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An Optimal O(log log n) Time Parallel Algorithm for
Detecting all Squares in a String∗

Alberto Apostolico† Dany Breslauer‡

Abstract

An optimal O(log logn) time concurrent-read concurrent-write paral-
lel algorithm for detecting all squares in a string is presented. A tight
lower bound shows that over general alphabets this is the fastest possible
optimal algorithm. When p processors are available the bounds become
Θ(dn logn

p e + log logd1+p/ne 2p). The algorithm uses an optimal parallel
string-matching algorithm together with periodicity properties to locate
the squares within the input string.

1 Introduction

A nonempty string of the form xx is called a repetition. Some strings, such
as an = aaa · · ·aa, contain Ω(n2) repetitions since they have Ω(n) repetitions
starting at most positions. A square is defined as a repetition xx where x is
primitive1. Strings that do not contain any repetition are called repetition-
free or square-free. For example, ‘aa’, ‘abab’ and ‘baba’ are squares which are
contained in the string ‘baababa’.

It is trivial to show that any string whose length is larger than three over
alphabets of two symbols contains a square. However, there exist strings of
infinite length on three letter alphabets that are square-free, as shown by Thue
[29, 30] at the beginning of the century. Since then, numerous works have been
∗The results presented in this paper were were first reported at the 19th International

Colloquium on Automata, Languages and Programming [3].
†Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

and Dipartimento di Elettronica e Informatica, Università di Padova, Padova, Italy. Partially
supported by NSF Grants CCR-89-00305 and CCR-92-01078, by NATO Grant CRG 900293,
by the National Research Council of Italy, and by the ESPRIT III Basic Research Programme
of the EC under contract No. 9072 (Project GEPPCOM).
‡BRICS – Basic Research in Computer Science, Centre of the Danish National Research

Foundation, Department of Computer Science, University of Aarhus, DK-8000 Aarhus C,
Denmark. Partially supported by ESPRIT Basic Research Action Program of the EC under
contract #7141 (ALCOM II). Parts of the research reported in this paper were carried out
while the author was supported by the IBM Graduate Fellowship while studying at Columbia
University, New York, NY, while visiting at the Istituto di Elaborazione dell’Informazione,
Consiglio Nazionale delle Ricerche, Pisa, Italy, with the support of the European Research
Consortium for Informatics and Mathematics postdoctoral fellowship, and while visiting at
the Università de L’Aquila, L’Aquila, Italy.

1A string x is primitive if x = uk for some integer k implies that k = 1 and x = u.
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published on the subject and repetitions in strings have been found relevant to
several fields, including coding theory, formal language theory, data compression
and combinatorics [1, 6, 7, 14, 15, 22, 23, 28].

The alphabet that the input symbols are chosen from has an important role
in the design of efficient string algorithms. The literature distinguishes between
four types of alphabets: constant size alphabets that have a bounded number
of symbols; fixed alphabets where the symbols are assumed to be integers from
a restricted range; ordered alphabets where the alphabet is (arbitrarily) totally
ordered and the only access an algorithm has to the input symbols is by order
comparisons; and general alphabets where the only access an algorithm has to
the input symbols is by equality comparisons.

In the last decade, several sequential algorithms that find all squares in
strings have been published. Algorithms that were discovered by Apostolico and
Preparata [4] and by Crochemore [13, 15] find all squares in a string of length
n over ordered alphabets in O(n logn) time. Rabin [27] gave a randomized
algorithm that takes O(n logn) expected time over constant size alphabets.
Any sequential algorithm that lists all squares in a string of length n must take
at least Ω(n logn) time, since there exist strings, such as the Fibonacci strings
[13], that contain Ω(n logn) distinct squares.

Main and Lorentz [25] discovered an algorithm that finds all squares in
strings over general alphabets in O(n logn) time. They also proved that over
general alphabets Ω(n logn) comparisons are necessary even to decide if a string
is square-free. In another paper, Main and Lorentz [26] show that the problem
of deciding whether a string is square-free can be solved in O(n) time over
constant size alphabets. Crochemore [15] also gave a linear time algorithm for
the latter problem.

In parallel, algorithms by Crochemore and Rytter [16, 17] test if strings over
ordered alphabets are square-free in O(logn) time using n processors. These
algorithms use O(n1+ε) space. Apostolico [2] designed an algorithm that tests
if a string is square-free and also detects all squares within the same time
and processor bounds using linear auxiliary space. Apostolico’s algorithm [2]
assumes that the alphabet is ordered, a restriction that is not necessary to
solve this problem. Apostolico’s algorithm for testing if a string is square-free
is more efficient over constant size alphabets and achieves the O(logn) time
bound using only n/ logn processors. All these parallel algorithms are designed
for the CRCW-PRAM computation model.

A parallel algorithm is said to be optimal, or to achieve an optimal speedup, if
its time-processor product, which is the total number of operations performed,
is equal to the running time of the fastest sequential algorithm for the same
problem. All the parallel algorithms that are mentioned above achieve an op-
timal speedup. Notice that squares can be trivially detected in constant time
using a polynomial number of processors; our goal is to develop parallel algo-
rithms that are efficient with respect to both time and processor complexities.

In this paper we develop an optimal parallel algorithm that finds all squares
in a string in O(log log n) time. The new algorithm not only improves on the
previous best bound of O(logn) time, but it is also the first efficient parallel
algorithm for this problem over general alphabets. We derive a lower bound that
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shows that over general alphabets this is the fastest possible optimal algorithm
by a reduction to a lower bound that was given by Breslauer and Galil [11] for
the string matching problem. If p processors are available, then the bounds
become Θ(dn log n

p e + log logd1+p/ne 2p).
The paper is organized as follows. Section 2 overviews some known parallel

algorithms and tools that are used by the new algorithm. Section 3 presents a
simple version of the algorithm that tests if a string is square-free and Section
4 develops a more complicated version that finds all the squares. Section 5
is devoted to the lower bound and Section 6 gives tight bounds for any given
number of processors. Concluding remarks are given in Section 7.

2 The CRCW-PRAM model

The algorithms described in this paper are for the concurrent-read concurrent
write parallel random access machine model. We use the weakest version of this
model called the common CRCW-PRAM. In this model, many processors have
access to a shared memory. Concurrent read and write operations are allowed
at all memory locations. If few processors attempt to write simultaneously to
the same memory location, then they all write the same value.

The square detection algorithm uses a string matching algorithm. The input
to the string matching algorithm consists of two strings, pattern[1..m] and
text[1..n], and the output is a Boolean array match[1..n] that has a ‘ true ’
value at each position where an occurrence of the pattern starts in the text.
We use Breslauer and Galil’s [10] parallel string matching algorithm that takes
O(log logn) time using an n/ log log n-processor CRCW-PRAM. This algorithm
is the fastest optimal parallel string matching algorithm on general alphabets
as shown by Breslauer and Galil [11]. If p processors are available, then the
time bounds for the string matching problem are Θ(dn/pe + log logd1+p/ne 2p).

The square detection algorithm also uses an algorithm of Fich, Ragde and
Wigderson [19] to compute the minima of n integers in the range 1, · · · , n, in
constant time using an n-processor CRCW-PRAM. This minima algorithm, for
example, can find the first occurrence of a string in another string: after the
occurrences are computed by the string matching algorithm mentioned above,
look for the smallest i such that match[i] = ‘ true ’.

Finally, we use the following theorem:

Theorem 2.1 (Brent [8]) Any parallel algorithm of time t that consists of a
total of x elementary operations can be implemented on p processors in dx/pe+t
time.

If we get back to the example above, which finds the first occurrence of one
string in an other, we see that the second step of finding the smallest index
of an occurrence takes constant time using n processors, while the use of the
string matching procedure takes O(log log n) time using n/ log log n processors.
By Theorem 2.1 the second step can be slowed down to work in O(log logn)
time using n/ log log n processors.

3



3 Testing if a string is square-free

This section describes an algorithm that tests if a string S[1..n] is square-free.
The algorithm that finds all squares is more involved and is given in the Section
4.

Theorem 3.1 There exists an algorithm that tests if a string S[1..n] over a
general alphabet is square-free in O(log logn) time using n logn/ log log n pro-
cessors.

Proof: The algorithm consists of independent stages which are computed si-
multaneously. In stage number η, 0 ≤ η ≤ dlog2 ne − 1, the algorithm looks
only for repetitions xx, such that 2lη −1 ≤ |x| < 2lη+1 −1 and lη = 2η. If some
repetition is found, then a global variable is set to indicate that the string is not
square-free. Notice that the complete range of possible lengths of x is covered
and if there exist a repetition it will be discovered.

We show how to implement stage number η in Tη = O(log log lη) time
and O(n) operations. Since there are O(logn) stages, the total number of
operations is O(n logn). By Theorem 2.1, the algorithm can be implemented
in maxTη = O(log log n) time using n logn/ log logn processors. 2

3.1 The stages

We describe stage number η, 0 ≤ η ≤ dlog2 ne−1, that looks only for repetitions
xx, such that 2lη − 1 ≤ |x| < 2lη+1 − 1. To simplify the presentation, assume
without loss of generality that the algorithm can access symbols whose indices
are out of the boundaries of the input string. Comparisons to such symbols are
answered as unequal.

Partition the input string S[1..n] into consecutive blocks of length lη. That
is, block number k, for 1 ≤ k < bn/lηc, is S[(k − 1)lη + 1..klη]. Let B =
S[P ..P + lη − 1] be one of these blocks. A repetition xx is said to be hinged on
B if 2lη − 1 ≤ |x| < 2lη+1 − 1 and B is fully contained in the first copy of x.
Stage number η consists of sub-stages which are also computed simultaneously.
There is a sub-stage for each block of length lη. Each sub-stage checks if there
is any repetition which is hinged on the block that it is assigned to.

The sub-stage which is assigned to the block B starts with a call to the string
matching algorithm to find all occurrences of B in S[P + 2lη − 1..P + 5lη − 3].
Let p1 < p2 < · · · < pr be the indices of these occurrences. Then P + 2lη − 1 ≤
pi < P + 4lη − 1, for i = 1, · · · , r. See Figure 1.

Notice that for each repetition xx that is hinged on B there must be an
occurrence of B at position P + |x|. This occurrence is included in the {pi}
sequence.

Lemma 3.2 For each pi, one can test in constant time and O(lη) operations
if there is any repetition xx that is hinged on B, such that |x| = pi − P .

Proof: Let l = pi −P . We are looking for repetitions xx, such that |x| = l. For
all ζ in the range P+lη−1 ≤ ζ ≤ pi check if S[ζ−l] = S[ζ] and if S[ζ] = S[ζ+l].
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P P + 2lη − 1 P + 4lη − 2

B p1

p2
p3

p4

p5

Figure 1: The sub-stage which is assigned to the block B = S[P ..P+lη−1]
finds all occurrences of B that start between positions P + 2lη − 1 and
P + 4lη − 2.

Let ζL be the largest index in this range such that S[P + lη..ζL] = S[P + lη +
l..ζL + l] and ζR be the smallest index such that S[ζR..pi −1] = S[ζR − l..P −1].
One can find ζL and ζR in constant time and O(lη) operations using the integer
minima algorithm of Fich, Ragde and Wigderson [19].

We show that there are repetitions xx that are hinged on B, such that
|x| = l, if and only if ζR ≤ ζL +1. Moreover, these repetitions start at positions
s, for ζR − l ≤ s ≤ ζL − l + 1.

If there is a repetition xx that is hinged on B starting at position s, such
that |x| = l, then S[ζ − l] = S[ζ], for all ζ in the range s + l ≤ ζ < pi, and
S[ζ] = S[ζ + l], for all ζ in the range P + lη ≤ ζ < s+ l. But then, ζL ≥ s+ l−1
and ζR ≤ s + l, and thus ζR − l ≤ s ≤ ζL − l + 1 and ζR ≤ ζL +1. See Figure 2.

P pi

ζL ζR

6=
6=

Figure 2: If ζR > ζL + 1, then there is no repetition xx that is hinged on
the block B, such that |x| = pi − P .

On the other hand, if ζR ≤ ζL + 1, then S[ζR − l..ζL] = S[ζR..ζL + l].
(Recall that there is an occurrence of S[P ..P + lη − 1] at position pi and thus
S[P ..P + lη − 1] = S[pi..pi + lη − 1].) The last equality means that there are
repetitions xx, such that |x| = l, starting at positions s, for ζR−l ≤ s ≤ ζL−l+1.
2

The algorithm can check if any of the pi’s corresponds to a repetition in
constant time using Lemma 3.2, but it would make O(rlη) operations if the
length of the {pi} sequence is r. Luckily, for now, the algorithm has only to

5



test if the string is square-free and it does not have to check if all the pi’s
correspond to repetitions; if r > 2, then S[1..n] must contain a square as the
following lemma shows.

Lemma 3.3 If the length of the {pi} sequences is r > 2, then S[1..n] contains
a repetition. This repetition is shorter than the repetitions that are supposed to
be found in this stage.

Proof: Recall that P + 2lη − 1 ≤ pi < P + 4lη − 1, for i = 1, · · · , r. If r ≥ 3,
then either p2 −p1 ≤ lη or p3 −p2 ≤ lη. But then, there is a repetition xx, such
that |x| = p2 − p1 or |x| = p3 − p2 (respectively), starting at position p1 or p2
(respectively). 2

The computation in each sub-stage of stage η can be summarized as follows:

1. Compute the {pi} sequence.

2. If the {pi} sequence has more than two elements, then by Lemma 3.3, the
string S[1..n] contains a repetition. This repetition will also be found by
some stage number µ, µ < η.

3. If the {pi} sequence has at most two elements, check if these elements
correspond to repetitions using the procedure described in Lemma 3.2.

Lemma 3.4 Stage number η is correct. It takes O(log log lη) time and makes
O(n) operations.

Proof: For correctness we have to show that if the string S[1..n] contains any
repetition xx, such that 2lη − 1 ≤ |x| < 2lη+1 − 1, then some repetition will be
found. Assume that there is such a repetition. Since 2lη − 1 ≤ |x|, there must
be a block of length lη that is completely contained in the first x. The sub-stage
which is assigned to that block will either find the repetition xx or conclude
that there is a shorter repetition by Lemma 3.3. In both cases some repetition
has been found. Notice that some repetitions can be detected by several stages
and sub-stages simultaneously.

Stage number η consists of bn/lηc independent sub-stages. In each sub-
stage, step number 1 takes O(log log lη) time and O(lη) operation using Bres-
lauer and Galil’s string matching algorithm. Steps number 2 and 3 take con-
stant time and make O(lη) operations. Since all the sub-stages are computed
in parallel, stage number η takes O(log log lη) time and makes O(n) operations.
2

4 Detecting all squares

In this section we show how the algorithm that was given in Section 3 can be
generalized to find all squares in a string.

Beame and Hastad [5] proved a lower bound of Ω(logn/ log log n) time for
computing the parity of n input bits on CRCW-PRAMs with any polynomial
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number of processors. This lower bound implies that many “interesting” prob-
lems would require at least that time. However, several string problems, includ-
ing the problem of detecting all squares in a string, have constant time solutions
using polynomial number of processors.

While the problem of testing if a string is square-free has only a single output
bit, the problem of finding all squares has a more complicated output structure.
If we wish to obtain algorithms that get around Beame and Hastad’s lower
bound we can not count the number of squares that are found and therefore
we can not list them contiguously in an array. Instead we will represent the
output of the algorithm in a sparse array with O(n logn) entries. Notice that
this problem did not exist in the previous square detection algorithms since
their time bounds were at least O(logn).

Similar to the testing algorithm, the square detection algorithm proceeds
in independent stages which are computed within the same time and processor
bounds as before. Only now, since the algorithm must find all the squares, the
following difficulties arise.

1. The detection algorithm can not use Lemma 3.3 only to conclude that the
string is not square-free; it must find all the squares.

2. The algorithm has to verify which repetitions are squares. This was not
necessary before since a string is square-free if and only if it is repetition-
free.

3. The squares have to be represented in a sparse array with O(n logn)
entries.

The first two issues will be addressed in Section 4.1 that describes the stages
of the square detection algorithm, while the third issue is discussed next.

The following lemma is used to justify the output representation used by
the algorithm.

Lemma 4.1 (see, e.g., Crochemore and Rytter [18]) If there are three squares
xx, yy and zz, such that |x| < |y| < |z|, that start at the same position of some
string, then |x| + |y| ≤ |z|.

Recall that in stage number η the algorithm looks only for squares xx, such
that 2lη − 1 ≤ |x| < 2lη+1 − 1 and lη = 2η. Therefore, by Lemma 4.1, there are
no more than two squares that start at each position of the input string and
have to be discovered in the same stage. Thus, the output can be represented
in an array that will hold, for each position of the input string and for each
stage, the two squares that might be detected starting at the specific position
in the specific stage. (e.g., let u be primitive and v a non-empty proper prefix
of u. Then the string ukvuk+1vu, k ≥ 1, contains the two prefix squares ukvukv
and ukvuukvu whose lengths differ by 2|u|. If k ≥ 2, then it contains also the
prefix square uu, and if k = 2, then the inequality in Lemma 4.1 is tight. In
the extreme case, by letting u = ‘ab’ and v = ‘a’, one gets arbitrary long pairs
of squares whose lengths differ by 4.)

The complexity bounds of the square detection algorithm are summarized
in the following theorem.
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Theorem 4.2 There exists an algorithm that finds all squares in a string S[1..n]
over a general alphabet in O(log log n) time using n logn/ log logn processors.

4.1 The stages

Consider a single stage. As in Section 3.1, the input string S[1..n] is partitioned
into consecutive blocks of length lη and there is a sub-stage that is assigned to
each such block. To simplify the presentation we allow squares to be discovered
by several sub-stages simultaneously: the sub-stage that is assigned to the block
B discovers all the squares which are hinged on this block. Later, we make sure
that the information about each square is written only once into the output
array by reporting only those squares for which B is the leftmost block fully
contained in the square. Thus, stage number η finds all squares xx, such that
2lη − 1 ≤ |x| < 2lη+1 − 1.

As already noted, each square that is hinged on B ties the block B to a
specific replica. The sub-stage that is assigned to B starts with a call to the
string matching algorithm to find the viable replicas of B. Let p1 < · · · < pr

denote their indices.

Definition 4.3 A string x is a rotation of another string x̂ (and vice versa) if
x = uv and x̂ = vu for some strings u and v.

Definition 4.4 A string S has a period u if S is a prefix of uk for some large
enough k. Alternatively, a string S[1..n] has a period of length π if S[i] =
S[i + π], for i = 1, · · · , n − π. The shortest period of a string S is called the
period of S.

Lemma 4.5 (Lyndon and Schutzenberger [24]) If a string of length m has two
periods of lengths p and q, and p + q ≤ m, then it also has a period of length
gcd(p, q).

The task of the sub-stage is to identify which of the pi’s corresponds to
squares that are hinged on B. In Lemma 3.2 we have shown that it is possible
to verify efficiently that some specific pi corresponds to repetitions xx that are
hinged on B, such that |x| = pi − P . The proof of Lemma 3.2 reveals that
those differences pi − P that pass the repetition-detection test actually expose
an entire sequence of repetitions which are consecutive rotations of the same
repetition. Such a sequence will be called a family of repetitions.

Lemma 4.6 A family of repetitions contains a square if and only if all the
repetitions in the family are squares.

Proof: Let xx be a repetition but not a square. Thus x = zl and l > 1. If x̂ is
a rotation of x, then x̂ = v(uv)j(uv)l−j−1u = (vu)l where z = uv, and thus x̂
is not primitive. 2

The last lemma means that if we wish to certify that repetitions are actually
squares it is enough to certify one repetition in each family. The next lemma
shows how to test efficiently that a given repetition is indeed a square by solving
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a single string matching problem. (The technique for primitive certification
proposed by Apostolico [2] uses information about shorter squares which are
discovered in other stages. We use a different method that keeps the stages in
the algorithm completely independent.)

Lemma 4.7 Given a repetition xx, let l be the index of the first occurrence of
x in xx, other than the trivial occurrence at the beginning of xx. Then, xx is a
square if and only if l = |x|.

Proof: Clearly, l ≤ |x|. If x = zj, then xx = z2j and x occurs at position |z|
of xx. On the other hand, if l < |x|, then xx has periods of lengths l and |x|
and by Lemma 4.5, l divides |x|. But then x = z|x|/l is not primitive. 2

a b c a b c a b c a b c a

P p1 p2

Figure 3: Repetitions must be certified to be squares. In this example,
the repetitions in the family that corresponds to p2 − P are not squares.

Given a replica of B at position pi, we can find the family of repetitions xx,
such that |x| = pi − P , using Lemma 3.2, and then we can certify that these
repetitions are actually squares using Lemma 4.7. See Figure 3.

However, if the length of the {pi} sequence is large, then repeating the
process above for each pi can be costly. Moreover, it is a problem even to find
and to manipulate the {pi} sequence efficiently. The following lemmas will help
to overcome this difficulty.

Lemma 4.8 Assume that the period length of a string W [1..l] is p. If W [1..l]
occurs only at positions p1 < p2 < · · · < pk of a string V and pk − p1 ≤ dl/2e,
then the pi’s form an arithmetic progression with difference p.

Proof: Assume k ≥ 2. We prove that p = pi+1 − pi for i = 1, · · · , k − 1. The
string W has periods of lengths p and q = pi+1 − pi. Since p ≤ q ≤ dl/2e, by
Lemma 4.5 it also has a period of length gcd(p, q). But p is the length of the
shortest period so p = gcd(p, q) and p must divide q. The string V [pi..pi+1+l−1]
has period of length p. If q > p, then there must be another occurrence of W
at position pi + p of V ; a contradiction. 2

Recall that P + 2lη − 1 ≤ pi < P + 4lη − 1. To utilize the last lemma
it is convenient to partition the sequence {pi} and to regard the sub-stage as
consisting of four consecutive phases. Each phase handles viable replicas of
B in a sub-block of size lη/2 (hereafter, a lη/2-block). We describe a generic
phase, involving the occurrences of B at positions q1 < · · · < qk, where {qi} is a
sub-sequence of {pi} that lists all the occurrences that fall within a lη/2-block.
(In the first stages there are fewer phases.)

9



Lemma 4.9 The sequence {qi} of occurrences of B in a lη/2-block is an arith-
metic progression with difference q, where q is the period length of B.

Proof: An immediate consequence of Lemma 4.8. 2

The sequence {qi} can be represented using three integers: the start, the
difference and the sequence length. This representation can be easily computed
from the output of the string matching algorithm (which is a Boolean vector)
using Fich, Ragde and Wigderson’s [19] integer minima algorithm in constant
time using O(lη) operations. This idea has been successfully applied also in
efficient parallel algorithms for other string problems [3, 9, 12].

If the {qi} sequence does not contain any elements, then the phase does not
need to do anything. If there is one element q1, then the algorithm finds the
family of repetitions that are associated with the difference q1 −P and certifies
them to be squares as described above. The next lemmas are used in phases
that have longer {qi} sequences.

Assume that the length of the arithmetic progression {qi} is k ≥ 2 and
let q be the difference of the progression. By Lemmas 4.8 and 4.9, the block
B = S[P ..P+ lη −1] and the sub-string covered by the occurrences of this block
at positions qi, S[q1..qk + lη − 1], have period length q. The algorithm proceeds
by checking how far this periodicity extends on both sides of these sub-strings.

Let αL and αR be the positions where the periodicity of length q terminates
on the left and on the right of B, respectively, and let γL and γR be the positions
where the periodicity of length q terminates on the left and on the right of the
sub-string S[q1..qk + lη − 1], respectively. We are interested in these indices
only if P − (qk − P) + lη ≤ αL, αR < q1 + lη, P ≤ γL and γR < 2qk − P , and
these indices are undefined otherwise. Namely, if all indices are defined, then
S[αL + 1..αR − 1] has period length q, S[αL] 6= S[αL + q], S[αR] 6= S[αR − q],

P − (qk − P) + lη ≤ αL < P and P + lη ≤ αR < q1 + lη,

S[γL +1..γR − 1] has period length q, S[γL] 6= S[γL + q], S[γR] 6= S[γR − q] and

P ≤ γL < q1 and qk + lη ≤ γR < 2qk − P .

It is possible to compute the indices αL, αR, γL and γR, or to decide which
indices are undefined, in constant time and O(lη) operations using Fich, Ragde
and Wigderson’s [19] integer minima algorithm.

The following lemmas classify the possible interactions between αL, αR, γL

and γR and their effect on the squares that are hinged on B.

Lemma 4.10 If one of αR and γL is defined, then so is the other one, and
αR − γL ≤ q.

Proof: By the definition of αR and γL, S[P ..αR − 1] and S[γL + 1..qk + lη − 1]
have period length q, S[αR] 6= S[αR − q] and S[γL] 6= S[γL + q].

If q < αR−γL, then by the periodicity of S[P ..αR−1] and since γL+q < αR,
we get that S[γL] = S[γL + q], in contradiction to the definition of αR and γL.
Therefore, αR − γL ≤ q or at least one of αR and γL is undefined.
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If αR is undefined, then S[P ..q1+lη−1] has period length q and the argument
above shows that γL can not be defined. The proof of the symmetric case is
identical. 2

The following lemma identifies certain repetitions that can never be squares.

Lemma 4.11 If both αR and γL are undefined, then none of the repetitions
possibly hinged on B is a square.

Proof: If αR and γL are undefined, then S[P ..qk + lη − 1] has period length
q. Consider any qi and let l = qi − P . By the periodicity above and since
S[P ..P + lη − 1] = S[qi..qi + lη − 1], we get that S[P ..P + qk − qi + lη − 1] =
S[qi..qk + lη − 1]. Thus, the sub-string S[P ..qk + lη − 1] has a period of length
l. But q ≤ lη/2 < l and by Lemma 4.5, q divides l.

Let xx be a repetition that is hinged on B starting at position s, such that
|x| = l. Then x = S[s..s + l − 1] = S[s + l..P + l − 1]S[P ..s+ l − 1] has period
length q and therefore x is not primitive. 2

c c c b a b a b c c c b a b a b a b c c c b a b

P q1 q2

αL αR γRγL

Figure 4: There can be at most two families of synchronized squares. In
this example, one family corresponds to γL − αL = q1 − P and the other
to γR − αR = q2 − P .

If both αR and γL are defined, then certain repetitions, which are char-
acterized in the next lemma, must align αR with γR and αL with γL. These
repetitions are called synchronized repetitions. See Figure 4.

It is convenient to state the next lemmas in terms of the positions where
the repetitions are centered; a repetition xx that starts at position s is centered
at position s + |x|.

Lemma 4.12 If both αR and γL are defined then:

1. Repetitions that are hinged on B and centered at positions h, such that
h ≤ γL, may exist only if αL is defined. These repetitions constitute a
family of repetitions that corresponds to the difference qi − P , provided
that there exists some qi such that γL − αL = qi − P .

2. Repetitions that are hinged on B and centered at positions h, such that
αR < h, may exist only if γR is defined. These repetitions constitute a
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family of repetitions that corresponds to the difference qj − P , provided
that there exists some qj such that γR − αR = qj − P .

Notice that if αR < γL, then repetitions whose center h satisfies αR < h ≤
γL may exist only if both αL and γR are defined and if γR − αR = γL − αL.

Proof: Let xx = S[h − l..h + l − 1] be a repetition that is hinged on B and
centered at position h, such that |x| = qi − P , and let l = |x|.

Assume P + lη ≤ h ≤ γL. The proof distinguishes between two cases. If
αL is undefined or if αL < γL − l (see Figure 5), then by the periodicity in the
definition of αL and γL, S[γL − l + q] = S[γL + q] and S[γL − l] = S[γL − l + q].
Since there is the repetition xx, also S[γL − l] = S[γL]. Thus S[γL] = S[γL + q]
in contradiction to the fact that S[γL] 6= S[γL + q] by the definition of γL.

Similarly, if αL > γL − l, then by the periodicity in the definition of αL and
γL, S[αL + q] = S[αL + l + q] and S[αL + l] = S[αL + l + q]. Since there is the
repetition xx, also S[αL] = S[αL + l]. Thus, S[αL] = S[αL + q] in contradiction
to the fact that S[αL] 6= S[αL + q] by the definition of αL.

Therefore, such a repetition xx may exist only if αL = γL − l, or in other
words if γL − αL = qi − P for some qi. Since αL, γL and P are given, there is
at most one such qi.

The proof of the second part where αR < h is similar. 2

b a b a b a b a b a b c c c b a b a b a b c c c b a b

P q1 q2

αR γRγL

Figure 5: Illustrating one of the cases in Lemma 4.12: an undefined αL is
incompatible with any repetition hinged on B and centered at a position
h ≤ γL.

As a consequence of the last lemma, there can be at most two repetition
families (in each phase) that have to be verified and certified to be squares.
However, there are squares which might have been missed since Lemma 4.12
did cover all eventualities. If γL < αR, then there might exist repetitions whose
center h satisfies γL < h ≤ αR. These repetitions are called unsynchronized
repetitions. We classify these repetitions next and show that if such repetitions
exist, then they must be squares.

Lemma 4.13 If αR and γL are defined and γL < αR, then there might be a
family of repetitions associated with each of the differences l = qi − P , with
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centers at positions h, such that γL < h ≤ αR. The repetitions in each such
family are all squares, and they are centered at positions h, such that max(αL +
l, γL) < h ≤ min(αR, γR− l). Notice that such a family is not empty if and only
if l < min(αR − αL, γR − γL).

Proof: Consider repetitions S[h− l..h−1] = S[h..h+ l−1] that are associated
with the difference l = qi − P and whose centers h satisfy γL < h ≤ αR. We
show that such repetitions exist if and only if αL + l < h and h ≤ γR − l.
(Ignoring the constraints involving undefined indices.)

If h ≤ αL + l, then S[αL] = S[αL + l]. Since γL < h, we know that
S[αL + l] = S[αL + l + q]. But then, S[αL] = S[αL + q], in contradiction to the
definition of αL. Similarly, it is impossible that γR − l < h.

On the other hand, if max(αL+l, γL) < h ≤ min(αR, γR−l), then S[h−l..h−
1] and S[h..h+l−1] have period length q. Since S[P ..P+lη−1] = S[qi..qi+lη−1]
we get that S[h − l..h − 1] = S[h..h + l − 1]. (The same reasoning holds also if
αL or γR are not defined.)

It remains to show that these repetitions are actually squares. If S[h−l..h−
1] = zj for some j > 1, then S[h − l..h − 1] has periods of length q and |z| and
by Lemma 4.5, q divides |z|. But then, S[h − q..h − 1] = S[h..h + q − 1] and
αR − γL ≥ 2q, in contradiction to Lemma 4.10. 2

The computation in each sub-stage of the square detection algorithm can
be summarized as follows:

1. Compute the {pi} sequence and proceed in four phases.

2. In each phase, find the arithmetic progression {qi}.

3. If the {qi} sequence has a single element q1, then find the repetition family
that corresponds to q1 using Lemma 3.2 and certify that these repetitions
are squares using Lemma 4.7.

4. If the {qi} sequence has at least two elements, then:

(a) Find the synchronized repetition families using Lemma 4.12 and cer-
tify that these repetitions are squares using Lemma 4.7.

(b) Find the unsynchronized squares using Lemma 4.13.

Lemma 4.14 Stage number η is correct. It takes O(log log lη) time and makes
O(n) operations.

Proof: It is clear that if the string S[1..n] contains any square xx, such that
2lη − 1 ≤ |x| < 2lη+1 − 1, then there must be a block B of length lη that is
the leftmost block completely contained in the square. We have seen that the
sub-stage that is assigned to the block B will find xx.

Stage number η consists of bn/lηc independent sub-stages. Each sub-stage
might make at most nine calls to Breslauer and Galil’s string matching algo-
rithm: one to find the {pi} sequence and at most two in each phase to certify
squares using Lemma 4.7. These calls take O(log log lη) time and make O(lη)
operations. The rest of the work in each sub-stage takes constant time and O(lη)
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operations. Since all the sub-stages are computed in parallel, stage number η
takes O(log log lη) time and makes O(n) operations. 2

Remark. Assume that the sequence {qi} has k > 1 elements and difference
q. If αR and γL are defined, then some synchronizing repetitions might have to
be certified to be squares. It easy to check that for the repetitions xx that arise
in this case, if x = zj , then j ≤ ε for some small positive constant ε. Thus, it
is sufficient to verify that x 6= zj, for j = 2, · · · , ε, in order to certify that x is
primitive. This is more efficient than the general square certification method
suggested in Lemma 4.7.

5 The lower bound

We prove a lower bound for testing if a string is square-free by a reduction
to Breslauer and Galil’s [11] lower bound for string matching. Breslauer and
Galil show that an adversary can fool any algorithm which claims to check
if a string has a period that is shorter than half of its length in fewer than
Ω(dn/pe + log logd1+p/ne 2p) rounds with p comparisons in each round. The
lower bound holds for the CRCW-PRAM model in the case of general alphabets
where the only access an algorithm has to the input string is by pairwise symbol
comparisons.

We will not report the details of that lower bound. We only use the fact
that the adversary generates a string S[1..n] that has the following property: If
S[i] = S[j], then S[k] = S[i], for any integer k, such that k ≡ i (mod |j − i|)
and 1 ≤ k ≤ n.

Lemma 5.1 The string generated by Breslauer and Galil’s adversary has a
period that is shorter than half of its length if and only if it contains a square.

Proof: If the string generated by the adversary has a period which is shorter
than half of its length, then it contains a square that starts at the beginning of
the string.

On the other hand, assume that a square xx starts at position s of S[1..n].
Namely, S[s+k] = S[s+|x|+k] for k = 0, · · · , |x|−1. But then, by the property
mentioned above, the string generated by the adversary has a period of length
|x|, which is smaller than half of the string length. 2

Now, we are ready to prove the lower bound.

Theorem 5.2 Any parallel algorithm that tests if a string S[1..n] over general
alphabets is square-free must take Ω(dn log n

p e + log logd1+p/ne 2p) rounds with p
comparisons in each round.

Proof: Main and Lorentz [26] show that any sequential algorithm that tests if a
string over general alphabets is square-free must make Ω(n logn) comparisons.
This gives an immediate lower bound of Ω(dn log n

p e) rounds with p comparisons
in each round.

By Lemma 5.1, the string that is generated by the adversary of Breslauer
and Galil has a period that is shorter than half of its length if and only if
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it contains a square. Breslauer and Galil show that after Ω(log logd1+p/ne 2p)
rounds the adversary still has the choice of forcing the string to have a period
that is shorter than half of its length or not to have any such period. Therefore,
any algorithm that tries to decide in fewer rounds if a string is square-free can
be fooled. By combining these two bounds we get the claimed lower bound. 2

Corollary 5.3 Any optimal parallel algorithm that tests if a string S[1..n] is
square-free must take Ω(log log n) rounds.

Proof: By Theorem 5.2, the lower bound is Ω(log logn) even with n logn
comparisons in each round. 2

6 The number of processors

This section derives tight bounds for any given number of available processors.

Theorem 6.1 If p processors are available, then the lower and upper bounds
for testing if a string is square-free and for detecting all squares are Θ(dn log n

p e+
log logd1+p/ne 2p).

Proof: The lower bound was given in Theorem 5.2. It remains to prove the
upper bound.

1. If p ≤ n log n
log log n , then by Theorem 2.1, the optimal algorithms of Sections 3

and 4 can be slowed down to run in O(n log n
p ) time, matching the lower

bound.

2. If n log n
log log n < p ≤ n logn, then the lower bound is Ω(log logn), matching

the time bound of the algorithms with only n log n
log log n processors.

If p > n logn, then we must go back to the algorithms given in Sections
3 and 4. The processors are distributed equally among the stages. In stage
number η, the processors are distributed equally among the sub-stages, giving

p
n log n lη processors to each sub-stage.

Since sub-stages that handle strings of length O(lη) have more than lη
processors available, the sub-stages take constant time except for the calls
to Breslauer and Galil’s string matching algorithm. These calls take Tη =
O(log logd1+p/n log ne 2

p
n log n lη) time. Thus, the whole algorithm takes maxTη =

O(log logd1+p/n log ne
2p

log n) time.

3. If p > n logn, then it can be easily verified that log logd1+p/n log ne
2p

log n ∈
O(log logd1+p/ne 2p), establishing that the lower and upper bounds are the
same.

4. If p > n1+ε for some fixed ε > 0, then the upper bound is O(1). 2
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7 Concluding remarks

The algorithm described in this paper uses a string matching procedure as a
“black-box” that has a specific input-output functionality, without going into
its implementation details. Breslauer and Galil’s string matching algorithm
is the fastest possible over general alphabets, however, it is unknown at the
moment if a faster algorithm exists over constant size alphabets. If such an
algorithm exists, it could be used in a faster algorithm for finding squares.
Notice that a fast CRCW-PRAM implementation requires the computation of
certain functions such as the log function and integral powers within the time
and processor bounds. Regardless of the feasibility of such computation, the
algorithm that was described in this paper is valid in the parallel comparison
decision tree model.

Our parallel square detection algorithm resembles the sequential algorithms
of Main and Lorentz [25, 26]. (The testing algorithm is in fact a parallel imple-
mentation of the testing algorithm in [26].) Still, the sequential implementation
of our parallel algorithm is interesting on its own. By using a time-space-
optimal string-matching algorithm, such as the algorithm of Galil and Seiferas
[21], we obtain a time-space-optimal algorithm for detecting squares. By using
a real-time string-matching algorithm, such as the algorithm of Galil [20], and
a careful treatment of periods within the input string, we obtain an on-line
square detection algorithm that reports squares as soon as they are formed,
while the input string is extended even on both sides, spending O(logn) time
per symbol. No such algorithms were known before.
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