
B
R

IC
S

R
S

-95-8
H

ougaard
etal.:

Type
Inference

ofTurbo
P

ascal

BRICS
Basic Research in Computer Science

Type Inference of Turbo Pascal

Ole I. Hougaard
Michael I. Schwartzbach
Hosein Askari

BRICS Report Series RS-95-8

ISSN 0909-0878 February 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Type Inference of Turbo Pascal

Ole I. Hougaard, Michael I. Schwartzbach, Hosein Askari
{hougaard,mis,hosask}@daimi.aau.dk

BRICS∗

Computer Science Department
Aarhus University

8000 Aarhus C, Denmark

Abstract

Type inference is generally thought of as being an exclusive property of
the functional programming paradigm. We argue that such a feature may be
of significant benefit for also standard imperative languages. We present a
working tool (available by WWW) providing these benefits for a full version
of Turbo Pascal. It has the form of a preprocessor that analyzes programs
in which the type annotations are only partial or even absent. The resulting
program has full type annotations, will be accepted by the standard Turbo
Pascal compiler, and has polymorphic use of procedures resolved by means
of code expansion.

Keywords: imperative languages, type inference.

1 Explicit versus Implicit Typing

Several quite different programming paradigms are today proposed for general-
purpose programming. Two notable candidates are the imperative languages
(exemplified by Pascal) and the functional languages (exemplified by ML).

There has been much debate about the relative merits of these paradigms.
Some arguments have an ideological flavor, while others focus on differences in
the implementations of existing systems. In the latter category, functional lan-
guages have been criticized for being somewhat inefficient but commended for
supporting simple yet powerful features, while imperative languages seem almost
to be ascribed the dual properties.
∗Basic Research in Computer Science, Center of the Danish Research Foundation

1

However, some of the attractive features of e.g. ML are not necessarily ex-
clusive properties of the functional programming paradigm. For example, heap-
allocated recursive data types could equally well be incorporated into a Pascal-like
language [2]. In this paper we focus on another often cited advantage of modern
functional languages, viz. automatic type inference, and we argue that such a fea-
ture may be of significant methodological benefit for also traditional imperative
languages. We present an algorithm that allows type inference of general Pascal
programs. Furthermore, this algorithm has been implemented for a full version
of Turbo Pascal.

What is then the task of type inference? This is a well-defined problem for
any language that supports type annotations and type checking. Normally, the
programmer provides type annotations for all variables and the type checker then
proceeds to verify that all the type constraints are respected. Type inference is the
more difficult task of accepting a program in which the type annotations are only
partial or even absent and then deciding if there exists a choice of type annotations
with which the program would be accepted by the normal type checker. Generally,
the annotated program should be presented as well. A separate notion is that of
polymorphism which, as we shall see, is intimately connected with type inference.

Note that with type inference we do not fall back to untyped programs, which
of course are subject to all sorts of damaging type errors. Rather, our programs
are implicitly typed, as valid types must certainly exist even if they are not
supplied by the programmer. The ambition behind type inference is to obtain all
the safety benefits of typed programs while avoiding the problems with verbose
and cumbersome annotations.

It can certainly be argued that there are further benefits to having programs
be explicitly typed. After all, when the programmer states his intentions up
front, then certain logical errors may be caught by the element of redundancy
that separates type checking from type inference.

This aspect is clearly realized by proponents of type inference who offer several
arguments in reply. First of all, comparing the inferred types to those that were
intended provides a similar degree of redundancy. Secondly, type inference may
discover that parts of your program are more general than you had originally
realized, thus widening its applicability. And finally, if parameter types are only
given implicitly, then a procedure may be given more than one type in different
contexts—thus allowing polymorphism. All these benefits are major selling points
for functional languages, and their potential applicability to imperative languages
should be given serious consideration.

Detractors of e.g. Pascal could also interject that its type system, in particular
the notion of type equivalence, makes it difficult for the programmer to correctly
state his actual intentions in advance.

In any case, a language such as Pascal already performs a modicum of type
inference. Only the types of variables must be given explicitly, and from this
information the types of all expressions are inferred. For example, if x is declared

2

to be of type Real, then the type of the expression x+1 is inferred as follows: the
value of x is of type Real; there is a version of + with type Real×Integer → Real;
the constant 1 has type Integer; thus we can conclude that x+1 has type Real.
This sort of inference is perhaps too trivial to gain much notice, but it is there
and forms a basis for using implicit types in larger parts of programs.

In present Pascal implementations the types of variables are given by explicit
annotations. Our algorithm allows the possibility of supplying only some of
these annotations. This yields several contributions: a proof-of-concept that
type inference is possible for traditional imperative languages; a tool for Turbo
Pascal that implements this algorithm and allows polymorphic procedures; and a
platform for studying the methodological impact of implicit typing.

In the following sections we show how to generalize the techniques for type
inference from unification to constraint solving; we sketch the constraint solver
that is necessary for a Pascal type system; and we describe a concrete tool that
has been built as a preprocessor for a version of Turbo Pascal.

2 Techniques for Type Inference

In functional languages as ML, type inference may be done by recursively going
through the parse tree and assigning a type to each node. The type of a parse
tree node can be derived from the types of the subexpressions. For example when
we want to find the type of the expression (e1e2), we first find the types of e1 and
e2; let us call these τ1 and τ2 respectively. We know that the type of e1 must be a
function type, taking something of the type of e2 as its argument. We can write
this as the equation τ1 = τ2 → α, where α is a type variable corresponding to the
return type of e1 that can be instantiated with any type. In order to solve the
equation we apply unification to the two sides of the equation. Unification finds a
most general instantiation of type variables, so that the two types become equal.
The type of (e1e2) is simply the instantiation that the unification algorithm finds
for α. This technique was used by Milner for type inference of ML in [5].

The above technique allowed type variables to stand for any type. By using
type variables in this manner we can represent the set of all possible types for
a parse tree node (see [1]). Thus the success of this approach relies on said
representation and the fact that we could compute the representation of the
solutions to the constraint τ1 = τ2 → α.

In the general case we cannot expect to find a proper representation and
compute the solutions to the constraints within this representation. A more
general technique is that of generating and solving a set of constraints for the
specific program. In this case we will not try to derive the type from those
of the subexpressions. Instead we generate type variables representing the (yet
unknown) types of all parse tree nodes and further generate the appropriate
constraints relating these type variables. In the case of the expression (e1e2) we

3

generate the constraint [[e1]] = [[e2]]→ [[(e1e2)]], where we use [[e]] to stand for the
type variable representing the type of expression e. Now we have reduced the
problem of type inference to that of finding a solution to a set of constraints. In
the case of ML we can again solve the constraints by a single application of the
unification algorithm. Wand [6] has used this technique for type inference of the
simply typed λ-calculus (ML without polymorphic let).

In Turbo Pascal we use this constraint technique. In ML we could limit our-
selves to generating constraints of the form [[e]] = [[e′]] → [[e′′]], but Turbo Pascal
has much more complex typing rules and we need a substantially richer class of
constraints.

Consider for example the simple assignment, x:=e. The typing rules of Turbo
Pascal demands that the type of e is assignment compatible to the type of x,
that is, [[x]] := [[e]] is the generated constraint, where we use := to denote the
assignment compatibility relation. Similarly, we generate constraints of the form
[[e]] Tc [[e’]] when the types of e and e’ should be type compatible; Op([[e]], [[e’]], [[e”]])
when the type of e” should be the result type of a binary operation between e
and e’; and [[e]] Io [[e’]] when e’ should be writable to a file which has the type of
e.

For example, we generate the constraint Op([[e]], [[e’]], [[e+e’]]) for the expression
e+e’ and the constraint [[f]] Io [[e]] for the statement write(f,e).

The expression e-e’ does not apply to strings as opposed to e+e’. Hence the
constraint Op([[e]], [[e’]], [[e-e’]]) is too liberal. We restrict it by imposing further
constraints on the types of e, e’ and e-e’, namely [[e]], [[e’]], [[e-e’]] ∈ M−, where
M− is the set of types on which ‘-’ can operate.

As a further example of the use of constraints of the form [[e]] ∈ M we can
regard a for-statement. Among the constraints generated for the statement:

for x := e to e’ do S

we have [[e]], [[e’]] ∈ O, where O is the set of ordinal types.
In connection with structured types we get the constraints Recα([[e]], [[e’]])

requiring that [[e]] is a record with a field α that has type [[e’]], and [[e]] =
T ([[e1]], . . . , [[en]]), where T is a type constructor. For example, we get the con-
straint Recα([[x]], [[x.α]]) for the expression x.α and [[x]] = ∧[[x∧]] for the expression
x∧.

Finally, we have the simple constraint [[e]] = [[e’]] in connection with variable
parameters, where the actual type must equal the formal type, and expressions
like -e, where we have the constraint [[-e]] = [[e]].

All in all, we have the following kinds of constraints:

• [[e]] ∈M, where M is from a fixed finite set of sets of types.

• [[e]] = T ([[e1]], . . . , [[en]]), where T is a type constructor.

• Recα([[e]], [[e’]])

4

• [[e]] = [[e’]]

• [[e]] Tc [[e’]], [[e]] := [[e’]], Op([[e]], [[e’]], [[e”]]), and [[e]] Io [[e’]]

Example: Consider the following recursive function for computing the factorial
of a number.

Function fac(n: Integer): Integer;
begin

if n=0 then
fac := 0

else
fac := n*fac(n-1)

end

We generate the following set of constraints for the function:

[[1]] ∈ I
[[0]] ∈ I
[[n]] = Integer
[[fac]] = Integer
[[n=0]] = Boolean
[[n]] Tc [[0]]
[[n]], [[0]] ∈M=

[[fac]] := [[1]]
[[fac]] := [[n*fac(n-1)]]
Op([[n]], [[fac(n-1)]], [[n*fac(n-1)]])
[[n]], [[fac(n-1)]], [[n*fac(n-1)]] ∈M∗
[[fac(n-1)]] = Integer
Op([[n]], [[1]], [[n-1]])
[[n]], [[1]], [[n-1]] ∈M−

where I ⊂ O is the set of integer types including all subranges of integers. The
following is a solution to the set of constraints:

[[n]] = Integer
[[0]] = Integer

[[n=0]] = Boolean
[[fac]] = Integer

[[1]] = Integer
[[n*fac(n-1)]] = Integer

[[fac(n-1)]] = Integer
[[n-1]] = Integer

5

2

Note that even in the case of a program with explicit type annotation, we must
infer some of the types. In the above example we inferred the type Integer for
the expression n*fac(n-1). When the type annotation is present, we can use the
technique of deriving the possible types of a parse tree node from the possible
types of the subexpressions. This technique is widely used in type checkers. When
some or all of the type annotations are missing, we have to use the technique of
generating and solving constraints.

Example: Consider the implicit version of the above example function:

Function fac(n);
begin

if n=0 then
fac := 0

else
fac := n*fac(n-1)

end

The set of constraints has no direct information about the types of n or fac:

[[1]] ∈ I
[[0]] ∈ I
[[n=0]] = Boolean
[[n]] Tc [[0]]
[[n]], [[0]] ∈M=

[[fac]] := [[1]]
[[fac]] := [[n*fac(n-1)]]
Op([[n]], [[fac(n-1)]], [[n*fac(n-1)]])
[[n]], [[fac(n-1)]], [[n*fac(n-1)]] ∈M∗
[[fac(n-1)]] = Integer
Op([[n]], [[1]], [[n-1]])
[[n]], [[1]], [[n-1]] ∈M−

The solution from the previous example is a solution here, too; but there is also
a very different solution:

6

[[n]] = Real
[[0]] = Integer

[[n=0]] = Boolean
[[fac]] = Real

[[1]] = Integer
[[n*fac(n-1)]] = Real

[[fac(n-1)]] = Real
[[n-1]] = Real

2

Since all the type rules of Turbo Pascal can be expressed in this manner, we have
reduced the problem of type inference to that of finding a solution to a set of
certain kinds of constraints. We now have to exhibit an algorithm that solves
such a set of constraints.

3 An Algorithm for Turbo Pascal

In the algorithm we will maintain a data structure containing all the solutions to
an increasing set of constraints generated dynamically from the program. This
just leaves the task of selecting one of these solutions from the data structure.
Selecting a solution from the data structure we will present here is in general a
non-trivial task, but in Turbo Pascal we can use some specific features of the type
system to obtain a solution quite easily.

We represent the set of solutions by a graph, where the nodes contain a set of
basic types and type constructors, e.g. a node could contain the type Integer or
the constructor array. We shall use the term label as a common name for basic
types and type constructors. For each constructor there are edges to the nodes
representing its component types. We let every type variable point to the node
representing its type. It is possible for several type variables to point to the same
node.

Example: Assume that we have the type variables [[e1]], [[e2]], . . . , [[e5]], and the
constraints (possibly not from any real Turbo Pascal program):

[[e1]] = [[e5]]
[[e5]] ∈ {Integer,Char, array Integer of Real, array Integer of Integer}
[[e1]] ∈ {Char, array Integer of Real, array Integer of Integer,

array Boolean of Integer}
[[e2]] = array [[e3]] of [[e4]]

We can represent the set of all solutions to the above constraints as follows:

7

��
��

�
�

�
�
�
�

�
�

�
�

�
�

? ?

�
�

�
�

? ?

{Integer,Real}

{Char,array}

��
��

{Integer}

{array}

(array,1) (array,2)

[[e1]], [[e5]]

O ∗

(array,1) (array,2)

[[e3]]

[[e2]]

[[e4]]

The label ‘∗’ stands for any Turbo Pascal type. Note that the set of possible types
for [[e1]] and [[e5]] is found through the intersection of the set of possible types for
[[e1]] and the set of possible types for [[e5]]. Note also that the representation in-
corporates the extra constraint that the index type of an array-type must be an
ordinal type.
2

An arbitrary solution can be found simply by choosing a label for each node.
In the above example the types of [[e1]] and [[e5]] are guaranteed to be equal,
since they point to same node. This represents the Turbo Pascal notion of name
equivalence.

In the above example it was possible to choose a type for each node inde-
pendently of the types chosen for other nodes. In the presence of complicated
constraints like [[x]] := [[e]], this is not the case. Assume for example that [[x]] and
[[e]] both point to (different) nodes containing the set {Integer,Real}. If [[x]] is a
Real, then [[e]] can be either a Real or an Integer, but if [[x]] is an Integer, then
[[e]] will have to be an Integer as well. We represent this by introducing relations
between nodes in the graph.

Example: Consider the constraints:

[[e1]] ∈ {Integer,Real}
[[e2]] ∈ {Integer,Real}
[[e1]] := [[e2]]

We represent these as:

8

�
�

�
� {Integer,Real}

�
�

�
�

Integer := Integer

[[e2]]

Real := Integer
Real := Real

{Integer,Real}[[e1]]

The box is representing the relation :=. Each line of the box represents a possible
solution to the relation. We use this representation of the relation to reduce the
graph in the following way. Suppose we read the constraint:

[[e2]] = Real

Now we can reduce the set of labels for the right node to {Real}. Looking at the
box we can see that the possibilities Integer := Integer and Real := Integer are no
longer relevant. We can thus remove them, and the only remaining possibility is
Real := Real. We get the following representation:

�
�

�
� {Real}

�
�

�
�[[e2]]

Real := Real

{Real}[[e1]]

2

There are four different relations corresponding to the constraints [[e]] Tc [[e’]],
[[e]] := [[e’]], Op([[e]], [[e’]], [[e”]]), and [[e]] Io [[e’]]. In Turbo Pascal these relations
have arity 2 or 3, but in general we may consider relations of a greater arity as
well. The relations are adjusted to the sets of labels in the corresponding nodes,
so that only the relevant cases are present. A further aspect of these constraints
can be seen in an example using pointers.

Example: Consider the constraints:

[[x1]] ∈ {Pointer} ∪ {∧(T) |T is a type}
[[x2]] ∈ {Pointer} ∪ {∧(T) |T is a type}
[[x1]] := [[x2]]

They give rise to the following representation:

9

�
�

�
�

�
�

�
�[[x1]] [[x2]]

Pointer := Pointer

{∧,Pointer} {∧,Pointer}

∧ := ∧ if [[x1]]=[[x2]]
Pointer := ∧

∧ := Pointer

? ?

��
��

��
��
∗∗

∧ ∧

Note the fourth line in the box: ∧ := ∧ if [[x1]] = [[x2]]. It is a conditional possi-
bility . It says, that if x1 and x2 are both pointers to some other type, then they
have to be name equivalent in order to be assignment compatible. If we read the
constraints:

[[x1]] = ∧[[x3]]
[[x2]] = ∧[[x4]]

in the above situation we get that the only remaining possibility is the conditional
∧ := ∧ if [[x1]] = [[x2]]. We will thus identify the nodes, and we get the following
representation.

��
��

?

∗��
��∧

[[x3]], [[x4]]

{∧}[[x1]], [[x2]]

Note how this collapsing of nodes results in a subsequent collapsing of their suc-
cessor nodes.
2

There are three operations on graphs as the above.

• Collapsing two nodes. The labels of the collapsed node are intersections
of the labels of the original nodes. The relations connected to the nodes
are transformed accordingly (their arities may decrease). This operation
may result in subsequent collapsings of successor nodes and reductions of
relations.

• Reducing a relation. Remove all cases that are no longer possible. May
result in collapsing and reduction of nodes.

10

• Reducing a node. Remove one or more labels from the set of labels contained
in the node. May result in reduction of relations.

As it is seen, the operations are mutually dependent (i.e. recursive). The termi-
nation of the operations is ensured by the fact that all operations reduce the size
of the graph. With a suitable representation of the graph the operations can be
implemented in such a way that the total time of any sequence of operations is
O(n2 logn), where n is the size of the Turbo Pascal program.

The remaining task is that of choosing one of the solutions represented in
the graph. This could be a nontrivial task because the relations may not “fit”.
That is, there may not be a global solution corresponding to a certain case in
a particular relation. Similarly, even if a node contains a certain label, there is
no guarantee that the node has this label in any global solution. The problem is
that the local information can collide with demands in other parts of the graph.
In general, finding whether a solution exists is NP-complete.

We must examine more closely the relations generated for a Turbo Pascal
program. Consider a node which contains the label Boolean. This node could
be attached to a number of relations, Tc being one of them. In Turbo Pascal,
Boolean is only type compatible to itself, so the node in the other end of the Tc
relation must contain Boolean as well. If we have a solution to this particular
relation, then both nodes have type Boolean which we can safely choose. Similar
arguments apply to the other relations.

Assume now that a particular node contains not Boolean but rather Real.
Consider the case where the node represents the return type of a binary operation,
for example +. Then either the two other attached nodes will both contain Real
or one will contain Real and the other will contain Integer. In the former case
we can safely choose Real as a type for all the nodes. In the latter there will be
a solution in which the two types that contain Real have type Real, and the one
that does not has type Integer. So we can apply a strategy of always preferring
Real if there is no Boolean, and Integer if there is neither Boolean nor Real. Note
that if the node of the return type did not contain Integer, then there will be
no solution where the two other nodes both have type Integer. Thus we cannot
interchange Integer and Real in this strategy.

The above represents an ordering between the labels. Boolean is the least, then
comes Real followed by Integer. By looking at all the labels we can see that there
exists a general ordering of all the labels, such that it is a sound strategy always
to pick the least of the labels contained in a node. Thus it is straightforward to
find a solution from the graph in the case of Turbo Pascal. The total time for the
type inference of a program of size n remains at O(n2 logn).

11

4 The Turbo Pascal Tool

The Turbo Pascal programming language comes equipped with a fast and efficient
compiler. Hence there is no need to reinvent the wheel by writing a new compiler.
Instead we have implemented the Turbo Pascal tool as a preprocessor, which
accepts a Turbo Pascal program without or partially without type annotations
and returns a typed program that can in turn be compiled by the Turbo Pascal
compiler. This means that when given the implicit version of the factorial function
(as part of a whole program) it returns the following explicit version:

Type T1 = Real;

Function fac(n: T1): T1;
begin

if n=0 then
fac := 0

else
fac := n*fac(n-1)

end

Note the introduction of a new type identifier. The tool will always do this in
order to get the name equivalence right. The tool is of course able to handle
recursive types as in the following example:

Var z;

begin
z∧.a := z

end.

The resulting program is this:

Type T1 = ∧T2;
T2 = record

a: T1;
end;

Var z: T1;

begin
z∧.a := z

end.

As in the explicitly typed version of Turbo Pascal we must demand that recursive
types contain a pointer type. If the ‘∧’ is left out in the above example the tool
will respond with an error message.

12

Both of the above examples are reasonably small and simple. The tool handles
them using these resources:

factorial recursive
constraints 24 3
graph size 70 28
type vars 12 3

The graph size is the largest number of nodes through the running of the program.
In the initial phase of a programming task it is usually unclear how the pro-

gram will develop. In such cases it is not easy to provide the actual types that the
program must use. Nevertheless this information must be provided in advance
when programming in an explicitly typed language. By using type inference the
programmer gets the freedom not to choose the actual types in advance, but
instead concentrate on the algorithmic development of the program. Type infer-
ence is also a way to avoid cluttering up the program with a lot of redundant
information.

However there are situations where it might be preferable to annotate some
of the variables. In the above factorial example the inferred type for the variable
n is Real. But this is not the preferred type. The call factorial(3.7) would never
terminate anyway, and thus we might want to add the type annotation n: Integer
to make sure that the factorial function is always called with an integer number.
The tool is able to handle the extra information from type annotations.

One of the acclaimed features of ML and other functional languages is that of
polymorphism. In a language with polymorphic procedures and functions, you
can use the same function or procedure on arguments of different types. An often
used example of this is the polymorphic length function. The polymorphic length
function has type α list → Integer. The free type variable α can be instantiated
with any type. This means that the length function can be applied to lists with
any element type. This makes perfect sense because the length of a list has
nothing to do with the elements of that lists. In ML polymorphism is inherent
in the type system by allowing free type variables in the types, but it can also
be seen as a consequence of the type inference. Take as an example the following
code without type annotations:

Procedure double(Var x; y);
begin

x := y+y
end;

Var a; b;

13

begin
double(a,4);
double(b,’cat’)

end.

The constraints for the procedure double have among others the following solu-
tions: [[x]] = [[y]] = Real and [[x]] = [[y]] = String. This means that both of the calls
of the function are type correct when seen in isolation. Unfortunately, we have
to annotate the procedure with a single type for both x and y. This is impos-
sible, since the types being forced on x and y from the two calls are completely
incomparable. Instead we can lift the restriction that the types should be equal
in the two cases by copying the procedure:

Type T1 = Real;
T2 = String;

Procedure double(Var x: T1; y: T1);
begin

x := y+y
end;

Procedure double1(Var x: T2; y: T2);
begin

x := y+y
end;

Var a: T1; b: T2;

begin
double(a,4);
double1(b,’cat’)

end.

The above example might suggest that a good strategy for implementing poly-
morphism would be simply to repeat copying procedures (and functions) until no
two procedure calls are to the same procedure. This strategy, however, has two
major deficiencies:

• In the presence of recursive procedures it will lead to infinite copying.

• Even when there are no recursive procedures it is inefficient.

The first problem can be solved simply by ignoring recursive calls and by always
copying mutually recursive procedures together. To solve the second problem the
preprocessor applies another strategy: It will not copy any procedure unless it is

14

apparent from the constraints that the call of the procedure will lead to a type
error. It will repeat this copying until it can find no more procedures which must
be copied. Then no further copying will take place. Furthermore, before copying
the preprocessor checks whether there is another copy of the procedure that can
safely be called instead of the original. Thus the preprocessor employs a strategy
of conservative copying. That is, the total size of the expanded program is no
larger than an explicitly typed monomorphic program will have to be. However,
when employing conservative copying we lose the full generality of polymorphism.
In a realistic program, though, it is not likely that the type inference will fail due
to insufficient copying.

As a more interesting example of the use of polymorphism see the following
implicitly typed implementation of a polymorphic stack:

Procedure push(Var s; e);
Var temp;

begin
new(temp);
temp∧.next := s;
s := temp;
s∧.elm := e;

end;

Function pop(Var x);
Var temp;

begin
temp := s;
s := s∧.next;
pop := temp∧.elm;

end;

Var a;
b;
c;
d;

begin
push(a, 94);
push(b, true);
c := pop(a);
d := pop(b);

end.

There is no assumption about the types of the elements of the stack in the pro-

15

cedures push and pop, so the implementation should work for stacks of any type.
For example Real and Boolean as in the example. The tool recognizes that the two
calls to push have different types, and consequently makes a copy of push. This
will give the two stacks a and b different types and thus result in a subsequent
copying of the function pop. The result is as follows:

Type T1 = ∧T5;
T2 = ∧T6;
T3 = Real;
T4 = Boolean;
T5 = record

elm: T3;
next: T1;

end;
T6 = record

elm: T4;
next: T2;

end;

Procedure push(Var s: T1; e: T3);
Var temp;

begin
new(temp);
temp∧.next := s;
s := temp;
s∧.elm := e;

end;

Procedure push1(Var s: T2; e: T4);
Var temp;

begin
new(temp);
temp∧.next := s;
s := temp;
s∧.elm := e;

end;

16

Function pop(Var x: T1): T3;
Var temp;

begin
temp := s;
s := s∧.next;
pop := temp∧.elm;

end;

Function pop1(Var x: T2): T4;
Var temp;

begin
temp := s;
s := s∧.next;
pop := temp∧.elm;

end;

Var a: T1;
b: T2;
c: T3;
d: T4;

begin
push(a, 94);
push1(b, true);
c := pop(a);
d := pop1(b);

end.

Note that the inferred types are recursive.
The polymorphic examples are larger than the monomorphic ones. Especially

the stack requires a large graph:

double stack
constraints 14 50
graph size 77 192
type vars 10 42

The obvious advantage with polymorphism is the compactness of the written
code. Letting the tool do the necessary copying saves a lot of the programmers
time. Who has not sighed with exasperation when programming the 17th iden-
tical version of linear search for the 17th version of a linked list? Furthermore,
since the tool only performs the necessary copying it might in some cases find a
solution having procedures than the one the programmer would come up with.

17

Even though the tool makes as few copies as possible, there are still examples
in which the resulting program becomes very large. As an example take the fol-
lowing program:

Procedure Pn+1(x);
begin
end;

Procedure Pn(x);
Var y; z;

begin
y.a := x;
z.a := x;
y.b := 7;
z.b := false;
Pn+1(y);
Pn+1(z)

end;
...

Procedure P1(x);
Var y; z;

begin
y.a := x;
z.a := x;
y.b := 7;
z.b := false;
P2(y);
P2(z)

end;

begin
P1(0)

end.

The expanded version of this program will contain 2n+1 − 1 procedures. In ML
there are similar problems with types of exponential size [3, 4]. In both cases
it can be argued that the examples are highly artificial and that we will not
encounter this behavior in practice.

A fully implemented prototype of the Turbo Pascal tool can be found at
http://www.daimi.aau.dk/~hougaard/itp. This site contains the source code writ-
ten in Turbo Pascal, together with the 220K binary executable file and some
example files.

18

5 Conclusions and Future Work

The main result of this paper is that we have shown it to be possible to implement
automatic type inference and polymorphism for a standard imperative language.
This emphasizes that we should not always prefer one programming paradigm to
another just on the grounds of the implemented features. In our case, one of the
key advantages from ML has been lifted into a new context.

By implementing the tool for Turbo Pascal we have provided the means for
experimenting and studying the impact of these new features on programming
methodology. The examples shown here and the experiences with type inference
and polymorphism in other programming languages certainly suggest that they
are useful features. Especially so in a development fase where the lack of type
annotations allows for greater flexibility.

The tool currently handles only the basic constructs from Turbo Pascal. Some
of the more advanced features have not yet been implemented. Among the fea-
tures that need to be considered is Turbo Pascal’s units . The most straightforward
way of handling units would be to apply type inference only inside of the unit.
Once we have obtained a correct typing of the interface we will leave the interface
as it is, thus demanding that all subsequent changes to the implementation of
the unit respects this interface. In this way we can still provide separate com-
pilation and use the built-in compiler. If we want separate compilation along
with polymorphic units we will have to write a new compiler that can generate
polymorphic code.

References

[1] Luis Damas and Robin Milner. Principal type schemes for functional program-
ming. In 9th ACM conf. on Principels Of Programming Languages, 1982.

[2] C.A.R. Hoare. Recursive data structures. International Journal of Computer
and Information Sciences, 4:2:105–132, 1975.

[3] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability.
Journal of the ACM, 41:368–398, 1994.

[4] Harry G. Mairson. Decidability of ML typing is complete for deterministic
exponential time. In Seventeenth Symposium on Principles of Programming
Languages, pages 382–401. ACM Press, January 1990.

[5] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348 – 375, 1978.

[6] M. Wand. A simple algorithm and proof for type inference. Fundamentae
Informaticae, X:115 – 122, 1987.

19

Recent Publications in the BRICS Report Series

RS-95-8 Ole I. Hougaard, Michael I. Schwartzbach, and Hosein
Askari. Type Inference of Turbo Pascal. February 1995.
19 pp.

RS-95-7 David A. Basin and Nils Klarlund.Hardware Verification
using Monadic Second-Order Logic. January 1995. 13 pp.

RS-95-6 Igor Walukiewicz. A Complete Deductive System for the
µ-Calculus. January 1995. 39 pp.

RS-95-5 Luca Aceto and Anna Inǵolfsdóttir. A Complete Equa-
tional Axiomatization for Prefix Iteration with Silent Steps.
January 1995. 27 pp.

RS-95-4 Mogens Nielsen and Glynn Winskel.Petri Nets and Bisim-
ulations. January 1995. 36 pp. To appear in TCS.

RS-95-3 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing
Processes, Late Approach, Part I: A Denotational Model
and Its Complete Axiomatization. January 1995. 37 pp.

RS-95-2 François Laroussinie, Kim G. Larsen, and Carsten Weise.
From Timed Automata to Logic - and Back. January 1995.
21 pp.

RS-95-1 Gudmund Skovbjerg Frandsen, Thore Husfeldt, Pe-
ter Bro Miltersen, Theis Rauhe, and Søren Skyum.Dy-
namic Algorithms for the Dyck Languages. January 1995.
21 pp.

RS-94-48 Jens Chr. Godskesen and Kim G. Larsen.Synthesizing
Distinguishing Formulae for Real Time Systems. Decem-
ber 1994. 21 pp.

RS-94-47 Kim G. Larsen, Bernhard Steffen, and Carsten Weise.A
Constraint Oriented Proof Methodology based on Modal
Transition Systems. December 1994. 13 pp.

RS-94-46 Amos Beimel, Anna Ǵal, and Mike Paterson. Lower
Bounds for Monotone Span Programs. December 1994.
14 pp.

