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Fast Meldable Priority Queues

Gerth Stølting Brodal∗

BRICS†

Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Århus C, Denmark

15th February 1995

Abstract

We present priority queues that support the operations MakeQueue,

FindMin, Insert and Meld in worst case time O(1) and Delete and
DeleteMin in worst case time O(logn). They can be implemented on the
pointer machine and require linear space. The time bounds are optimal for
all implementations where Meld takes worst case time o(n).

To our knowledge this is the first priority queue implementation that
supports Meld in worst case constant time and DeleteMin in logarithmic
time.

∗This work was partially supported by the ESPRIT II Basic Research Actions Program of the
EC under contract no. 7141 (project ALCOM II) and by the Danish Natural Science Research
Council (Grant No. 9400044).
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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Introduction

We consider the problem of implementing meldable priority queues. The
operations that should be supported are:

MakeQueue Creates a new empty priority queue.
FindMin(Q) Returns the minimum element contained in prior-

ity queue Q.
Insert(Q, e) Inserts element e into priority queue Q.
Meld(Q1, Q2) Melds the priority queues Q1 and Q2 to one prior-

ity queue and returns the new priority queue.
DeleteMin(Q) Deletes the minimum element of Q and returns the

element.
Delete(Q, e) Deletes element e from priority queue Q provided

that it is known where e is stored in Q (prior-
ity queues do not support the searching for an
element).

The implementation of priority queues is a classical problem in data struc-
tures. A few references are [13, 12, 8, 7, 5, 6, 10].

In the amortised sense, [11], the best performance is achieved by bino-
mial heaps [12]. They support Delete and DeleteMin in amortised
time O(log n) and all other operations in amortised constant time. If we
want to perform Insert in worst case constant time two efficient data
structures exist. The implicit priority queues of Carlsson and Munro [2]
and the relaxed heaps of Driscoll et al. [5], but neither of these support
Meld efficiently. However they do support MakeQueue, FindMin and
Insert in worst case constant time and Delete and DeleteMin in
worst case time O(log n).

Our implementation beats the above by supporting MakeQueue, Find-

Min, Insert and Meld in worst case time O(1) and Delete and Delete-

Min in worst case time O(log n). The computational model is the pointer
machine and the space requirement is linear in the number of elements
contained in the priority queues.

We assume that the priority queues contain elements from a totally or-
dered universe. The only allowed operation on the elements is the com-
parisons of two elements. We assume that comparisons can be performed
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in worst case constant time. For simplicity we assume that all priority
queues are nonempty. For a given operation we let n denote the size of
the priority queue of maximum size involved in the operation.

In Sect. 1 we describe the data structure and in Sect. 2 we show how to
implement the operations. In Sect. 3 we show that our construction is
optimal. Section 4 contains some final remarks.

1 The Data Structure

Our basic representation of a priority queue is a heap ordered tree where
each node contains one element. This is slightly different from binomial
heaps [12] and Fibonacci heaps [8] where the representation is a forest of
heap ordered trees.

With each node we associate a rank and we partition the sons of a node
into two types, type i and type ii. The heap ordered tree must satisfy
the following structural constraints.

a) A node has at most one son of type i. This son may be of arbitrary
rank.

b) The sons of type ii of a node of rank r have all rank less than r.

c) For a fixed node or rank r, let ni denote the number of sons of type
ii that have rank i. We maintain the regularity constraint that

i) ∀i : (0 ≤ i < r ⇒ 1 ≤ ni ≤ 3),
ii) ∀i, j : (i < j ∧ ni = nj = 3 ⇒ ∃k : i < k < j ∧ nk = 1),

iii) ∀i : (ni = 3 ⇒ ∃k : k < i ∧ nk = 1).

d) The root has rank zero.

The heap order implies that the minimum element is at the root. Prop-
erties a), b) and c) bound the degree of a node by three times the rank of
the node plus one. The size of the subtree rooted at a node is controlled
by property c). Lemma 1 shows that the size is at least exponential in
the rank. The last two properties are essential to achieve Meld in worst
case constant time. The regularity constraint c) is a variation of the regu-
larity constraint that Guibas et al. [9] used in their construction of finger
search trees. The idea is that between two ranks where three sons have
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equal rank there is a rank of which there only is one son. Figure 1 shows
a heap ordered tree that satisfies the requirements a) to d) (the elements
contained in the tree are omitted).
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Figure 1: A heap ordered tree satisfying the properties a) to d). A box
denotes a son of type i, a circle denotes a son of type ii, and the numbers
are the ranks of the nodes.

Lemma 1 Any subtree rooted at a node of rank r has size ≥ 2r.

Proof: The proof is a simple induction in the structure of the tree. By
c.i) leaves have rank zero and the lemma is true. For a node of rank r
property c.i) implies that the node has at least one son of each rank less
than r. By induction we get that the size is at least 1 +∑r−1

i=0 2i = 2r. 2

Corollary 1 The only son of the root of a tree containing n elements
has rank at most blog(n − 1)c.

We now describe the details of how to represent a heap ordered tree. A
son of type i is always the rightmost son. The sons of type ii appear
in increasing rank order from right to left. See Fig. 1 and Fig. 2 for
examples.

A node consists of the following seven fields: 1) the element associated
with the node, 2) the rank of the node, 3) the type of the node, 4) a
pointer to the father node, 5) a pointer to the leftmost son and 6) a
pointer to the next sibling to the left. The next sibling pointer of the
leftmost son points to the rightmost son in the list. This enables the
access to the rightmost son of a node in constant time too. Field 7) is
used to maintain a single linked list of triples of sons of type ii that have
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Figure 2: The arrangement of the sons of a node.

equal rank (see Fig. 2). The nodes appear in increasing rank order. We
only maintain these pointers for the rightmost son and for the rightmost
son in a triple of sons of equal rank. Figure 2 shows an example of how
the sons of a node are arranged.

In the next section we describe how to implement the operations. There
are two essential transformations. The first transformation is to add a
son of rank r to a node of rank r. Because we have a pointer to the
leftmost son of a node (that has rank r − 1 when r > 0) this can be done
in constant time. Notice that this transformation cannot create three
sons of equal rank. The second transformation is to find the smallest
rank i where three sons have equal rank. Two of the sons are replaced
by a son of rank i + 1. Because we maintain a single linked list of triples
of nodes of equal rank we can also do this in constant time.

2 Operations

In this section we describe how to implement the different operations.
The basic operation we use is to link two nodes of equal rank r. This
is done by comparing the elements associated with the two nodes and
making the node with the largest element a son of the other node. By
increasing the rank of the node with the smallest element to r + 1 the
properties a) to d) are satisfied. The operation is illustrated in Fig. 3.
This is similar to the linking of trees in binomial heaps and Fibonacci
heaps [12, 8].

We now describe how to implement the operations.

• MakeQueue is trivial. We just return the null pointer.

• FindMin(Q) returns the element located at the root of the tree
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Figure 3: The linking of two nodes of equal rank.

representing Q.

• Insert(Q, e) is equal to Meld Q with a priority queue only con-
sisting of a rank zero node containing e.

• Meld(Q1, Q2) can be implemented in two steps. In the first we
insert one of the heap ordered trees into the other heap ordered
tree. This can violate property c) at one node because the node gets
one additional son of rank zero. In the second step we reestablish
property c) at the node. Figure 4 shows an example of the first
step.

h h h

h
�
�
�� C
C
CC �

�
�� C
C
CC bb

b�
�
�� C
C
CC

�
�
�� C
C
CC

T1 T2

e′
2

e2

e′
1

e1

>
e2

T1

e1

T2

e′
2

e′
1

Figure 4: The first step of a Meld operation (the case e1 ≤ e2 < e′
1 ≤ e′

2).

Let e1 and e2 denote the roots of the trees representing Q1 and Q2

and let e′
1 and e′

2 denote the only sons of e1 and e2. Assume w.l.o.g.
that e1 is the smallest element. If e2 ≥ e′

1 we let e2 become a rank
zero son of e′

1, otherwise e2 < e′
1. If e′

2 < e′
1 we can interchange the

subtrees rooted at e′
2 and e′

1, so w.l.o.g. we assume e1 ≤ e2 < e′
1 ≤ e′

2.
In this case we make e2 a rank zero son of e′

1 and swap the elements
e′

1 and e2 (see Fig. 4). We have assumed that the sizes of Q1 and
Q2 are at least two, but the other cases are just simplified cases of
the general case.
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The only invariants that can be violated now are the invariants
b) and c) at the son of the root because it has got one additional
rank zero son. Let v denote the son of the root. If v had rank
zero we can satisfy the invariants by setting the rank of v to one.
Otherwise only c) can be violated at v. Let ni denote the number
of sons of v that have rank i. By linking two nodes of rank i where
i is the smallest rank where ni = 3 it is easy to verify that c) can be
reestablished. The linking reduces ni by two and increments ni+1

by one.

If we let (nr−1, . . . , n0) be a string in {1, 2, 3}∗ the following table
shows that c) is reestablished after the above described transforma-
tions. We let x denote a string in {1, 2, 3}∗ and yi strings in {1, 2}∗.
The table shows all the possible cases. Recall that c) states that
between every two ni = 3 there is at least one ni = 1. The different
cases are also considered in [9].

y11 > y12
y213y11 > y221y12
y223y11 > y231y12

x3y213y11 > x3y221y12
x3y31y223y11 > x3y31y231y12

y112 > y121
y122 > y131

x3y112 > x3y121
x3y21y122 > x3y21y131

After the linking only b) can be violated at v because a son of rank
r has been created. This problem can be solved by increasing the
rank of v by one.

Because of the given representation Meld can be performed in
worst case time O(1).

• DeleteMin(Q) removes the root e1 of the tree representing Q.
The problem is that now property d) can be violated because the
new root e2 can have arbitrary rank. This problem is solved by the
following transformations.

First we remove the root e2. This element later on becomes the
new root of rank zero. At most O(log n) trees can be created by
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removing the root. Among these trees the root that contains the
minimum element e3 is found and removed. This again creates at
most O(log n) trees. We now find the root (e4) of maximum rank
among all the trees and replaces it by the element e3. A rank zero
node containing e4 is created.
The tree of maximum rank and with root e3 is made the only son of
e2. All other trees are made sons of the node containing e3. Notice
that all the new sons of e3 have rank less than the rank of e3. By
iterated linking of sons of equal rank where there are three sons
with equal rank, we can guarantee that ni ∈ {1, 2} for all i less
than the rank of e3. Possibly, we have to increase the rank of e3.

Finally, we return the element e1.
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Figure 5: The implementation of DeleteMin.

Because the number of trees is at most O(log n) DeleteMin can
be performed in worst case time O(log n). Figure 5 illustrates how
DeleteMin is performed.

• Delete(Q, e) can be implemented similar to DeleteMin. If e

is the root we just perform DeleteMin. Otherwise we start by
bubbling e upwards in the tree. We replace e with its father until
the father of e has rank less than or equal to the rank of e. Now, e
is the arbitrarily ranked son of its father. This allows us to replace
e with an arbitrary ranked node, provided that the heap order is
still satisfied. Because the rank of e increases for each bubble step,
and the rank of a node is bounded by blog(n − 1)c, this can be
performed in time O(log n).

We can now replace e with the meld of the sons of e as described in
the implementation of DeleteMin. This again can be performed
in worst case time O(log n).
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To summarise, we have the theorem:

Theorem 1 There exists an implementation of priority queues that sup-
ports MakeQueue, FindMin, Insert and Meld in worst case time
O(1) and DeleteMin and Delete in worst case time O(log n). The im-
plementation requires linear space and can be implemented on the pointer
machine.

3 Optimality

The following theorem shows that if Meld is required to be nontrivial,
i.e. to take worst case sublinear time, then DeleteMin must take worst
case logarithmic time. This shows that the construction described in
the previous sections is optimal among all implementations where Meld

takes sublinear time.

If Meld is allowed to take linear time it is possible to support Delete-

Min in worst case constant time by using the finger search trees of Dietz
and Raman [3]. By using their data structure MakeQueue, FindMin,
DeleteMin, Delete can be supported in worst case time O(1), Insert

in worst case time O(log n) and Meld in worst case time O(n).

Theorem 2 If Meld can be performed in worst case time o(n) then
DeleteMin cannot be performed in worst case time o(log n).

Proof: The proof is by contradiction. Assume Meld takes worst case
time o(n) and DeleteMin takes worst cast time o(log n). We show that
this implies a contradiction with the Ω(n log n) lower bound on compar-
ison based sorting.

Assume we have n elements that we want to sort. Assume w.l.o.g. that n
is a power of 2, n = 2k. We can sort the elements by the following list of
priority queue operations. First, create n priority queues each containing
one of the n elements (each creation takes worst case time O(1)). Then
join the n priority queues to one priority queue by n−1 Meld operations.
The Meld operations are done bottom-up by always melding two priority
queues of smallest size. Finally, perform n DeleteMin operations. The
elements are now sorted.
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The total time for this sequence of operations is:

nTMakeQueue +
k−1∑
i=0

2k−1−iTMeld(2i) +
n∑

i=1
TDeleteMin(i) = o(n log n).

This contradicts the lower bound on comparison based sorting. 2

4 Conclusion

We have presented an implementation of meldable priority queues where
Meld takes worst case time O(1) and DeleteMin worst case time
O(log n).

Another interesting operation to consider is DecreaseKey. Our data
structure supports DecreaseKey in worst case time O(log n), because
DecreaseKey can be implemented in terms of a Delete operation fol-
lowed by an Insert operation. Relaxed heaps [5] support DecreaseKey

in worst case time O(1) but do not support Meld. But it is easy to see
that relaxed heaps can be extended to support Meld in worst case time
O(log n). The problem to consider is if it is possible to support both
DecreaseKey and Meld simultaneously in worst case constant time.

As a simple consequence of our construction we get a new implementa-
tion of meldable double ended priority queues, which is a data type that
allows both FindMin/FindMax and DeleteMin/DeleteMax [1, 4].
For each queue we just have to maintain two heap ordered trees as de-
scribed in section 1. One tree ordered with respect to minimum and the
other with respect to maximum. If we let both trees contain all elements
and the elements know their positions in both trees we get the following
corollary.

Corollary 2 An implementation of meldable double ended priority queues
exists that supports MakeQueue, FindMin, FindMax, Insert and
Meld in worst case time O(1) and DeleteMin, DeleteMax, Delete,
DecreaseKey and IncreaseKey in worst case time O(log n).
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