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Abstract

We show how the second-order monadic theory of strings can be used to specify hardware compo-
nents and their behavior. This logic admits a decision procedure and counter-model generator based
on canonical automata for formulas. We have used a system implementing these concepts to verify, or
find errors in, a number of circuits proposed in the literature. The techniques we use make it easier to
identify regularity in circuits, including those that are parameterized or have parameterized behavioral
specifications. Our proofs are semantic and do not require lemmas or induction as would be needed
when employing a conventional theory of strings as a recursive data type.

Keywords: Monadic second order logic, automatic theorem proving, hardware verification, mathematical
induction.

1 Introduction

Properties of functions over finite domains may be established by state space enumeration. Consequently,
combinational logic circuits may be viewed as Boolean functions, and the equivalence of circuits may be
shown by exhaustive testing—which in turn may be optimized using Boolean decision diagrams (BDDs).
But when the domain is infinite, direct enumeration is impossible. For example, although we can apply
state space enumeration to prove that a 1-bit adder meets its specification, we cannot do the same for a
parameterized n-bit adder.

There are similar problems in verifying temporal properties of a circuit that should hold over all in-
stants of time. Typically such circuits are verified interactively, or semi-automatically using mathematical
induction [1, 2, 7, 10, 12, 13, 15]; that is, a time-dependent property P (n) is shown to hold for all instants
n by induction over n.

There is an alternative approach to such problems, however: find and analyze a finite characterization
of the infinite state space. For example, an n-bit adder may be constructed by chaining together (ripple-
carry style) n full adders. The resulting circuit is regular in both the informal and formal sense. If we view
the input/output relation of an n-bit adder as words of length n over an alphabet describing inputs and

∗The first author was funded by the German Ministry for Research and Technology (BMFT) under grant ITS 9102.
Responsibility for the content lies with the authors. The authors thank Alan Bundy, Harald Ganzinger, Tom Melham, and
Natarajan Shankar for their feedback on a draft of this paper.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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outputs at each position, then the language that is the union of all these languages for n = 1, 2, . . . can be
recognized by a finite automaton and is thus a regular language.

Recently, other groups of researchers, e.g., [8, 16], have presented methods that exploit this kind of
regularity. In [16], parameterized circuits are not described as such. Instead, the automaton model is
inferred by observing the behavior of circuits for n = 1, 2 . . . until some technical conditions indicate
a fixed point. Alternatively [8, 9] identify classes of parameterized circuits that can be described by
recursive BDD tree structures which, for certain classes, correspond to finite automata. While these
techniques are novel and can be very effective, they have their drawbacks. In particular, circuits must be
encoded directly as automata as opposed to more declaratively by functions or relations that mirror their
structure. Similarly, behavioral specifications are encoded instead of being expressed in a more conventional
specification language that admits logical connectives, functions, and the like. As a result, circuits and
their specifications may be considerably more complex than what is possible in richer languages.

We report here on a logical characterization of regular circuits that generalizes the class of circuits
describable by previous methods. We believe it gives a better understanding of when regularity can be
exploited to prove automatically the correctness of circuits. Moreover, it allows specification closer to what
is possible within richer specification languages.

Our work is based on a second-order monadic theory of strings, M2L(Str), and a system, Mona, that
implements a decision procedure and counter-model generator for statements in this logic [5]. M2L(Str) is
a very concise, but so far in practice unexplored, way of characterizing regularity. Operators in the logic
formalize positions and sets of positions within strings and relate them by means of quantification and
logical connectives. These connectives suffice to directly encode Boolean logic and all non-parameterized
circuits. Quantification over sets of positions can encode parameterized circuits with regular connectivity
like ripple-carry adders. The logic still admits a decision procedure and counter-model generator based
on constructing a canonical automaton for each subformula. As a result, tautology checking is decidable,
although in non-elementary time (the lower bound is a stack of exponentials of height proportional to the
size of the formula). Thus in principle, we can automatically verify the correctness of circuits relative to
specifications that are also expressible in M2L(Str).

Perhaps surprisingly, we show here that verification is possible in practice too. In this report we
document the automatic verification of a parameterized Arithmetic Logic Unit (ALU) and a timed flipflop
in Mona. Moreover, we show how counter-model generation within M2L(Str) provides a useful tool for
debugging and testing incorrect circuits and specifications. Hence, Mona provides not just a tool for circuit
validation, but also for circuit development, debugging, and prototyping.

While the applications we present are new, it has been known for over 30 years that monadic second-
order theories define regular languages and hence are decidable. The staggering theoretical complexity
seemed to preclude practical experiments. And the limited expressibility of M2L(Str) means that not
all parameterized circuits or their behavior can be specified. For example, one cannot encode a network
whose connectivity is non-regular (e.g., parameterized grids). Furthermore, specifications are limited in
the amount of arithmetic that may be formalized; the slightly stronger logic WS1S allows one to express
Presburger arithmetic, but little more [17]. Even when arithmetic operations are expressible, a specification
in M2L(Str) may be less direct than one in a more expressive logic. As we shall see, arithmetic must be
encoded as operations over strings.

Despite these obstacles, we were still able to solve interesting problems. For example, the ALU that we
verified (see §3) required only half a CPU minute (on a SPARC station 20) and a couple of megabytes of
memory; the largest intermediate automaton generated by Mona in this example contained 154 states.

We proceed as follows. In §2 we give an introduction to M2L(Str) and Mona. In §3 we consider
verification of parameterized hardware and verify a parameterized adder and ALU. In §4 we consider
timed hardware and use Mona to analyze a D-type flipflop. Such memory devices involve feedback, and
formal analysis of their properties is surprisingly difficult. We begin by considering a specification given
by [7] that was verified by hand. We use Mona to generate a minimal counterexample to this specification
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and, through further experiments, we develop a correct specification. This demonstrates how M2L(Str) can
be used not just as the basis of a yes/no decision procedure, but also as a tool supporting the development
and analysis of complex circuits. In the final section we draw conclusions and make further comparisons.

2 The Second-Order Monadic Logic on Strings

We employ a theory M2L(Str), where a closed formula is interpreted relative to a natural number n, called
the length. A first-order variable p denotes a number i, 0 ≤ i < n, called a position. A second-order variable
P denotes a subset of {0, . . . , n − 1}. Alternatively, a second-order variable can be viewed as designating
a bit pattern b0 . . . bn−1 of length n, where bi is 1 if and only if i belongs to the interpretation of P .

First-order terms are formed from first-order variables, and constructors of the form 0 (denoting the
position 0), $ (denoting the last position n − 1) and t ⊕ i and t 	 i where t is a first-order term and i is
a natural number (denoting j + i mod n and j − i mod n, where j is the interpretation of t). Second-
order terms are built from second-order variables, the constants empty and all (which denote ∅ and
{0, . . . , n − 1}), and are combined using ∩, ∪, and { (complement relative to {0, . . . , n − 1}). For t1 and
t2 first-order terms and S a second-order term, t1 ∈ S, t1 = t2, t1 < t2, t1 ≤ t2, and t1 ≥ t2 are formulas.
Formulas are combined by the standard connectives ¬, ∧, ∨, →, and ↔. There are two kinds of quantifiers:
∃1 and ∀1 over first-order variables and ∃2 and ∀2 over second-order variables.

As an example, the formula ∃1p : p ∈ P states that “there exists a position p in P”. More complex is

0 ∈ P ∧ ∀1p : p < $ → ((p ∈ P → p ⊕ 1 /∈ P ) ∧ (p /∈ P → p ⊕ 1 ∈ P )) ,

which states that P contains exactly the even positions among {0, . . . , n − 1}. We also view P as a bit
vector and write P (p) for p ∈ P .

A formula φ, with free variables, defines a regular language denoting the interpretations that make φ
true. For example, the formula φ ≡ P = { Q defines a language L(φ) over B2, where each (b1, b2) ∈ B2

denotes the membership status of the current position relative to the free second-order variables P and
Q. The language is then the set of words describing interpretations of P and Q that make φ true. For
example, if we represent the letter (b1, b2) as b1

b2 then

0110
1001 ∈ L(φ) and 011

000 /∈ L(φ) .

This language represents the set of natural numbers n such that φ holds when interpreted over a string of
length n.

We can construct an automaton recognizing L(φ) by standard operations of product, subset construc-
tion, and projection. A closed formula φ corresponds to an automaton over a one-letter alphabet and is
a tautology when the automaton accepts strings of all lengths. For any formula φ that is not valid, we
can extract from its corresponding automaton a minimal length string defining an interpretation making φ
invalid. We use this procedure to generate counter-examples to proposed theorems. For details about how
the decision procedure is implemented based on BDDs (used to compress alphabets, which are exponential
in the number of free variables), see [5].

3 Parameterized Hardware

In this section we specify and verify the correctness of a simple parameterized n-bit ALU given in [14].

3



3.1 Preliminaries: Boolean Logic

Boolean connectives and quantification over Booleans are not part of M2L(Str), but can easily be encoded.
In particular, each Boolean variable b is encoded by a second-order variable B, and occurrences of b in
formulas are encoded as 0 ∈ B. Quantification over Booleans (∀0 and ∃0) is encoded using second-order
quantification.1 Non-parameterized circuits are then directly encoded using Boolean quantification and
propositional connectives.

In hardware verification, circuits are traditionally represented as functions from inputs to outputs or
as relations that hold between the port values. In the functional approach, components are connected by
functional nesting. In the relational approach, circuits are viewed as constraints and joined together using
conjunction; internal wires are represented by shared variables that are existentially quantified (see [3, 7]
for discussions on this). In our work it makes no difference which approach we use, we may even mix them.

To begin with we define gates as functions:

not(a) ≡ ¬a

and(a, b) ≡ a ∧ b

or(a, b) ≡ a ∨ b

xor(a, b) ≡ or(and(not(a), b), and(a, not(b)))
and3(a, b, c) ≡ and(and(a, b), c)

or3(a, b, c) ≡ or(or(a, b), c)

We may then define functions that compute the sum and carry bits for an adder and combine these into a
relation specifying a full one-bit adder.

sum(a, b, c) ≡ xor(xor(a, b), c)
carry(a, b, c) ≡ or(and(xor(a, b), c), and(a, b))

full adder(a, b, out, cin, cout) ≡ (sum(a, b, cin) ↔ out) ∧ (carry(a, b, cin) ↔ cout)

Consider now an example of a simple theorem in Mona: if Boolean variables x, y, z, cin, and cout fulfill
the full adder relation, then the outputs (z and cout) are uniquely determined given the inputs.

∀0x, y, cin : ∃0z, cout : full adder(x, y, z, cin, cout)
∧ ∀0z′, cout′ : (full adder(x, y, z′, cin, cout′) → ((z′ ↔ z) ∧ (cout′ ↔ cout)))

Mona reports that this is a tautology in under 1 CPU second. That is, it reduces this formula to a 1-state
automaton that accepts all strings; this indicates that there are no strings, of any length, that encode a
counter-model to this formula.

3.2 Correctness of an n-bit Adder

We next turn to parameterized hardware. Figure 1 gives an example of this for n = 3. In the general case,
an n-bit adder is constructed by wiring together n 1-bit adders where the carry-out of the ith becomes the
carry-in of the i+1st. The first and last carry are special cases: the first carry has the value of the carry-in
and the last has the value of the carry-out. We can directly specify this using two existentially quantified
second-order variables C and D which represent sequences of carry-in and carry-out bits.

1For example the Boolean formula ∀0x, y : ¬(x∧ ¬y) is encoded as the M2L(Str) sentence ∀2X,Y : ¬(0 ∈ X ∧ ¬(0 ∈ Y )).
Input to Mona consists of a sequence of definitions and a formula to be proved. The definitions are expanded using the Unix
m4 macro processor and emacs macros. To spare the reader from concrete Mona syntax we will take liberties with syntax in
what follows, for example manually pretty printing formulas.
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Y0 X0

Z0Z1Z2

X1X2 Y1Y2

C1C2C3

cout cin

C0
adder adder adder

Figure 1: n-bit adder for n = 3

n add(X, Y, Z, cin, cout) ≡ ∃2C, D : (∀1p : full adder (X(p), Y (p), Z(p), C(p), D(p)))
∧ (∀1p : (p < $) → (D(p) ↔ C(p ⊕ 1)))
∧ (C(0) ↔ cin) ∧ (D($) ↔ cout)

Having described an implementation, we now specify its functionality. M2L(Str) is a logic about strings
and string positions, and an arithmetic specification must be encoded within this limited language. In
particular, we encode addition as an algorithm over strings representing bit-patterns, i.e., binary addition.
A simple way to do this is to mimic how addition is computed with pencil and paper. The ith output bit
is set if the sum of the ith inputs and carry-in is 1 mod 2, and the ith carry bit is set if at least two of the
previous inputs and carry was set. The 0th carry and the final values must be computed as special cases.

at least two(a, b, c) ≡ (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)
mod two(a, b, c, d) ≡ a ↔ b ↔ c ↔ d

add(X, Y, Z, cin, cout) ≡ ∃2C : C(0) ↔ cin

∧ ∀1p : mod two(X(p), Y (p), C(p), Z(p))
∧ ((p < $) → (C(p ⊕ 1) ↔ at least two(X(p), Y (p), C(p))))
∧ (cout ↔ at least two(X($), Y ($), C($)))

We may automatically verify that add and n add are equivalent: Mona reports in one CPU second that
the following formula is a tautology.

∀2X, Y, Z : ∀0cin, cout : add(X, Y, Z, cin, cout) ↔ n add(X, Y, Z, cin, cout)

Often we are interested in more than one property. With Mona, once preliminary definitions are made,
it is easy to test them. For example, also in one CPU second Mona verifies that the n-bit adder computes
a unique function from its outputs to its inputs:

∀2X, Y : ∀0cin : ∃2Z : ∃0cout : n add(X, Y, Z, cin, cout)
∧ ∀2Z′ : ∀0 cout′ : (n add(X, Y, Z′, cin, cout′) → (Z = Z′ ∧ (cout ↔ cout′)))

Alternatively, we have checked (one CPU second) that our specification defines a commutative operation:

∀2X, Y, Z : ∀0cin, cout : add(X, Y, Z, cin, cout) ↔ add(Y, X, Z, cin, cout)

3.3 Correctness of an n-bit ALU

We now apply our approach to a more complex circuit—a parameterized n-bit ALU. The circuit we analyze
is presented in [14]. It is also an interesting theorem for comparison, since it has been recently verified in
induction based systems CLAM and PVS (see comparison in §5).
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Selection
s2 s1 s0 cin Output Function
0 0 0 0 F = A Transfer A
0 0 0 1 F = A + 1 Increment A
0 0 1 0 F = A + B Addition
0 0 1 1 F = A + B + 1 Addition with carry
0 1 0 0 F = A−B − 1 Subtract with borrow
0 1 0 1 F = A− B Subtract
0 1 1 0 F = A − 1 Decrement A
0 1 1 1 F = A Transfer A
1 0 0 X F = A ∨ B OR
1 0 1 X F = A⊕ B XOR
1 1 0 X F = A ∧ B AND
1 1 1 X F = A Complement A

Table 1: Function Table for ALU

ALU specification

The ALU is designed to perform 8 arithmetic and 4 logical operations. The 12 functions are selected
through 3 “selection” lines s0, s1, s2 and the carry-in cin as described in table 1. For example when the si

are 0 and cin is 1 the ALU increments the n-bit input A and places the result in F , producing a carry-out
when every bit in F is set.

To specify the functionality of the ALU, we must specify each of these functional sub-units. We begin
with abbreviations that define relational versions of the previously defined gates. For example:

notrel(a, b) ≡ not(a) ↔ b

andrel(a, b, c) ≡ and(a, b) ↔ c

Other relations used are defined analogously.
Using these we may directly define all of the logical and some of the simpler arithmetic functions.

transfer(To, F rom) ≡ To = From

compl(A, F ) ≡ ∀1x : notrel(A(x), F (x))
OR(A, B, F ) ≡ ∀1x : orrel(A(x), B(x), F (x))

XOR(A, B, F ) ≡ ∀1x : xorrel(A(x), B(x), F (x))
AND(A, B, F ) ≡ ∀1x : andrel(A(x), B(x), F (x))

The other function definitions require some basic arithmetic. For b a Boolean encoded by a second-order
variable B, define zero(b) to be B = empty and one(b) as B(0) ∧ ∀1p : (p > 0 → ¬B(p)). We can now
directly define the remaining arithmetic functions using the previously defined addition operator add.

add no carry(A, B, F, cout) ≡ ∃0cin : zero(cin) ∧ add(A, B, F, cin, cout)
add with carry(A, B, F, cout) ≡ ∃0cin : one(cin) ∧ add(A, B, F, cin, cout)
one compl add(A, B, F, cout) ≡ ∃0cin : ∃2Comp : zero(cin)

∧ compl(B, Comp) ∧ add(A, Comp, F, cin, cout)
two compl add(A, B, F, cout) ≡ ∃0cin : ∃2Comp : one(cin)

∧ compl(B, Comp) ∧ add(A, Comp, F, cin, cout)
decrement(A, F, cout) ≡ ∃0v : one(v) ∧ two compl add(A, v, F, cout)
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cin =

v0

w8
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Figure 2: n-bit ALU (n = 2)

Now, using the following auxiliary definitions

if3(a, b, c, d) ≡ (a ∧ b ∧ c) → d

if4(a, b, c, d, e) ≡ (a ∧ b ∧ c ∧ d) → e

we directly encode alu spec(s0, s1, s2, A, B, F, cin, cout) by specifying the function table (Table 1) as follows.

if4(¬s2,¬s1,¬s0,¬cin, transfer(A, F )) ∧ if4(¬s2,¬s1,¬s0, cin, increment(A, F, cout))
∧ if4(¬s2,¬s1, s0,¬cin, add no carry(A, B,F, cout)) ∧ if4(¬s2,¬s1, s0, cin, add with carry(A, B,F, cout))
∧ if4(¬s2, s1,¬s0,¬cin, one compl add(A, B,F, cout)) ∧ if4(¬s2, s1,¬s0, cin, two compl add(A, B,F, cout))
∧ if4(¬s2, s1, s0,¬cin, decrement(A, F, cout)) ∧ if4(¬s2, s1, s0, cin, transfer(A,F ))
∧ if3(s2,¬s1,¬s0, OR(A,B,F )) ∧ if3(s2,¬s1, s0,XOR(A,B,F ))
∧ if3(s2, s1,¬s0, AND(A, B,F )) ∧ if3(s2, s1, s0, compl(A, F )) .

ALU implementation

The ALU implementation, as specified in [14] is given in Figure 2. The corresponding M2L(Str) formula is
encoded analogously to the parameterized adder. The only additional complication is that the description
should be subdivided into two parts: an initialization block and a repeating ALU block. The first part,
which we call init computes negations of the selection wires and conjunctions of them and their negations.

init(s0, s1, s2, v0, v1, n) ≡ ∃0n0, n1 : notrel(s0, n0) ∧ notrel(s1, n1) ∧ notrel(s2, n)
∧ and3rel(n0, s1, s2, v0) ∧ and3rel(n0, n1, s2, v1)
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The remainder of the ALU consists of the regular repetition of 1-bit ALU sections. These sections also
require the switching wires si and the results of the init section computed on the wires v0, v1, and n.

one alu(a, b, f, cin, cout) ≡ ∃0w1, w2, w3, w4, w5, w6, w7, w8 : andrel(n, cin, w1) ∧ andrel(v1, b, w2)
∧ andrel(v0, w8, w3) ∧ or3rel(w2, w3, a, w4) ∧ andrel(b, s0, w5)
∧ andrel(w8, s1, w6) ∧ orrel(w5, w6, w7) ∧ notrel(b, w8)
∧ full adder(w4, w7, f, w1, cout)

We may now combine the init block with ripple-carried 1-bit ALU units to specify the parameterized
ALU. The ALU sections are hooked together as were the adder sections in the parameterized adder example.

n alu(s0, s1, s2, A, B, F, cin, cout) ≡ ∃2C, D : ∃0v0, v1, n : init(s0, s1, s2, v0, v1, n)
∧ (∀1p : one alu(A(p), B(p), F (p), C(p), D(p)))
∧ (∀1p : (p < $) → (D(p) ↔ C(p ⊕ 1)))
∧ (C(0) ↔ cin) ∧ (D($) ↔ cout)

Mona verifies, in 27 seconds, the correctness of the ALU: when the inputs satisfy the circuit relation,
they satisfy the ALU specification.

∀2A, B, F : ∀0s0, s1, s2, cin, cout : n alu(s0, s1, s2, A, B, F, cin, cout)
→ alu spec(s0, s1, s2, A, B, F, cin, cout)

Other properties, such as the functional relation between the inputs and outputs, are also easily checked.

4 Timed Hardware

We now consider circuits with timed specifications and feedback. A good example is the standard imple-
mentation of a D-type flipflop as shown in Figure 3. Although this circuit looks simple, understanding and
demonstrating its correctness is a difficult task. A thorough and very well-written analysis of this flipflop
is given by Hanna and Daeche in [10].2 They used Veritas, a theorem prover based on a higher-order logic,
to give a comprehensive analysis using a partial description of waveforms. Their analysis is complex, and
it took an experienced user a week to construct the proof.

Our starting point is a simpler model of this circuit proposed by Gordon in [7]. He used a discrete
representation of time and assumed each gate had a delay of one time unit. The proof that the circuit
meets its specification, which he notes “is fairly complicated” was done by hand only. The flipflop and
Gordon’s specification are easily encoded in Mona with Gordon’s choice of timing parameters. To our
surprise, our system generated a counterexample (in only 9 seconds).3

Analysis of this failed proof attempt led us to discover that the theorem as stated in [7] does not hold
without additional assumptions; in particular, that the circuit must not oscillate to begin with and that
inputs D and CK are further constrained so as to prevent the circuit from becoming unstable.

To help us reason about events and intervals, we use the following predicates:
2Hanna and Daeche challenge the reader (page 193):

“It turns out, on analysis, that the modus operandi of this circuit is far from simple: in fact, it is unusually
complex, and (so the authors found) difficult to understand intuitively. (If, like most people, you find this remark
difficult to accept at face value, read the rest of this account, then set it aside, and attempt, within (say) one
working day, to come up with a carefully justified account of ‘how’ the proposed implementation is intended to
function...)”

3The counterexample is the following strings of length 8: D = 11010100, CK = 10110010, Q = 10101111, P1 = 00010101,
P2 = 11111111, P3 = 10100111, P4 = 11111101, and P5 = 10101000.
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CK
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P4

P3

P1

P5

Q

P2

Figure 3: D-Type Flipflop

• the value of F is stable in [t1, t2]:
stable(t1, t2, F ) ≡ ∀1t : t1 ≤ t ≤ t2 → (F (t) ↔ F (t1))

• t2 is the first instant after t1 when F becomes high:
next(t1, t2, F ) ≡ t1 < t2 ∧ F (t2) ∧ (∀1t : t1 < t < t2 → ¬(F (t))

• F rises at t:
rise(t, F ) ≡ t > 0 ∧ (¬F (t 	 1) ∧ F (t))

• F falls at t:
fall(t, F ) ≡ t > 0 ∧ (F (t 	 1) ∧ ¬F (t))

Also, we use the higher-order predicate (also just a macro) eqpred(Out, Q, Ival), where Out is a second-
order term, Q is a predicate Q(p, I) with p a first-order variable and I a second-order variable. The
predicate eqpred(Out, Q, Ival) holds if and only if for all p, Out(p) ↔ Q(p, Ival). Thus Out is the result of
evaluating Q according to Ival. For example, eqpred(P, rise, CK) holds if and only if P is the set of time
instants for which the clock goes high.

4.1 The circuit

The temporal behavior of a unit-delay nand-gate with inputs I1 and I2 and output O is described by

nand(I1, I2, O) ≡ ∀1t : t < $ → O(t ⊕ 1) ↔ ¬(I1(t) ∧ I2(t)) .

If we call the corresponding predicate for three inputs nand3(I1, I2, I3, O), then the flipflop in Figure 3 is
described by

dtype imp ≡ nand(P2, D, P1) ∧ nand3(P3, CK, P1, P2) ∧ nand(P4, CK, P3) ∧
nand(P1, P3, P4) ∧ nand(P3, P5, Q) ∧ nand(Q, P2, P5) .

4.2 Stability analysis

In our model a simple flipflop may begin to oscillate due to a single negative spike:
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11101111. . .

11111111. . .

00001010101. . .

11111010101. . .

One condition for the circuit to be stable is that the inputs do not change for a period of length
input stable time. We define

input stable(t) ≡ t + input stable time − 1 ≤ $
∧ stable(t, t + input stable time − 1, D)
∧ stable(t, t + input stable time − 1, CK)

to denote that inputs are stable for a period of length input stable time.4 For our purposes, we regard the
circuit as stable if both flipflops connected to the inputs are stable, i.e.,

circuit stable(t) ≡ t + circuit stable time − 1 ≤ $
∧ stable(t, t + circuit stable time − 1, P1)
∧ stable(t, t + circuit stable time − 1, P2)
∧ stable(t, t + circuit stable time − 1, P3) .

(Note that P4 need not be restricted for the stability analysis.)
Stability preservation of the circuit can be expressed informally as: if the circuit is stable at some ts

and if the inputs are held stable at ti then there is t′s ≥ ti such that the circuit is stable at t. Thus, we
define

stability preserved ≡ (∃1ts : circuit stable(ts)) →
(∀1ti : input stable(ti) ∧ “ti not too close to $” →

∃t′s : t′s ≥ ti ∧ circuit stable(t′s)) .

Here “ti not too close to $” is a condition that is necessary since formulas are interpreted over finite
sequences only. We have chosen it to be simply true. But in general, some constant must be chosen so
that the quantification ∃1t′s succeeds before “time runs out,” i.e. before the finite segment of time that the
logic is interpreted over ends.

4.3 Input requirements

Stability is not preserved unless the inputs are restrained. The clock signal must not form a negative spike
of duration less than min clock low or a positive spike of duration less than min clock. The D signal must
be stable for at least setup units before CK rises. We define these conditions as

input requirements ≡ ∀1t : (fall(t, CK) → stable(t, min clock low − 1, CK)) ∧
(rise(t, CK) → stable(t, min clock − 1, CK)) ∧
(rise(t, CK) → stable(t − setup, t, D) .

Now, with the choices

min clock low 2
setup 2
circuit stable time 2
input stable time 4

4We here use + instead of ⊕. The formula t < t′ + 3 holds if + is interpreted in the usual sense without “wrap-around.”
We need the conjunct “t + input stable time − 1 ≤ $” to prevent t from lying too close to the end.
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Mona proves the implication

dtype imp ∧ input requirements → stability preserved

in about 15 seconds. These constants are optimal. For example, if we lower setup to 1, then the counter-
example

ti = 001000 P1 = 001111
ts = 100000 P2 = 111010
D = 100000 P3 = 111010
CK = 001111 P4 = x11010
Q = 101010 P5 = 101010

is produced. Here we have made ts and ti free variables so that Mona can generate a counter-example that
identifies the exact spot of trouble.5 One clearly sees how the failure of maintaining the D signal stable
before the rise of the clock results in oscillations despite that the inputs are later kept stable.

The essential D-flipflop behavior is as depicted below: if the circuit is stable at t0 and the clock rises
at tr , then falls at tf (after at least min clock units from tr), and then rises again at t′r (after at least
min clock low units from tf ), then the value of D at tr appears at Q at time tr + stabilization and remains
there until time t′r + mem provided that the D value is held constant in the period from tr − setup until
tr + hold. This complicated set of circumstances is best illustrated in a diagram:

hold

mem
stabilization

setup

tr tf

time for Q to stabilize

min clock low

Q is constant and same as D at tr

min clock

time D must be constant

CK

Formally, we express these conditions as:

dtype ≡ ∀ t0, tr, tf , t′r :
(circuit stable(t0) ∧ t0 < tr ∧ rise(tr, CK)
∧ (∃2P : eqpred(P, rise, CK) ∧ next(tr , t′r, P ))
∧ (∃2P : eqpred(P, fall, CK) ∧ next(tr , tf , P ))) →
(stable(tr + stabilization, t′r + mem, Q)
∧ Q(tr + stabilization) ↔ D(tr))

With the additional choices

min clock 2
hold 1
mem 1

5Note that ti and ts are first-order position variables. These are actually encoded in Mona as second-order variables
ranging over singleton sets. E.g., ti and ts point to the 2nd and 0th position respectively.
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the implication
dtype imp ∧ input requirements → dtype

is verified in about 15 seconds. Also, experiments show that these values cannot be lowered.

5 Statistics, Comparison, and Conclusions

The case studies presented here were carried out over two weeks using the Mona system. This time included
adding extensions to the system to generate counter-models and debugging of specification errors caused
by the primitive front end supported by the current implementation.

It is instructive to compare our proofs with previous proofs of these circuits. The parameterized adder
and ALU were also studied by Cantu using the Edinburgh Clam System [6] and by Cyrluk et. al. using
PVS [4]. CLAM is a system that generates proofs by induction for a higher-order logic (a constructive
type theory). Cantu’s development took two weeks and the proof is constructed automatically (in about
6 minutes) by CLAM. His specification shares some similarities to ours, but differs in several important
respects. He specified the circuit as a recursive function while we specified it as a non-recursive relation.
Both are valid representation techniques, but note that we cannot write explicit recursive functions in
M2L(Str). On the other hand, if Cantu had specified a recursively defined relation, the system he uses
would have been unable to construct a proof.6

The ALU theorem was also verified using PVS. PVS is a semi-interactive theorem prover that features
built-in simplifiers and decision procedures; for example BDDs are used for propositional reasoning. Users
can control proof construction by writing proof strategies (similar to tactics in the LCF sense). In [4]
the adder and the ALU are verified using the induction, normalization, and BDD features of PVS. The
formalization of these circuits is similar to Cantu’s. Verification by induction of the parameterized adder
is stated to last approximately 2 minutes (as opposed to our time of one second) although their proof of
the ALU required only three times as much time (90 seconds versus our 27 seconds).

Reasoning about temporal properties of circuits like flip-flops can be carried out in systems based on
different varieties of temporal logic. We believe, however, that the ability to refer directly to instants of
time — instead of being restrained by a particular set of temporal modalities (which can be directly defined
in Mona) — is a particular advantage when the behavior is as complex as that of the circuit studied.

As discussed in §4, verification of flipflops has been laboriously carried out in theorem provers based on
higher-order logic and here the use of Mona brings real advantages. Of course, unlike interactive proof, our
approach is inherently limited by the combinatorial explosion that follows when the number of variables
or gates become bigger. However, being a subset of higher-order logic, our method is particularly suited
for integration into traditional theorem proving systems and would supplement such systems in the same
way as integration of BDD and model checking procedures [4, 11].
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