut

Given a run σ = v0 → v1 → · · · of a system s, two indices i and j, and a
formula φ of L(X, U, S). φ is said to be fulfilled between i and j if and only if
i < j and there exists a k, i ≤ k < j, such that (σ, k) |= φ.

Lemma7. Given a systems s, σ = v0 → v1 → · · · an infinite run of s, φ a
formula of L(X, U, S), an index i, and a natural number p > 0 (the period) such
that vi = vi+p, Sub(σ, i, φ) = Sub(σ, i + p, φ), and for every formula φ1Uφ2 in
Sub(σ, i, φ), φ2 is fulfilled between i and i+p. Let σ′ = v′0 → v′1 → · · · be the run
v0 → . . . → vi → · · · → vi+p−1 → vi → · · · → vi+p−1 → vi → · · ·, i.e. the period
vi → · · · → vi+p is repeated infinitely often. Then

∀0 ≤ l ≤ i + p. Sub(σ, l, φ) = Sub(σ′, l, φ)

∀i ≤ l. Sub(σ′, l, φ) = Sub(σ′, (l + p), φ)

Proof. Induction in φ, case based analysis. ut
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Lemma 7 states that from a run where two identical states satisfy the same
subformulas of φ, one can obtain a new run which consists of a finite “prefix”
and a period which is repeated.

Now we continue to the theorem which our upper bound result is based upon.
It is a variant of “Ultimately Periodic Model Theorem” [SC85].

Theorem8. Given a system s, ηs a valuation, σ a run of s, and φ a formula
of L(X, U, S) such that (σ, 0) |= φ, then

1) if |σ| < ∞, then there exists a run γ of s such that |γ| ≤ Bq(|s|)2|φ| and
(γ, 0) |= φ.

2) if |σ| = ∞, then there exists a run γ = w0 → w1 → · · · and indices 0 ≤
i ≤ Bq(|s|)2|φ|, 0 < p ≤ |φ|Bq(|s|)2|φ| such that wl = wl+p for l ≥ i and
(γ, 0) |= φ.

where B and q(n) were described in Sect. 2.1.

Proof. We only consider the case where σ is infinite. The other case can be
handled similarly. So assume (σ, 0) |= φ. Since s has at most Bq(|s|) states and
φ has at most 2|φ| subformulas there must exist indices i < j such that

i) vi = vj , Sub(σ, i, φ) = Sub(σ, j, φ), and for all φ1Uφ2 ∈ Sub(σ, i, φ), φ2 is
fulfilled between i and j.

Now applying Lemma 6 repeatedly to the initial part of σ we obtain a new
run σ′ and indices i′ < j′ such that

ii) (σ′, 0) |= φ, v′i′ = v′j′ , Sub(σ, i, φ) = Sub(σ′, i′, φ) = Sub(σ′, j′, φ), i′ ≤
Bq(|s|)2|φ|, and for all φ1Uφ2 ∈ Sub(σ′, i′, φ), φ2 is fulfilled between i′ and j′.

Also, repeatedly applying Lemma 6 between v′i′ and v′j′ we can assume that
(j′ − i′) ≤ |φ|Bq(|s|)2|φ|; if at any time during the application of Lemma 6 the
current value of (j′ − i′) is larger than |φ|Bq(|s|)2|φ|, there must exist more than
|φ| identical states v′l among v′i′+1, . . . , v

′
j′ satisfying the same set Sub(σ′, l, φ)

of formulas. Since φ has less then |φ| subformulas of the form φ1Uφ2, we can
remove a loop between two of these states and still have all such φ2’s fulfilled
between i′ and (the new value of) j′ (in the resulting new run). We therefore
conclude that there exists a run σ′′ of s and indices i′′ < j′′ such that

iii) (σ′′, 0) |= φ, v′′i′′ = v′′j′′ , Sub(σ′′, i′′, φ) = Sub(σ′′, j′′, φ), i′′ ≤ Bq(|s|)2|φ|,
(j′′ − i′′) ≤ |φ|Bq(|s|)2|φ|, and for all φ1Uφ2 ∈ Sub(σ′′, i′′, φ), φ2 is fulfilled
between i′′ and j′′.

Using Lemma 7 we conclude that the run γ = v′′0 → · · · → v′′i′′ → · · · → v′′j′′ →
v′′i′′+1 → · · · → v′′j′′ → · · · of s has the property (γ, 0) |= φ. ut

Theorem9. Fix any class of compact systems (C, MC) and set of atomic propo-
sitions A. Then, the model checking problem for L(X, U, S) is in PSPACE.
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Proof. We shall describe an algorithm in a Pascal like programming language
which given any instance (s, Tηs , φ) of the model checking problem for L(X,U,S)
solves it using only an amount of space polynomial in the sum |s| + |Tηs | + |φ|.
Let n denote this sum. Henceforth, whenever we write polynomial, we implicitly
mean polynomial in n. The algorithm can be encoded as a nondeterministic
polynomial space bounded Turing machine.

Notice that given possible configurations v and v′ of MC run on input s,
there are polynomial space bounded nondeterministic Turing machines which
decide properties such as whether or not v ∈ Vs, v → v′ given v ∈ Vs, or v 6→.
Moreover, we can also compute is given s using only a polynomial amount of
space. For example, let us consider the case where we given v ∈ Vs and a possible
configuration v′ have to decide if v → v′. Our nondeterministic Turing machine
will simulate MC from v. It guesses a number k1 ≤ Bq(|s|). v′ is reachable from
v if and only if it can be reached from v in at most Bq(|s|) computation steps
of MC (simulated on input s). Then, storing at most two new configurations of
MC, it guesses, one step at the time, a computation of MC of length k1. For
each step it decrements k1 and checks if MC can go from the old configuration to
the new (guessed) configuration. Also, it checks that none of these intermediate
configurations of MC are signal configurations. Finally, if it reaches k1 = 0 it
check that the guessed configuration equal v′ and is a signal configuration. It
should be clear that this machine uses at most a polynomial amount of space.
Now applying the technique from [HU79] Theorem 12.10, we obtain a deter-
ministic polynomial space bounded Turing machine, since we can compute an
exponential bound for the maximal number of configurations of the nondeter-
ministic machine. Also, since ηs(p, v) can be computed in polynomial space by
Tηs this can also be done by simulating Tηs .

Hence, in the algorithm we shall refer freely to the states of s and use the
notation v → v′. Whenever a property is checked and is found not to hold, the
algorithms fails. Let Sub(φ) be the set of subformulas of φ, let S range over
subsets of Sub(φ), and let Un(φ) be the set {φ2 | φ1Uφ2 ∈ Sub(φ)}.

First we consider the case where the answer to (s, Tηs , φ) is Yes because of
an infinite run.

Algorithm 1a

01: Guess 0 ≤ n1 ≤ Bq(|s|)2|φ|

02: Guess Scurrent ⊆ Sub(φ)
03: Let vcurrent = is
04: Check boolean consistency of Scurrent and vcurrent, i.e. that
05: (∀p ∈ Sub(φ). s ∈ Scurrent ⇔ ηs(p, vcurrent))
06: (∀φ1 ∧ φ2 ∈ Sub(φ). φ1 ∧ φ2 ∈ Scurrent ⇔ φ1 ∈ Scurrent and φ2 ∈ Scurrent)
07: (∀¬φ′ ∈ Sub(φ). ¬φ′ ∈ Scurrent ⇔ φ′ 6∈ Scurrent)
08: Check that φ ∈ Scurrent
09: Check that (∀φ1Sφ2 ∈ Sub(φ). φ2 ∈ Scurrent)
10: Let count := 0
11: While count < n1 do
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12: Guess a configuration vnext and check that vcurrent → vnext
13: Guess Snext ⊆ Sub(φ)
14: Check boolean consistency of Snext and vnext
15: Check that
16: (∀Xφ′ ∈ Sub(φ). Xφ′ ∈ Scurrent ⇔ φ′ ∈ Snext)
17: (∀φ1Sφ2 ∈ Sub(φ). φ1Sφ2 ∈ Snext ⇔

(φ2 ∈ Snext ∨ (φ1 ∈ Snext ∧ φ1Sφ2 ∈ Scurrent)))
18: (∀φ1Uφ2 ∈ Sub(φ). φ1Uφ2 ∈ Scurrent ⇔

(φ2 ∈ Scurrent ∨ (φ1 ∈ Scurrent ∧ φ1Uφ2 ∈ Snext)))
19: Let count := count + 1
20: Let vcurrent = vnext
21: Let Scurrent := Snext
22: Endwhile
23: Let vloop := vcurrent
24: Let Sloop := Scurrent

25: Guess 0 ≤ n1 ≤ |φ|Bq(|s|)2|φ|

26: Let count := 0
27: Let SU := ∅
28: While count < n1 do
29: (∗ Lines 29 to 38 are a copy of lines 12 to 21 ∗)
39: Let SU := SU ∪ (Scurrent ∩ Un(φ))
40: Endwhile
41: Check that vcurrent = vloop
42: Check that Scurrent = Sloop
43: Check that (∀φ1Uφ2 ∈ Sloop. φ2 ∈ SU )
44: Answer Yes

For the case where the run is finite the following algorithm is derived:

Algorithm 1b

01: (∗ Lines 02 to 23 are a copy of lines 01 to 22 of Algorithm 1a ∗)
24: Check that vcurrent 6→
25: Check that (∀φ1Uφ2 ∈ Scurrent. φ2 ∈ Scurrent)
26: Answer Yes

Our final algorithm chooses nondeterministically between Algorithm 1a

and Algorithm 1b. The correctness of the algorithm is straightforward to
establish; if the algorithm answers Yes, examine the guessed run of s, the values
of Scurrent and SU , and conclude that this run indeed shows that the answer to
(s, Tηs , φ) is Yes. Let σ′ denote the guessed run. Then, by induction in φ′ ∈
Sub(φ) show that for any of the values vcurrent(= v′j) and Scurrent, (σ′, j) |= φ′ ⇔
φ′ ∈ Scurrent; conversely, if the answer to (s, Tηs , φ) is Yes then by Theorem 8
there exists a run of the algorithm which answers Yes.

I should be clear, from the assumptions about MC , Tηs , and the above com-
ments about how to decide properties about the nodes and edges of (Vs, Es)
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using only a polynomial amount of space, that this algorithm can be imple-
mented by a nondeterministic polynomial space bounded Turing machine. By
Savitch’s Theorem (NPSPACE = PSPACE) we conclude that the model check-
ing problem for L(X, U, S) is in PSPACE. ut

3.2 Branching Time

In this section we describe an algorithm which will solve the model checking
problem for B(X, U) using only a polynomial amount of space.

We start by sketching the intuition behind our solution. We will describe
our solution stepwise using Turing machines and results about the complexity
of constructing and transforming such machines.

The idea behind our construction will be to construct a C-tape Turing ma-
chine M, where C is some constant. Denote these tapes by T1, . . . , TC . Given a
problem instance as input M will, in polynomial time, construct a (description
of a) deterministic polynomial space bounded machine Mφ′ for each occurrence
of a subformula4 φ′ of φ. Let us call these machines subformula machines.

The subformula machines have the extra ability that they may call certain
subformula machines as subroutines. A machine Mφ′ will call as subroutines
the subformula machines corresponding to the immediate subformulas of φ′; e.g.
Mφ1Uφ2 will call Mφ1 and Mφ2 as subroutines. These calls may be considered as
single computation steps from the calling machines point of view much in the
same way as Turing machines use oracles. M will simulate all of the subformula
machines and their subroutine calls. Notice that M will need a stack of depth
at most |φ| to simulate the subroutine call sequence. Figure 2 illustrates this.

(p ∧ q)U(¬q)

p ∧ q ¬q

p q q

�
��
@
@@

�
�
� @

@
@

M(p∧q)U(¬q)

Mp∧q M¬q

Mp Mq Mq

@
@@R

�
�
�	

@
@
@R

?
�
��	

Fig. 2. Formula (p∧ q)U(¬q) and the corresponding subformula machines. The arrows
indicate which machines may be used as subroutines.

The subformula machines will be constructed in an bottom up fashion, i.e.
when constructing Mφ′ , all subformula machines corresponding to the proper

4 For convenience we shall use the same notation for both subformulas of and occur-
rences of subformulas of φ.
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subformulas of φ′ have been constructed. The subformula machines will be stored
on one of M’s tape using only a polynomial amount of tape. Each of these
machines will compute the function fφ′ : Vs −→ 2, defined by fφ′(v) =1 if and
only if v |= φ′. Since there are at most |φ| subformula occurrences in φ, say
m, one of M’s C tapes, say Tl, will be used to simulate tapes for each of the
machines Mφ′ ; assuming we have the m machines enumerated, the j’th machines
tape will consist of all of Tl’s cells whose index i equals j modulo m. Figure 3
illustrates this for the case where there are three subformula occurrences. The
j’th cell on a simulated tape is indicated by superscript j.

Tl: T1
φ1

T1
φ2

T1
φ3

T2
φ1

T2
φ2

T2
φ3

T3
φ1

T3
φ2

Fig. 3. Tl simulates 3 tapes: Tφ1 , Tφ2 , and Tφ3 .

Having constructed all the machines Mφ′ , M then proceeds by giving Mφ

the input is and starts simulating Mφ.

Theorem10. Fix any class of compact systems (C, MC) and set of atomic
propositions A. Then, the model checking problem for B(X, U) is in PSPACE.

Proof. Given (s, Tηs , φ). Let n denote the size of this problem instance. M is
defined as follows:

– M stores its input (s, ηs, φ) on tape T1.
– It enumerates all subformulas occurrences of φ and remembers how many

there are. This is done on T2.

Remark. Having found the number of subformula occurrences M will use
T3 to simulate one tape Tφ′ for each subformula occurrence φ′ as indicated
in Fig.3.

– It now proceeds to construct the deterministic subformula machines as fol-
lows, starting with the smallest subformula occurrences. For a subformula
occurrence φ′:

• If φ′ is an atomic proposition p, then Mφ′ is the machine which given v
computes uses Tηs to compute ηs(p, v).

• If φ′ is of the form ¬φ′′, then Mφ′ is the machine which given v calls
Mφ′′ as subroutine with v as parameter and returns the negated value
obtained from Mφ′′ .

• If φ′ is of the form φ1 ∧ φ2, then Mφ′ is the machine which given v
first calls Mφ1 and then Mφ2 , remembering the values returned. It then
returns 1 if and only if both values were 1.
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• If φ′ is of the form EX(φ′′), then M first constructs a nondeterministic
machine which does the following:

Given v it guesses v′, a possible configuration of s. Then it check that
v → v′. Finally it calls Mφ′′ with parameter v′. If the returned value is
1 it returns 1, else it returns 0.

Then, M constructs a deterministic version of this machine using e.g. a
construction similar to the one sketched in [HU79] Theorem 12.10. This
can be done since a (fully space constructible) polynomial bound on the
space consumption of the nondeterministic machine can be computed.
This machine will systematically examine all successor states of v and
check if φ′′ holds at one of these states; if yes, then 1 is returned; if no,
0 is returned. This is the machine Mφ′ .

• If φ′ is of the form AX(φ′′), then M first constructs a nondeterministic
machine which does the following:

Given v it guesses v′, a possible configuration of s. Then it check that
v → v′. Finally it calls Mφ′′ with parameter v′. If the returned value is
0 it returns 0, else it returns 1.

Then, M constructs a deterministic version of this machine. This is the
machine Mφ′ .

• If φ′ is of the form E(φ1Uφ2), then M first constructs a nondeterministic
machine which does the following, given v:

Guess a number 0 ≤ k ≤ Bq(|s|)

Let vcurrent := v
While k > 0 do

Call Mφ1 to check that vcurrent |= φ1
Guess v′, a possible state of s
Check that vcurrent → v′

Let vcurrent := v′

Decrement k by 1
Endwhile
Call Mφ2 to check that vcurrent |= φ2

If the machine reaches the last test and it is successful, the machine
returns 1, else it returns 0.

Then, M constructs a deterministic version of this machine. This is the
machine Mφ′ .

• If φ′ is of the form A(φ1Uφ2), then M first constructs a nondeterministic
machine which does the following, given v:

It nondeterministically chooses to execute one of the following (nonde-
terministic) programs:
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a) Guess a number 0 ≤ k ≤ Bq(|s|)

Let vcurrent := v
While k > 0 do

Call Mφ1 to check that vcurrent |= φ1
Call Mφ2 to check that vcurrent 6|= φ2
Guess v′, a possible state of s
Check that vcurrent → v′

Let vcurrent := v′

Decrement k by 1
Endwhile
Check that either

vcurrent 6→ and
vcurrent |= φ1 (by calling Mφ1)and
vcurrent 6|= φ2 (by calling Mφ2)

or
vcurrent 6|= φ1 and
vcurrent 6|= φ2

If the machine reaches the last test and it was successful,
the machine returns 0, else it returns 1.

b) Guess a number 0 ≤ k ≤ 2Bq(|s|)

Guess a possible configuration vloop
Let b := 0
Let vcurrent := v
While k > 0 do

If vcurrent = vloop then let b := 1
Call Mφ1 to check that vcurrent |= φ1
Call Mφ2 to check that vcurrent 6|= φ2
Guess v′, a possible state of s
Check that vcurrent → v′

Let vcurrent := v′

Decrement k by 1
Endwhile
Check that vcurrent = vloop and that b = 1

If the machine reaches the last test and it was successful,
the machine returns 0, else it returns 1.

Then, M constructs a deterministic version of this machine. This is the
machine Mφ′ .

Remark. Notice that all nondeterministic machines above always answer
either 1 or 0, as do their deterministic versions. The algorithm for con-
structing the subformula machines is based on the observation that 1) if
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v |= E(φ1Uφ2), then there exists a path v0 → v1 → · · · → vk starting at v
such that (∀0 ≤ i < k. vi |= φ1), vk |= φ2, and 0 ≤ k ≤ Bq(|s|); and 2) if
v 6|= A(φ1Aφ2), then 2a) there exists a path v0 → v1 → · · · → vk starting
at v such that (∀0 ≤ i < k. vi |= φ1 ∧ ¬φ2), 0 ≤ k ≤ Bq(|s|), and either
(vk |= ¬φ1 ∧¬φ2) or (vk 6→ ∧ vk |= φ1 ∧¬φ2); or 2b) there exists paths of the
form v0 → · · · → vk1 and v′0 → · · · → v′k2

such that v0 = v, vk1 = v′0 = v′k2
,

0 ≤ k1, k2 ≤ Bq(|s|), and (∀0 ≤ j ≤ k1. vj |= φ1 ∧ ¬φ2) ∧ (∀0 ≤ j ≤ k2. v
′
j |=

φ1 ∧ ¬φ2).
By an induction argument one can show that the machine Mφ′ indeed com-
putes fφ′ .

– Having constructed all subformula machines, M starts simulating a call of
Mφ given input v. This simulation will use at most polynomial space and
the answer returned by Mφ is 1 if and only if is |= φ. So M solves the model
checking problem.

It remains to argue for the complexity of M. Any states of s can be stored in
polynomial space. MC and Tηs are polynomial bounded space machines. which
can be simulated by M in polynomial space. Properties about (Vs, Es) can be
decided in polynomial space, see the proof of Theorem 9. The subformula ma-
chines can be constructed in polynomial time and each of them use at most
polynomial space. When simulating the subformula machines, M only needs a
stack of depth at most |φ|, where for each waiting subroutine call, M only needs
a polynomial amount of space. We therefore conclude that M solves the model
checking problem for B(X, U) using only polynomial space. ut

4 Example of an Application

In this section we define K-bounded nets and describe how they can be specified
as a class of compact systems.

Definition11. A K-bounded Place/ Transition net, or just a K-bounded net, is
a tuple N = (P, T, F, Minit)K such that

– P and T are finite disjoint nonempty sets; their elements are called places
and transitions, respectively.

– F ⊆ (P × T ) ∪ (T × P ); F is called the flow relation.
– Minit: P → {0, 1, 2 . . . , K} ⊆ IN ; Minit is called the initial marking of N ; in

general, a mapping M : P → {0, 1, 2 . . ., K} ⊆ IN is called a marking of N .
We shall use the notation p ∈ M if M(p) > 0.

Next, we define the behaviour of K-bounded Petri nets.

Definition12. Given a K-bounded net N = (P, T, F, Minit)K .
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– A transition t ∈ T is enabled at a marking M of N if M(p) > 0 for every
place p in •t = {p | (p, t) ∈ F}, the preset of t, and M(p) < K for every
place p in t•\•t, where t• = {p | (t, p) ∈ F}, the postset of t. Henceforth, we
shall assume that there are no isolated elements, i.e. (∀p ∈ P. •p• 6=) and
(∀t ∈ T. •t• 6=).

– Given a transition t, we define a relation t→ between markings as follows:
M

t→ M ′ if t is enabled at M and M ′(s) = M(s) + F (t, s) − F (s, t), where
F (x, y) is 1 if (x, y) ∈ F and 0 otherwise. The transition t is said to occur
(or fire) at M . A marking M is a deadlock , denoted M 6→, if it enables no
transitions.

– If M0
t1→ M1

t2→ · · · tn→ Mn for some markings M0, M1, . . .Mn, then the
sequence σ = t1 . . . tn is called an occurrence sequence from M0. Mn is the
marking reached by σ, and this is denoted M0

σ→ Mn. In general, we use the
notation σ for a finite or infinite sequence of transitions and use the notation
M0

σ→ to indicate that all finite prefixes of σ are occurrence sequences from
M0. Sometimes, the notation M0

σ→ is also used to denote the sequence
M0

t1→ M1
t1→ · · ·.

– An occurrence sequence σ from a marking M0 is maximal if it is either
infinite or it is finite and reaches a deadlock.

– A marking M is reachable from M0 if it is the marking reached by some
occurrence sequence from M0. [M0〉 will denote the set of markings reachable
from M0. [Minit〉 is the set of reachable markings of N .

– The reachability graph of N is the edge-labelled graph, (VN , EN), whose
vertices are the reachable markings of N ; if M

t→ M ′ for a reachable marking
M , then there is an edge from M to M ′ labelled t. Notice that N has at
most (K + 1)|P | markings.

Encoding a K-bounded net can be done along the lines of e.g. [HU79] Chap.
8.3. We choose the following encoding: The string sN encodes (in binary) the
number of places, the number of transitions, the pairs in F , and the initial
marking. Without loss of generality, interpreting the atomic propositions A as
places of K-bounded gives us a valuation η for all nets. η maps a pair consisting of
an atomic proposition a and a place p to 1 if and only if the encoding of a equals
the encoding of p. We therefore only need one Tη for the class of K-bounded
Petri nets. Having one for each N would also be possible.

The machine MC will do the following: First, it checks that the input string
encodes a K-bounded net. Assume that the net described by the input has n
places. Since N is assumed to have no isolated elements, the length of the input
is at least n. Hence, MC may then use n logK tape squares to store a marking
(notice K is fixed for the class of K-bounded nets). So, it starts by storing
the initial marking of the net. It then enters its signal state to signal that the
configuration is a marking of the net. Then, it leaves the signal state, guesses a
transition, and checks if it is enabled. If it is, MC “fires” it by updating the stored
marking accordingly. Having done that MC enters the signal state, signaling that
it has computed a new marking of the net. Then it continues as before; leaving
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the signal state, guessing a new transition to fire et.c. If the guessed transition is
not enabled, MC just halts. Notice that if sN is the encoding of the K-bounded
net N , then the state space of sN is isomorphic to the reachability graph of N
such that isN corresponds to the initial marking of N .

Hence K-bounded Petri nets can be specified as a class of compact systems.

Theorem13. The model checking problems for K-bounded Petri nets and the
logics L(F ), L(X, U, S) , and B(X, U) are PSPACE-complete.

Proof. Sketch: The PSPACE-hardness of the problem follows from the fact that
the logics can express the reachability of a marking M in a 1-safe net [CEP93] (A
1-safe net has the property that it is K-bounded for any K ≥ 1). This can be done
using an obvious formula linear in the size of P : φ ≡ F ((

∧
p∈M p)∧ (

∧
p6∈M ¬p)).

Actually, along the lines in [CEP93] one can prove that for a given 1-safe net
N and a place p of N , the problem of deciding whether or not there exists
a reachable marking M such that p ∈ M (M(p) = 1) is PSPACE-complete.
Since this is expressed by the formula F (p), model checking any reasonable
propositional branching time temporal logic must be PSPACE-hard.

Since L(F ) is a fragment of L(X, U, S) (F (φ) is short for t Uφ), Theorem 9
and Theorem 10 give us the matching PSPACE upper bounds. ut

5 Conclusion

We have provided algorithms which give us an upper bound on the complexity
of the model checking problem for a well known class of basic temporal logics
interpreted over any class of compact systems, i.e. any class of systems satisfy-
ing certain conditions which limits the “succinctness” of their description; their
associated state graphs must at most be exponentially larger than the models
themselves.

Our results gave an upper bound for both L(X, U, S) and CTL. As an appli-
cation of our results, we showed in Sect. 4 that the model checking problems for
L(F), L(X, U, S) , and B(X, U) over K-bounded nets are PSPACE-complete.

For a net N known to be bounded, that is one only knows that there exists
a K such that N is K-bounded, storing any reachable marking would require
exponential space in the worst case. We claim similar lower bounds hold for other
nontrivial classes of compact systems. In general, we cannot give a PSPACE-
hardness lower bound for a class of compact systems; R-structures are a trivial
class of compact systems which doesn’t have this lower bound for e.g. L(F ).

Future research should investigate temporal logics containing and combining
other operators than the ones considered here. Also, the same approach is ap-
plicable if e.g. compact systems are defined such that MC is exponential space
bounded, i.e. the systems s describe a double exponentially large state space.
One would then get EXPSPACE upper bounds.
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