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Abstract

Luby [10] proposed a way to derandomize randomized computations which is based
on the construction of a small probability space whose elements are 3-wise independent.
In this paper we prove some new properties of Luby’s space. More precisely, we analyze
the fourth moment and prove an interesting technical property which helps to under-
stand better Luby’s distribution. As an application, we study the behavior of random
edge cuts in a weighted graph.

Keywords: Fourth moment, full independence, k-wise independence, derandomization.
∗This work was partially supported by the EU ESPRIT Basic Research Action No. 7141 (ALCOM II),

by the Greek Ministry of Education and by NSF grant CDA-9211155. Part of this work has been done while
the first author was with the Max-Planck-Institut für Informatik, Saarbrücken.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1



1 Introduction

During the last years there is a growing interest in techniques for removing randomness

from parallel (and sequential) algorithms. These techniques were originated by [7, 8] and

generalized in [1, 2, 4, 6, 9, 10, 11]. The approach usually followed can be summarized as

follows: The random variables which are considered are defined over a smaller probability

space, specially designed, containing only a polynomial number of sample points. In that

space, the random variables are only k-wise independent (for constant k) but this is usually

enough to replace the analysis of the randomized algorithm with fully independent random

variables.

In most cases, only 3-wise (or 2-wise) independence is enough. However, in some

instances, this is not sufficient [3]. The algorithms described in that paper can be deran-

domized successfully only because of the 4–wise independence property. In particular, an

explicit example is given where Luby’s distribution [10], which is 3–wise but not 4–wise

independent, cannot be used for the derandomization. But perhaps, it can be hoped that

by relating the fourth moments under Luby’s distribution and the fully independent distri-

bution, one can use Luby’s distribution in some other cases. This, so called fourth moment

issue [2, 3], is very interesting technically because it might indicate the dividing barrier

between the two probability spaces, namely k-wise and complete independence.

In this paper, we prove some new properties of Luby’s probability space, as defined

in [10]. More precisely, we examine the fourth moment of this space. We compute the

joint probability that four random variables takes particular values, and compare it to the

corresponding joint probability under the fully independent distribution. The proof of the

result is interesting in its own right and may lead to a general methodology of proving

such results. We also relate precisely, the fourth moments under the two distributions. As

an application, we study the behavior of random edge cuts in a weighted graph. Based

on Luby’s probability space, it is easy to construct a linear sized space of edge cuts. We

then prove that this smaller space has bigger variance compared with the variance in the

fully independent space of all possible edge cuts taken equiprobably (which is exponential in

size). Thus, the smaller space can be a good predictor of extreme values of random variables

defined on the larger space, possibly leading to NC algorithms for better approximations

to the maximum edge cut problem.

The paper is organized as follows. In section 2 we present the new properties of Luby’s
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distribution and the fourth moment bound. In Section 3 we discuss the applications of

these properties in the computation of edge cuts in weighted graphs.

2 Properties of Luby’s Sample Space

Luby in [10], considers random variables X1, . . . , Xn, for a positive integer n, defined on the

sample space (Ω, Pr), where Ω = GF (2)k+1 = {0, 1}k+1, k = dlog ne and Pr the equiprob-

able measure, i.e., for each point ω ∈ Ω we have Pr(ω) = 2−(k+1). Let i ∈ {0, 1}k de-

note the binary representation 〈i1, . . . , ik〉 of the integer i for 1 ≤ i ≤ n. At a point

ω = 〈ω1, . . . , ωk+1〉, the random variable Xi, for 1 ≤ i ≤ n, takes the values given by the

formula:

Xi(ω) = i · ω + ωk+1 (1)

where the notation i · ω denotes i1ω1 + · · ·+ ikωk. (Note that in this section, all operations

are under GF (2). Also, the reader is assumed to be familiar with basic linear algebra

terminology and results; see e.g. [12]).

An alternate but equivalent description is as follows: Let L be an n × (k + 1) matrix

over GF (2), whose ith row is [i, 1] = [i1, . . . , ik, 1], for 1 ≤ i ≤ n. Then at the point ω ∈ Ω

(where now ω = [ω1, . . . , ωk+1]T ), the random variables take the values given by the vector

L · ω. We call the values taken by the random variables at a point ω, their labels at ω.

We call a set of integers dependent if their binary representations are dependent as vec-

tors over GF (2), and independent otherwise. The matrix L has some interesting properties

which we give in the following (easy) proposition.

Proposition 1 (i) Any three rows of L are linearly independent. (ii) Any four rows of L

are linearly independent unless they correspond to dependent integers, that is, to integers

such that the binary representation of any one of them is the sum of the binary representa-

tions of the other three.

Proof: First note that no row is 0 on account of the last column. Hence, the only way for

two rows to be linearly dependent is if their sum is 0. However, this is impossible as the

binary representation of two distinct integers have a position where they differ. Thus any

two rows are linearly independent. This in turn implies that the only way for any three

rows to be dependent is if their sum is 0, which is impossible since the last column in such

a sum is necessarily non-zero. Hence any three rows are linearly independent. From the
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independence of any three rows, it follows that the only way that any four rows can be

dependent is if their sum is zero. This happens iff they correspond to integers with the

stated property.

These properties of L imply the following properties of the distribution of the random

variables Xi, i = 1, 2, . . . , n, defined above. (Remark: The first three are well-known; we

add the last, interesting property.)

Lemma 2 Let i, j, l, m be distinct integers between 1 and n (so necessarily n ≥ 4 below)

and bi, bj, bl, bm be an arbitrary bit pattern. Then, the following hold in Luby’s distribution:

1. Pr[Xi = bi] = 1/2.

2. Pr[Xi = bi ∧ Xj = bj] = 1/4.

3. Pr[Xi = bi ∧ Xj = bj ∧ Xl = bl] = 1/8.

4. Pr[Xi = bi∧Xj = bj∧Xl = bl∧Xm = bm] =


1/16 if i + j + l 6= m
1/8 if i + j + l = m and bi + bj + bl = bm

0 otherwise

Proof: Since the proofs of (1)-(3) are similar, we shall prove the strongest one (3). Take

the sub-system of L ·ω = b corresponding to the rows i, j, l, to get L′ ·ω = [bi, bj, bl]T . Take

further a full rank square sub-matrix of L′ to form the square system L′′ · [ωi′ , ωj′ , ωl′]T =

[bi, bj, bl]T . Since the coefficient matrix is non-singular, this has a unique solution. Fixing

these three co-ordinates of ω as per the unique solution, and the rest to zeroes gives one

point ω∗ ∈ Ω giving Xi, Xj, Xl, the respective labels bi, bj, bl.

Let C be a 3 × n matrix (over GF (2)) with rows corresponding to i′, j ′, l′ such that

each row has all zeroes except for the position given by the corresponding integer where

it is 1. Note that C has full rank. Now, ω gives the same labels as ω∗ to Xi, Xj, Xl iff

CL(ω − ω∗) = 0 i.e. iff ω − ω∗ ∈ KerCL. Since dim(Ω) = dim(KerCL) + dim(CL) (see

e.g. [12], Theorem 6.8) and dim(CL) = rank(CL) = 3, it follows that dim(KerCL) =

(k + 1) − 3 = k − 2. Hence |KerCL| = 2k−2 and consequently the probability in question

is 2k−2/2k+1 = 1/8.

Turning now to the final property (4), we have that if i + j + l 6= m, then the rows

corresponding to these integers are independent, and the proof as above gives the stated

probability. Otherwise, if i + j + l = m, then the label of Xm is determined by those of

Xi, Xj and Xl via
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Xm(ω) = m · ω + ωk+1

= (i + j + l) · ω + ωk+1

= i · ω + ωk+1 + j · ω + ωk+1 + l · ω + ωk+1

= Xi(ω) + Xj(ω) + Xl(ω)

Hence if bi + bj + bl 6= bm, there are no points of Ω corresponding to these labels and the

probability is zero. Otherwise, the probability is the same as that of the event that the

three random variables take on a fixed label pattern which is computed in (3).

One can compare Luby’s distribution to the fully independent distribution where each

Xi is equiprobably 0 or 1 independently. For this, we shall make use of the following

notation.

Notation 1 We shall denote the statistics of Luby’s distribution with operators subscripted

by L, for example, EL, σ2
L and those of the fully independent distribution by the subscript

I, for example, EI, σ
2
I . If no subscripts appear, then the result holds for both distributions.

The following lemma relates the moments between the two distributions.

Lemma 3 Let X = X1 + · · · + Xn. We have that EI [Xa] = EL[Xa] for 1 ≤ a ≤ 3 and

EL[X4] = EI [X4] +
1
64

(
n

3

)
Proof: The statements of the third and lower moments follow from the 3-wise independence

of Luby’s distribution (Lemma 2). For the fourth moment, we observe by expanding that

the only difference will come from terms of the form EL[XiXjXlXm] for distinct i, j, l, m.

In turn, this equals the probability computed in Lemma 2 above, applied to the bit pattern

consisting of all ones. For integers i, j, l, m which are independent, this is the same as

that for the fully independent distribution. For integers i, j, l, m which are dependent, this

exceeds the probability of the fully independent distribution by 1/16. The result now follows

from the fact that there are a total of
(n

3
)
/4 such dependent tuples of integers.

3 Computing Edge Cuts in a Weighted Graph

Let G = (V, E) be a graph with weights We > 0 for each e ∈ E. Let also (V1, V2) be a

partition of V into two disjoint sets V1 and V2. Then a cut C in G is the set of edges with

5



one endpoint in V1 and the other in V2. The weight W (C) of the cut C, is the sum of the

weights of all edges in C. The problem of asking whether there is cut in a graph G with

weight at least K (K > 0) is known as the max-cut problem and is also known that it is an

NP -complete problem [5].

Consider the application of Luby’s distribution to compute a random cut C in a graph

G defined as above. Each vertex v ∈ V picks a label Xv ∈ {0, 1} and an edge is in C iff

its endpoints have different labels. For any given edge, the probability that it is in C is

1/2 if the labels are picked either uniformly and independently from {0, 1}, or using Luby’s

scheme. The latter part of the above statement holds because of the 2-wise independence

of Luby’s distribution.

For two distinct edges, the probability that they are both in the cut under the fully

independent distribution, is 1/4. The next proposition computes this probability under

Luby’s distribution.

Proposition 4 Let e, e′ be fixed edges of G. The following hold: (i) If e and e′ share a

vertex, then PrL[e ∈ C ∧ e′ ∈ C] = 1/4. (ii) If e and e′ are disjoint, but their endpoints

correspond to independent integers, then PrL[e ∈ C ∧ e′ ∈ C] = 1/4. (iii) If e and e′ are

disjoint, but their endpoints are dependent integers, then PrL[e ∈ C ∧ e′ ∈ C] = 1/2.

Proof: Follows easily from the probabilities computed in Lemma 2.

Let C be the random variable denoting the weight of the cut C. Then, we have (using

the Iversonian APL notation [P ] which denotes 1 if the boolean property P is true and 0

otherwise),

C =
∑

e=(u,v)

[Xu 6= Xv]We

=
∑

e=(u,v)

(Xu + Xv − 2XuXv)We

=
∑
e

YeWe (2)

(since Xu, Xv are 0 − 1 valued). Here we denote, for e = (u, v), Ye := Xu + Xv − 2XuXv.

Hence,

E[C] = E

[∑
e

YeWe

]
=

∑
e=(u,v)

E[(Xu + Xv − 2XuXv)We]
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=
∑

e=(u,v)

(E[Xu] + E[Xv] − 2E[XuXv])We

=
∑

e=(u,v)

(E[Xu] + E[Xv] − 2E[Xu]E[Xv])We

= 1/2
∑

e=(u,v)

We. (3)

(In the third line, for Luby’s distribution, we use the 2–wise independence property.)

Next we compute the second moment. From (2), we have,

C2 =
∑
e

YeWe ·
∑
e′

Ye′We′

=
∑
e,e′

YeYe′WeWe′

=
∑

e∩e′=∅
YeYe′WeWe′ +

∑
e∩e′ 6=∅

YeYe′WeWe′

=
∑

e=(u,v)
e′=(w,z)

(Xu + Xv − 2XuXv)(Xw + Xz − 2XwXz)WeWe′

+
∑

e=(u,v)
e′=(u,w)

(Xu + Xv − 2XuXv)(Xu + Xw − 2XuXw)WeWe′

=
∑

e=(u,v)
e′=(w,z)

WeWe′

 ∑
a=u,v

∑
b=w,z

XaXb − 2
∑

a 6=b6=c6=a

XaXbXc + 4XuXvXwXz


+

∑
e=(u,v)
e′=(u,w)

WeWe′(Xu + XvXw − XuXw − XuXv).

Hence it follows that

E[C2] =
∑

e=(u,v)
e′=(w,z)

4WeWe′E[XuXvXwXz] + 1/4
∑

e∩e′ 6=∅
WeW

′
e. (4)

Here we use for Luby’s distribution, the 3–wise independence property and the probabilities

computed in Lemma 2.

For the fully independent distribution, we immediately have that for distinct u, v, w, z,

EI [XuXvXwXz] = 1/16. Thus we conclude from (4) that

EI [C2] = 1/4
∑

e∩e′=∅
WeWe′ + 1/4

∑
e∩e′ 6=∅

WeWe′ . (5)

For Luby’s distribution, we use the probabilities computed in Lemma 2 to get:

EL[XuXvXwXz] =
{

1/16 if u, v, w, z are all distinct and independent;
1/8 otherwise.
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Hence, using (4),

EL[C2] = 1/4
∑

e∩e′=∅
¬D(e,e′)

WeWe′ + 1/2
∑

D(e,e′)

WeWe′ + 1/4
∑

e∩e′ 6=∅
WeWe′ (6)

where we use D(e, e′) to denote that the end–points of e, e′ are disjoint dependent integers.

Comparing (5) and (6), we get:

EL[C2] = EI[C2] + 1/4
∑

D(e,e′)

WeWe′ .

Since by (3) EI [C] = EL[C], we conclude:

Theorem 5 The variance under Luby’s distribution and the variance under the fully in-

dependent distribution are related as follows:

σ2
L[C] = σ2

I [C] + 1/4
∑

D(e,e′)

WeW
′
e

where D(e, e′) denotes that e, e′ have disjoint endpoints which are dependent integers.

Thus the variance under Luby’s distribution is at least as big as the variance under

the fully independent distribution. Potentially, this can be used to get a better predictor

of extreme values as implied by the following observation:

Observation 6 Given a weighted graph G, we can compute in NC a cut with weight either

at most 1/2
∑

e We − α or at least 1/2
∑

e We + α where

α2 := σ2
I (C) + 1/4

∑
D(e,e′)

WeW
′
e.

To see that such a cut exists, use the variance under Luby’s distribution. Further since

Luby’s sample space has only linear size, we can exhaustively search it for the “good” point

in NC.

Remark: Under Luby’s distribution, the random variable X = X1 + X2 + · · · + Xn is

symmetrically distributed around its mean E[X ] = n/2. To see this, consider for each

point ω = 〈ω1, . . . , ωk, ωk+1〉 the point ω′ := 〈ω1, . . . , ωk, 1 − ωk+1〉 and compute:

X(ω′) =
n∑

i=1

Xi(ω′) =
n∑

i=1

(1 − Xi(ω)) = n − X(ω)
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Thus for each point ω such that X(ω) = n/2 − α, there corresponds the unique point ω′

such that X(ω′) = n/2 + α. Hence for each α, Pr[X = n/2 − α] = Pr[X = n/2 + α].

Unfortunately, this property no longer holds for the variable C we are interested in. We

suspect (but cannot prove) that nevertheless, the distribution of C is “shifted upwards” in

the sense that if Pr[C = E[C] − α] > 0, then also Pr[C = E[C] + α] > 0 for any α > 0.

This would give us a predictor of an extreme value for max–cut.

4 Conclusion

We presented here some new properties of Luby’s probability space [10]. In particular, we

analyzed the fourth moment and gave an application to the behavior of random edge cuts in

a weighted graph. It would be very interesting if the new properties of Luby’s distribution

presented in this paper can find other applications too.
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