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From Timed Automata to Logic
— and Back ∗

François Laroussinie
BRICS†, Aalborg Univ., Denmark

Kim G. Larsen
BRICS, Aalborg Univ., Denmark

Carsten Weise
Aachen Univ., Germany

Abstract

One of the most successful techniques for automatic verification is that
of model checking. For finite automata there exist since long extremely
efficient model–checking algorithms, and in the last few years these algo-
rithms have been made applicable to the verification of real–time automata
using the region–techniques of Alur and Dill.

In this paper, we continue this transfer of existing techniques from the
setting of finite (untimed) automata to that of timed automata. In particu-
lar, a timed logic Lν is put forward, which is sufficiently expressive that we
for any timed automaton may construct a single characteristic Lν formula
uniquely characterizing the automaton up to timed bisimilarity. Also, we
prove decidability of the satisfiability problem for Lν with respect to given
bounds on the number of clocks and constants of the timed automata to be
constructed. None of these results have as yet been succesfully accounted
for in the presence of time 1.

∗This work has been supported by the European Communities under CONCUR2, BRA
7166
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
1An exception occurs in Alur’s thesis [Alu91] in which a decidability result is presented for

a linear timed logic called MITL.

1



Contents

1 Introduction 3

2 Timed Automata 4

3 Timed Modal Logic Lν 6

4 Model Checking 8

5 Characteristic Properties 10

6 Model Construction 13

A Proof of Theorem 2 20

B Proof of Proposition 1 21

2



1 Introduction

One of the most successful techniques for automatic verification is that of
model–checking; i.e. a property is given as a formula of a propositional tem-
poral logic and automatically compared with an automata 2 representing the
actual behaviour of the system. Extremely efficient model–checking algorithms
have been obtained for finite automata with respect to the branching–time tem-
poral logics CTL [CE81, QS82, CES86] and (various fragments of) the modal
µ–calculus [Koz82, AC88, EL86, CS91, And92, Xin92].

In the last few years, model–checking has been extended to real–time sys-
tems, with time considered to be a dense linear order. A timed extension of
finite automata through addition of a finite set of real–valued clocks has been
put forward [AD94], and the corresponding model–checking problem has been
proven decidable for a number of timed logics including timed extensions of
CTL (TCTL) [ACD90] and a timed µ–calculus (Tµ) [HNSY92].

However, in the untimed setting automata and logics enjoy a number of
other important relationships which at present are either absent or at best
unaccounted for in the setting of real–time automata and the corresponding
real–time logics:

— Given a finite automaton, both CTL and the modal µ–calculus are suffi-
ciently expressive that corresponding characteristic formulas may be expressed
with respect to a number of behavioural preorders and equivalences (e.g. bisim-
ilarity) [BCG88, GS86, IS94]: i.e. an automaton is related to another in the
preorder if and only if the first automaton satisfies the characteristic formula of
the second. As characteristic formulas can be automatically constructed in time
linear in the size of the argument automaton, this yields a preorder checking
method that outperforms other known algorithms [CS91]. No such relationship
has so far been established between timed automata and any of the proposed
real–timed logics;

— The satisfiability problems for CTL and the modal µ–calculus have been
proven decidable [EC82, EH85, Wol85, KP83]; thus given a logical property it
is possible to automatically synthesize a satisfying finite automata (provided
any such exists). In contrast, the satisfiability problems for both TCTL and
Tµ are undecidable [ACD90, HNSY92]

In this paper we present results establishing both of the two above desired
relationships in the presence of real–time (timed automaton). In particular we
put forward a timed logic Lν for which we establish the following:

— First, we present an effective characteristic formula construction for
timed bisimilarity, transforming any timed automaton into a formula of Lν

characterizing precisely the equivalence class of the automaton. Thus, timed
bisimilarity between automata reduces to a model–checking problem, which —
when combined with the model–checking algorithm for Lν — yields an alter-
native algorithm for timed bisimulation compared with [Cer92]. In addition,
characteristic formula constructions may be given for time–abstracted equiv-
alence [LW93] and the “faster–than” relation in [FT91], immediately yielding

2or a kripke structure

3



decision procedures for these relationships as well;
— Second, we prove decidability of bounded satisfiable for Lν. That is,

we present a model–construction algorithm, which given a formula of Lν and
bounds k and M will synthesize a timed automata with no more than k clocks
and no clock being compared with constants greater than M (provided any
such exits).

Combining the characteristic formula construction with the bounded model–
construction algorithm enables us to decide whether an automaton can be sim-
plified in terms of number of clocks and constants used for comparison.

The remainder of this paper is organized as follows: In the next section
we give a short presentation of the notion of timed automata used in this pa-
per; in section 3, the logic Lν is presented, and in section 4 we review the
region technique by Alur and Dill [AD94] and present a decidability result for
the model–checking problem of Lν. Section 5 presents the characteristic for-
mula construction, whereas section 6 presents the bounded model–construction
algorithm.

2 Timed Automata

Let A be a fixed set of actions ranged over by a, b, c, . . .. We denote by N the set
of natural numbers and by R the set of non–negative real numbers. D denotes
the set of delay actions {ε(d) |d ∈ R}, and L denotes the union A∪D. If C is a
set of clocks, B(C) denotes the set of formulas built using boolean connectives
over atomic formulas of the form x ≤ m, m ≤ x, x ≤ y + m and y + m ≤ x
with x, y ∈ C and m ∈ N. Moreover BM (C) denotes the subset of B(C) with
no constant greater than M .

Definition 1 A timed automaton A is a tuple 〈A,N, η0, C,E〉 where A is a
finite set of actions, N is a finite set of nodes, η0 is the initial node, C is a finite
set of clocks, and E ⊆ N ×N ×A× 2C ×B(C) corresponds to the set of edges.
e = 〈η, η′, a, r, b〉 ∈ E represents an edge from the node η to the node η′ with
action a, r denoting the set of clocks to be reset and b is the enabling condition
over the clocks of A.

Example 1 Consider the 2-clock automaton A described in the left part of
figure 1. The automaton has four nodes, η0, η1, η2 and η3, two clocks, x and y,
and three edges. The edge between η0 and η1 has a as action, {x} as reset set
and the enabling condition for the edge is 0 < x < 1. 2

Informally, the system starts at node η0 with all its clocks initialized to
0. The values of the clocks increase synchronously with time. At any time,
the automaton whose current node is η can change node by following an edge
〈η, η′, a, r, b〉 ∈ E provided the current values of the clocks satisfy b. With this
transition the clocks in r get reset to 0.

A time assignment v for C is a function from C to R. We denote by RC

the set of time assignments for C. For v ∈ RC, x ∈ C and d ∈ R, v +d denotes
the time assignment which maps each clock x in C to the value v(x) + d. For
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Figure 1: An automaton and its behaviour

C ′ ⊆ C, [C ′ 7→ 0]v denotes the assignment for C which maps each clock in C ′ to
the value 0 and agrees with v over C\C ′. Given a condition b ∈ B(C) and a time
assignment v ∈ RC , b(v) is a boolean value describing whether b is satisfied by
v or not. Finally a k–clock automata is a timed automata 〈A, S, η0, C,E〉 such
that |C| = k.

A state of an automaton A is a pair 〈η, v〉A where η is a node of A and v a
time assignment for C. The initial state of A is 〈η0, v0〉A where v0 is the time
assignment mapping all clocks in C to 0.

The semantics of A is given by a labelled transition system MA = 〈ΣA,L, σ0,
−→A〉, where ΣA is the set of states of A, σ0 is the initial state 〈η0, v0〉A, and
−→A is the transition relation defined as follows:

〈η, v〉 a−→A〈η′, v′〉 iff ∃r, b. 〈η, η′, a, r, b〉 ∈ E ∧ b(v) ∧ v′ = [r → 0]v

〈η, v〉 ε(d)−→A〈η′, v′〉 iff η = η′ and v′ = v + d

We may now apply the standard notion of bisimulation [Mil89, Par81] to
the labelled transition systems determined by two automata A and B. Letting
sA and sB range over states of respectively A and B, stong timed bisimulation
∼ is defined as the largest symmetric relation over ΣA×ΣB such that whenever
sA ∼ sB and ` ∈ A ∪ D then

• Whenever sA
`−→As′A then there exists s′B such that sB

`−→Bs′B and
s′A ∼ s′B .

We say that A and B are strong timed bisimular if their initial states are strong
bisimilar.

Example 2 Reconsider the automaton A of Figure 1. The two coordinate
systems in the right part of the Figure indicates (some of) the states of A. Each
point of the coordinate systems represents a unique time assignment, with the
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top (resp. bottom) coordinate system representing states involving the node η0
(resp. η1). In the Figure we have indicated the following transition sequence
(where d < 1 and e + d ≤ 1):

〈η0, (0, 0)〉 ε(d)−→ 〈η0, (d, d)〉 a−→ 〈η1, (0, d)〉 ε(e)−→ 〈η1, (e, d + e)〉 b−→

In addition, it is indicated that A can perform a c–transition in the state
〈η1, (0, d)〉. 2

3 Timed Modal Logic Lν

We consider a dense–time logic Lν with clocks and recursion. This logic may
be seen as a certain fragment 3 of the µ–calculus Tµ presented in [HNSY92].

Definition 2 Let K a finite set of clocks, Id a set of identifiers and k an integer.
The set Lν of formulae over K, Id and k is generated by the abstract syntax
with ϕ and ψ ranging over Lν :

ϕ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | ∃∃ ϕ | ∀∀ ϕ | 〈a〉 ϕ | [a] ϕ

| x in ϕ | x + n ∼ y + m | Z

where a ∈ A; x, y ∈ K; n, m ∈ {0, 1, . . . , k}; ∼∈ {=, <, ≤, >, ≥} and Z ∈ Id.

The meaning of the identifiers is specified by a declaration D assigning a
formula of Lν to each identifier. When D is understood we write Z

def= ϕ for
D(Z) = ϕ. The K clocks are called formula clocks and a formula ϕ is said to
be closed if every formula clock x occurring in ϕ is in the scope of an “x in . . .”
operator.

Given a timed automata A = 〈A,N, η0, C,E〉, we interpret the Lν formu-
las over an extended state 〈η, vu〉A+ where 〈η, v〉A is a state of A and u a
time assignment for K. Transitions between extended states are defined by:

〈η, vu〉A+
ε(d)−→ 〈η′, v + d u + d〉A+ and 〈η, vu〉A+

a−→ 〈η′, v′u′〉A+ iff 〈η, v〉A
a−→

〈η′, v′〉A and u = u′.
Informally, ∃∃ϕ holds in an extended state if there is a delay transition leading

to an extended state satisfying ϕ. Thus ∃∃ denotes existential quantification
over (arbitrary) delay transitions. Similarly, ∀∀ denotes universal quantification
over delay transitions, and 〈a〉 (resp. [a]) denotes existential (resp. universal)
quantification over a–transitions. The formula (x in ϕ) introduces a formula
clock x and initializes it to 0; i.e. an extended state satisfies the formula in
case the modified state with x being reset to 0 satisfies ϕ. Introduced formula
clocks are used by formulas of the type (x + n ∼ y + m), which is satisfied
by an extended state provided the values of the named formula clocks satisfies
the required relationship. Finally, an extended state satisfies an identifier Z if
it satisfies the corresponding declaration (or definition) D(Z). Formally, the
satisfaction relation between extended states and formulas is defined as follows:

3allowing only maximal recursion and using a slightly different notion of model
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Definition 3 Let A be a timed automaton and D a declaration. The satisfac-
tion relation |=D is the largest relation satisfying the following implications:

〈η, v u〉A+ |=D tt ⇒ true
〈η, v u〉A+ |=D ff ⇒ false

〈η, v u〉A+ |=D ϕ ∧ ψ ⇒ 〈η, v u〉A+ |=D ϕ and 〈η, v u〉A+ |=D ψ
〈η, v u〉A+ |=D ϕ ∨ ψ ⇒ 〈η, v u〉A+ |=D ϕ or 〈η, v u〉A+ |=D ψ

〈η, v u〉A+ |=D ∃∃ ϕ ⇒ ∃d ∈ R. 〈η, v+d u+d〉A+ |=D ϕ
〈η, v u〉A+ |=D ∀∀ ϕ ⇒ ∀d ∈ R. 〈η, v+d u+d〉A+ |=D ϕ

〈η, v u〉A+ |=D 〈a〉 ϕ ⇒ ∃ 〈η′, v′〉A. 〈η, v〉A
a−→ 〈η′, v′〉A and

〈η′, v′ u〉A+ |=D ϕ

〈η, v u〉A+ |=D [a] ϕ ⇒ ∀ 〈η′, v′〉A. 〈η, v〉A
a−→ 〈η′, v′〉A implies

〈η′, v′ u〉A+ |=D ϕ
〈η, v u〉A+ |=D x+m∼y+n ⇒ u(x) + m ∼ u(y) + n

〈η, v u〉A+ |=D x in ϕ ⇒ 〈η, v u′〉A+ |=D ϕ where u′ = [{x} → 0]u
〈η, v u〉A+ |=D Z ⇒ 〈η, v u〉A+ |=D D(Z)

Any relation satisfying the above implications is called a satisfiability rela-
tion. It follows from standard fixpoint theory [Tar55] that |=D is the union of all
satisfiability relations and that the above implications in fact are biimplications
for |=D. We say that A satisfies a closed Lν formula ϕ and write A |= ϕ when
〈η0, v0 u〉A+ |=D ϕ for any u. Note that if ϕ is closed, then 〈η, vu〉A+ |=D ϕ iff
〈η, vu′〉A+ |=D ϕ for any u, u′ ∈ RK .

The following real–time interval modalities present in the Extended Timed
Modal Logic introduced in [HLY92] are obtainable as derived operators of Lν,
e.g.:

∃ ]0;∞[ ϕ
def= x in

(
∃∃ (x > 0 ∧ ϕ)

)
∃ ]m;n[ ϕ

def= x in
(
∃∃ (x > m ∧ x < n ∧ ϕ)

)
Thus, ∃]m;n[ϕ is satisfied by and extended state if an extended state satisfying
ϕ can be reached with a delay between m and n. A formula is called a q-clocks
formula if it contains no more than q formula clocks. Thus formulas using only
the derived ∃ ]m;n[ or ∃ ]0;∞[ modalities are clearly 1-clock formulas (as each
use of an interval modality can be defined using the same formula clock x).

Example 3 Consider the timed automaton described in Figure 1. It may be
argued that the initial state 〈η0, v0 u0〉 satisfies the following Lν formula ϕ:

ϕ = ∃ ]0; 1[ 〈a〉
[(

〈c〉 tt
)

∧
(
∀ ]0; 1[ [c] ff

)
∧

(
∃ ]0; 1[ 〈b〉 tt

)
∧

(
∃ ]0; 1[ [b] ff

)]
(1)

Intuitively this formula means that “the action a can be performed after a
delay (strictly) between 0 and 1, after which (1) the action c can be performed
immediately but not after any positive delay, (2) the action b can be performed
after some delay in the interval ]0; 1[, and (3) the action b cannot be performed
after some delay in ]0; 1[”. 2
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4 Model Checking

The model-checking problem for Lν consists in deciding if a given timed au-
tomata A satisfies a given specification ϕ in Lν. This problem is decidable
using the region technique of Alur and Dill [AD94, ACD90] which provides an
abstract semantics of timed automata in the form of finite labelled transition
systems with the truth value of Lν formulas being maintained.

The basic idea is that, given a timed automaton A, two states 〈η, v1〉A

and 〈η, v2〉A which are close enough with respect to their clocks values (we
will say that v1 and v2 are in the same region) can perform the same actions,
and two extended states 〈η, v1 u1〉A+ and 〈η, v2 u2〉A+ where v1 u1 and v2 u2
are in the same region, satisfy the same Lν formulas. The notion of region is
defined as an equivalence class of a relation over time assignments [HNSY92]
4 . First, for t ∈ R, let btc def= max{n ∈ N | n ≤ t} denote the integral
part of t, and let {t} def= t − btc denote its fractional part. Moreover we have:
dte def= min{n ∈ N | t ≤ n}.

Definition 4 Let k ∈ N and let C be a set of clocks. Then u, u′ ∈ RC are
equivalent with respect to k, denoted by u

.= u′ iff:

i) ∀x ∈ C. u(x) > k iff u′(x) > k

ii) ∀x ∈ C s.t. u(x) ≤ k. bu(x)c = bu′(x)c and {u(x)} = 0 ⇔ {u′(x)} = 0
iii) ∀x, y ∈ C. u(x) − u(y) > k iff u′(x) − u′(y) > k

iv) ∀x, y ∈ C s.t. 0 ≤ u(x) − u(y) ≤ k. bu(x) − u(y)c = bu′(x) − u′(y)c
and {u(x) − u(y)} = 0 ⇔ {u′(x) − u′(y)} = 0

The equivalence classes under .= are called regions, and [u] denotes the
region which contains the time assignment u. RC

k denotes the set of all regions
for a set C of clocks and the maximal constant k. From a decision point of view
it is important to note that RC

k is finite.
Note that for any condition b in B(C) with no constant greater than k, we

have b(u) ⇔ b(u′), whenever u and u′ belong to the same region in RC
k . Thus

for a region γ ∈ RC
k , we can define b(γ) as the truth value of b(u) for any u in

γ. Conversely given a region γ, we can easily build a formula of B(C), called
β(γ), such that β(γ)(u) = tt iff u ∈ γ 5. Thus, given a region γ ′, β(γ)(γ ′) is
mapped to the value tt precisely when γ = γ ′. Finally, note that β(γ) itself can
be viewed as a Lν formula.

Given a region [u] in RC
k and C ′ ⊆ C we define the following reset operator:

[C ′ → 0][u] = [[C ′ → 0]u]. Moreover, for a region [u], we define the succssor
region (denoted by succ([u])) as the region [u′], where:

u′(x) =
{

u(x) + f ∀x ∈ C. u(x) > k ∨ {u(x)} 6= 0
u(x) + f/2 ∃x ∈ C. u(x) ≤ k ∧ {u(x)} = 0

4The notion of region used in the present paper is slightly more refined.
5An obvious way of building β(γ) is to consider the conjunction of all B(C, k) formulas

satisfied by γ, where B(C, k) denotes the finite set (modulo boolean reductions) of B(C)
formulas with no constant greater than k.
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succ(γ0) = γ6

. . .

succ(γ5) = γ13

0 < x < 1∧
0 < y < 1∧β(γ6) =
y = x

β(γ0) = (x = 0 ∧ y = 0)
β(γ8) = (0 < x < 1 ∧ y = 1)

β(γ7) =
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0 < y < 1∧
y > x

0
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1

4 12
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5
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13

9

10

11
24

y

x

2

Figure 2: RC
k with C = {x, y} and k = 1

where f = min{1 − {u(x)} | u(x) ≤ k} 6. Informally the change from γ to
succ(γ) correspond to the minimal elapse of time which can modify the enabled
actions of the current state.

We denote by γ l the lth successor region of γ (i.e. γ l = succl(γ)). From each
region γ, it is possible to reach a region γ ′ s.t. succ(γ ′) = γ ′, and we denote by
lγ the required number of step s.t. γ lγ = succ(γ lγ).

Example 4 The Figure 2 gives an overview of the set of regions defined by
two clocks x and y, and the maximal constant 1. In this case there are 31
different regions, of which only 14 are numbered in the figure. Corresponding
B(C)–formulas as well as successor regions are indicated for some of the regions.
In general successor regions are determined by following 45o lines upwards to
the right. 2

Given a timed automata A = 〈A,N, η0, C,E〉, let kA be the maximal con-
stant occurring in the enabling condition of the edges E. Then for any k ≥ kA

we can define a symbolic semantics of A over symbolic states [η, γ]A where η ∈ S
and γ ∈ RC

k as follows:

[η, γ]A
a−→ [η′, γ ′]A iff ∃ u ∈ γ, 〈η,u〉A

a−→ 〈η′, u′〉A and u′ ∈ γ ′

[η, γ]A
χ−→ [η, succ(γ)]A iff true

Consider now Lν with respect to formula clock set K and maximal constant
kL. Also consider a given timed automata A = 〈A,N, η0, C,E〉 (s.t. K and C
are disjoint). Then an extended symbolic state is a pair [η, γ]A+ where η ∈ N
and γ ∈ RC+

k with C+ = C ∪ K and k = max(kA, kL). Whenever γ is a
region over C ∪ K we denote by γ|C the set of time assignments in γ restricted
to the (automata) clock set C. Similarly, γ|K denotes the projection of all
time assignments in γ to the (formula) clock set K. Now we define a symbolic
semantics for Lν as follows:

6if this set is empty, then f = 0
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Definition 5 `D is the largest relation satisfying the following implications:

i) [η, γ]A+ `D tt ⇒ true
ii) [η, γ]A+ `D ff ⇒ false

iii) [η, γ]A+ `D ϕ ∧ ψ ⇒ [η, γ]A+ `D ϕ and [η, γ]A+ `D ψ
iv) [η, γ]A+ `D ϕ ∨ ψ ⇒ [η, γ]A+ `D ϕ or [η, γ]A+ `D ψ
v) [η, γ]A+ `D ∃∃ ϕ ⇒ ∃l ∈ N. [η, succl(γ)]A+ `D ϕ

vi) [η, γ]A+ `D ∀∀ ϕ ⇒ ∀l ∈ N. [η, succl(γ)]A+ `D ϕ

vii) [η, γ]A+ `D 〈a〉 ϕ ⇒ ∃ [η′, γ ′]A+. [η, γ|C]A
a−→ [η′, γ ′|C]A and

γ ′|K = γ|K and [η′, γ ′]A+ `D ϕ

viii) [η, γ]A+ `D [a] ϕ ⇒ ∀ [η′, γ ′]A+ . [η, γ|C]A
a−→ [η′, γ ′|C]A and

γ ′|K = γ|K implies [η′, γ ′]A+ `D ϕ

ix) [η, γ]A+ `D x+c∼y+d ⇒ (x + c ∼ y + d)(γ)
x) [η, γ]A+ `D x in ϕ ⇒ [η, [{x} → 0]γ]A+ `D ϕ
xi) [η, γ]A+ `D Z ⇒ [η, γ]A+ `D D(Z)

Any relation satisfying the above implications is called a symbolic satisfiability
relation. In the following we write [η, γ] instead of [η, γ]A+ when no confusion
is possible. The above symbolic interpretation of Lν is closely related to the
standard interpretation from Definition 3 as stated in the following theorem:

Theorem 1 Let ϕ be a formula of Lν, and let 〈η, v u〉A+ be an extended state
over some timed automaton A . Then we have 7:

〈η, v u〉A+ |=D ϕ if and only if [η, [v · u]]A+ `D ϕ

It follows that the model checking problem for Lν is decidable since, given
ϕ ∈ Lν, it suffices to to check the truth value of any given Lν formula ϕ with
respect to the finite transition system 〈N ×RC+

k ,A∪{χ}, σ0,→〉 corresponding
to the extended symbolic semantics of A.

5 Characteristic Properties
First let us recall the characteristic formula construction for finite automata 8

[IS94, GS86, BCG88] (see Figure 3). The construction defines the characteristic
formula Φ(A) of a node A in terms of similar characteristic formulas of the
derivates A1 . . . An of A: whenever A has an ai–transition to Ai this is reflected
in Φ(A) by addition of a conjunct 〈ai〉Φ(Ai). To characterize A up to strong
bisimilarity Φ(A) contains in addition a conjunct [a]Ψa for each action a, where
Ψa is a disjunction over all a–transitions out of A. In general the definitions
of characteristic formulas Φ(A) constitutes a simultaneous recursive definition
(as the automaton may have cycles), and to obtain the desired characterization
the solution sought is the maximum one.

For timed automata the characteristic formula construction must necessarily
take account of the time assignment in addition to the actual node. Thus, for a

7where v · u is the time assignment over C ∪ K such that (v · u)(x) = v(x) if x ∈ C and
(v · u)(x) = u(x) if x ∈ K .

8Alternatively you may think of finite automata as zero–clock timed automata.

10



A1 An

A

ana1
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n∧
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∧
a
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i.ai=a

Φ(Ai)
)

Figure 3: Characteristic formula for finite automata.

timed automaton A = 〈A, N, η0, C,E〉, we shall define characteristic formulas
of the form Φ(η,γ), where η is a node of A and γ is a region over the clocks of A.
The construction of Φ(η, γ) follows closely the pattern from the finite automa
case. However, we first need to be able to determine the (a–) edges out of η
which are enabled in the region γ. Given an edge e = 〈η, η′, a, r, b〉 in E, ηe (resp.
η′e, ae, re, be) denotes η (resp. η′, a, r, b). Given η ∈ N and γ ∈ RC

kA
, we define

E(η,γ) = {e | ηe = η and be(γ) = tt} and E(η,γ, a) = {e ∈ E(η, γ) | ae = a}.
Thus, E(η,γ) (resp. E(η, γ, a)) is the set of all enabled transitions (resp. a-
transitions) from [η, γ]A.

We may now present the characteristic formula construction for timed au-
tomata:

Definition 6 Let A be a timed automata 〈A, N, η0, C,E〉. For any region γ
in RC

kA
, and node η in N , we introduce an identifier Φ(η, γ) (the characteristic

formula) associated with the symbolic state [η, γ]A. The definition (declaration)
for Φ(η, γ) is:

Φ(η, γ) def=


∧

e∈E(η,γ)

〈ae〉
(
re in Φ(η′e, re(γ))

)
∧

∧
a

[a]
( ∨
e∈E(η,γ,a)

(
re in Φ(η′e, re(γ))

))
∧ ∀∀

(∧
l=0..lγ

β(γl) ⇒ Φ(η, γl)
)


We denote by IdA the set of identifiers Φ(η,γ) and by DA the corresponding

declaration.

Note that the declaration for Φ(η, γ) is not quite a Lν formula due to the
presence of implication. However, it is easy to transform it into an equivalent Lν

formula because the negation of β(γ) can be expressed in Lν . Moreover (r in ϕ)
is an abbreviation for (c1 in(c2 in . . . (cn inϕ))) whenever r is {c1, . . . , cn}. Finally
r(γ) denotes [r → 0]γ. Note that DA uses no more than |C| formula clocks.

The declaration for Φ(η, γ) contains three groups of conjunctions the two
first of which are closely related to the characteristic formula construction for
finite automata. The first group contains a 〈ae〉–formula for any edge e, which
is enabled at η in the region γ. Following this edge clearly takes the automaton
to the extended state [η′e, re(γ)]. The second group of conjuncts contains for
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each action a a formula of the type [a]Ψa, where Ψ is a disjunction over all a–
labelled edges being enabled at η in the region γ. Whereas the two first groups
exhaustively characterizes the action behaviour of the extended state [η, γ], the
third conjunct is a ∀∀–formula dealing with all delay transitions by requiring
that any delay leading to a particular successor region γ l should satisfy the
corresponding characteristic formula.

Example 5 Reconsider the timed automata A described in Example 1 and the
corresponding regions from Example 4. Below we give the declaration of some
of the characteristic formulas. We define ϕnil

def=
∧

a[a] ff 9 and we denote β(γi)
by βi. We have:

Φ(η0, γ0)
def= ϕnil ∧ ∀∀

[
(β0 ⇒ Φ(η0, γ0)) ∧ (β6 ⇒ Φ(η0, γ6)) ∧ (β14 ⇒ Φ(η0, γ14))

∧(β24 ⇒ Φ(η0, γ24))
]

Φ(η0, γ6)
def= 〈a〉 Φ(η1, γ4) ∧ [a] Φ(η1, γ4) ∧ [b] ff ∧ [c] ff

∧∀∀
[
(β6 ⇒ Φ(η0, γ6)) ∧ (β14 ⇒ Φ(η0, γ14)) ∧ (β24 ⇒ Φ(η0, γ24))

]
Φ(η1, γ4)

def= 〈b〉 Φ(η2, γ4) ∧ 〈c〉 Φ(η3, γ4) ∧ [b] Φ(η2, γ4) ∧ [c] Φ(η3, γ4) ∧ [a] ff

∧∀∀
[
(β4 ⇒ Φ(η1, γ4)) ∧ (β5 ⇒ Φ(η1, γ5)) ∧ (β13 ⇒ Φ(η1, γ13))

∧(β21 ∨ β22 ∨ β23) ⇒ ϕnil
]

Φ(η1, γ5)
def= 〈b〉 Φ(η2, γ4) ∧ [b] Φ(η2, γ4) ∧ [c] ff ∧ [a] ff

∧∀∀
[
(β5 ⇒ Φ(η1, γ5)) ∧ (β13 ⇒ Φ(η1, γ13))

∧(β21 ∨ β22 ∨ β23) ⇒ ϕnil

]
Φ(η2, γ) def= ∀∀ϕnil

Φ(η3, γ) def= ∀∀ϕnil

2

We have the following Main Theorem the proof of which is given in Appendix A.

Theorem 2 Let A = 〈A,N, η0, C,E〉 and B = 〈A,M, ρ0,K, F 〉 be two timed
automata. Then for any ρ ∈ M , η ∈ N , v ∈ RK and u ∈ RC:

〈ρ, v〉B ∼ 〈η,u〉A iff 〈ρ, v u〉B+ |=DA Φ(η, [u])

where DA corresponds to the previous definition of Φ(η, γ) for each η ∈ N and
γ ∈ RC

kA
.

As model–checking of Lν is decidable we may use the above characteristic for-
mula construction to decide timed bisimilarity between timed automata: to
decide if two timed automata are timed bisimilar simply compare the one au-
tomaton to the characteristic formula of the other.

Corollary 1 Timed bisimilarity between timed automata is decidable.
9a state satisfies ϕnil whenever no action can be performed.
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6 Model Construction

In this section we address the satisfiability problem for Lν . That is we want to
decide whether there exists a timed automaton A satisfying a given Lν–formula
ϕ. The hardness of this problem is illustrated by the following Proposition:

Proposition 1 Let Ψl be the 1-clock formula defined as follows:

Ψl
def=

(
∃ ]0;∞[ 〈a〉 · · · ∃ ]0;∞[ 〈a〉︸ ︷︷ ︸

l

)[ ∧
i=1..l

∃ ]0; 1[
(
〈ai〉 tt ∧

∧
j 6=i

[aj] ff
)]

where l ∈ N. Then Ψl is satisfiable by some p-clock automata if and only if
l ≤ 2p + 1.

As a consequence of this Proposition 10 we cannot deduce the number of
clocks in the automata from the number of clocks in ϕ. In fact, similar to the
results for TCTL and Tµ, we conjecture that the satisfiability problem for Lν

is undecidable 11.
Instead, we address the following more restricted bounded satisfiability

problem in which bounds have been placed on both the number of automa-
ton clocks as well as the size of the constants these clocks are compared to:
given a formula ϕ (over a declaration D), a set of clocks C and an integer M ,
we want to decide (and synthesize) whether there exists a (C,M)–automata 12

s.t. A |=D ϕ. We have the following main result:

Theorem 3 The bounded satisfiability problem for Lν is decidable.

The remainder of this section is devoted to the proof of this theorem and to an
example of bounded satisfiability checking. The decision procedure is closely
related to the canonical model construction for modal logic [HC68].

Let ϕ be a given Lν formula with kϕ as maximal constant. Let K be the set
of formula clocks occurring in ϕ. Given C a set of clocks (with C ∩K = ∅) and
M an integer, we want to decide if there exists a (C,M)–automaton satisfying
ϕ.

Let C+ = C ∪ K. Let Lϕ
ν be the set of all subformulae of ϕ 13. Obviously

Lϕ
ν is finite.

A problem Π is a subset of RC+

k ×Lϕ
ν where k = max(M, kϕ). A problem Π

is said to be satisfiable14 if there exists a (C,M)-automaton A and a node η of
A such that for any (γ,ψ) ∈ Π we have [η, γ]A+ |=D ψ. We call A a solution to
Π.

10the proof is given in appendix B
11due to the lack of a minimal fixed–point construct in Lν and hence the lack of ability to

express liveness properties we are unable to adopt the undecidability proofs for TCTL and
Tµ.

12i.e. a |C|-clock automata A with maximum constant M .
13including ϕ and with D(Z) being a subformula of Z.
14or more precisely (C, M)–satisfiable.
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A problem Π is said to be maximal if it satisfies the following closure con-
ditions:

(γ,ψ) ∈ Π ⇒ (γ, tt) ∈ Π
(γ,ψ1 ∧ ψ2) ∈ Π ⇒ (γ,ψ1) ∈ Π and (γ,ψ2) ∈ Π
(γ,ψ1 ∨ ψ2) ∈ Π ⇒ (γ,ψ1) ∈ Π or (γ,ψ2) ∈ Π
(γ,∃∃ψ) ∈ Π ⇒ ∃l. (γ l, ψ) ∈ Π
(γ,∀∀ψ) ∈ Π ⇒ ∀l. (γ l, ψ) ∈ Π
(γ,x in ψ) ∈ Π ⇒ ([{x} → 0]γ,ψ) ∈ Π
(γ,Z) ∈ Π ⇒ (γ,D(Z)) ∈ Π

We have the two following lemmas, the proofs of which are trivial:

Lemma 1 If Π ⊆ Π′ and Π′ is satisfiable then also Π is satisfiable.

Lemma 2 If Π is satisfiable then there exists a maximal problem Π′ containing
Π and being satisfiable.

Thus it suffices to consider satisfiability of maximal problems. Given a
problem Π, a region γ and an action a we define the problem Πγ,r

a as the set
{(r(γ),ψ) | (γ, [a] ψ) ∈ Π}. Now we introduce a new notion about problems.
Let C be a set of maximal problems. Then C is a consistency relation if whenever
Π ∈ C then:

1− If (γ,x + m ∼ y + n) ∈ Π then γ(x) + m ∼ γ(y) + n
2− For all γ, (γ, ff) 6∈ Π
3− Whenever (γ, 〈a〉 ψ) ∈ Π , there exists some r ⊆ C, b ∈ BM(C) with

b(γ) = tt and Π′ ∈ C s.t. :
i) (r(γ),ψ) ∪ Πγ,r

a ⊆ Π′

ii) ∀γ ′, b(γ ′) = tt ⇒ Πγ′,r
a ⊆ Π′

We say that a maximal problem is consistent if it belongs to some consistency
relation. We have the following key lemma:

Lemma 3 Let Π be a maximal problem. Then Π is consistent if and only if Π
is satisfiable.

Proof ⇐ It’s easy to show that C = {Π | Π maximal and satisfiable} is a
consistency relation.
⇒ Let C be a consistency relation (containing Π). Now construct the canonical
automaton AC = 〈A,N, η0, C,E〉 s.t. :

• N = {ηΠ | Π ∈ C}
• η0 is some ηΠ ∈ N .
• 〈ηΠ, ηΠ′ , a, r, b〉 ∈ E iff whenever (γ, [a]ψ) ∈ Π and b(γ) = tt then (r(γ),ψ) ∈

Π′.

Now it can be shown that AC solves all problems of C. In particular whenever
(γ,ψ) ∈ Π for some Π ∈ C, then [ηΠ, γ]A+

C
|=D ψ. To prove this we show

that the relation 
 defined by: [ηΠ, γ] 
 ψ iff (γ,ψ) ∈ Π with Π ∈ C is
a symbolic satisfiability relation. That is, we must show that 
 satisfies the
eleven implications of definition 5:

14



• The implications i), iii) − vi), x) and xi) follow from maximality of any
Π in C.

• The implications ii) and ix) follow directly from consistency of C.

• The implications vii) and viii) follow from the construction of E which
is always possible thanks to the consistency of C.

2

Finally we have:

Lemma 4 It is decidable whether a maximal problem is consistent.

Proof Let SΠm be the set of maximal problems over RC+

k ×Lϕ
ν . Clearly SΠm

is finite (since Lϕ
ν and RC+

k are too). Thus the set of relations C over maximal
problems is finite. Now given a relation C it is easy to check whether C is
consistent since the choices for possible reset set r over C and the set BM (C)15

are both finite. 2

Thus given a formula ϕ and bounds C and M , we can consider the (finitely
many) maximal problems Π over C and M containing (γ0, ϕ). It follows that
ϕ is (C,M)–satisfiable precisely if one of these maximal problems is consistent,
which is decidable due to Lemma 4. Note that the proof of Theorem 2 is
constructive: given a consistency relation it gives a (C,M)-timed automata
satisfying ϕ.

Example 6 Consider the formula ϕ in Example 3:

ϕ = ∃ ]0; 1[ 〈a〉
[(

〈c〉 tt
)

∧
(
∀ ]0; 1[ [c] ff

)
∧

(
∃ ]0; 1[ 〈b〉 tt

)
∧

(
∃ ]0; 1[ [b] ff

)]
We can use the model construction algorithm presented above to show that no
(1, 1)-automata satisfies ϕ. Since ϕ is a one-formula clock and |C| = 1, we have
C+ = {x, y} where x denotes the automata clock and y the formula clock. Let
ψ be the formula s.t. ϕ = ∃ ]0; 1[ 〈a〉 ψ.

Consider the problem Π = {(γ0,∃]0; 1[〈a〉ψ)}, where γ0 refers to the regions
of Example 4. The maximal problem including Π is Π0 = {(γ0,∃]0, ; 1[〈a〉ψ), (γ6,
〈a〉 ψ), (γ0, tt), (γ6, tt)}. If Π0 is consistent, there exists a relation C containing
a maximal problem Π1 s.t. for some r1 ∈ {{x},∅} and b1 ∈ B1({x}) with
b1(γ6) = tt we have: (r1(γ6), ψ) ∈ Π1. We distinguish two cases depending on
r1:

• r1 = ∅ : Π1 contains (γ6, ψ). Since it’s maximal, it also contains (γ6, 〈c〉 tt)
and (γ6,∀]0; 1[ [c] ff. Then {(γ6, [c] ff), (γ14, [c] ff), (γ24, [c] ff)} ⊂ Π1. Thus Π1
is not consistent since (γ6, 〈c〉 tt) and (γ6, [c] ff) require the existence of a
maximal problem containing (γ6, ff) or (γ1, ff). Thus C is not a consistency
relation.

15modulo boolean reduction
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• r1 = {x} : Π1 contains (γ1, ψ), (γ1, 〈c〉 tt), (γ1,∀ ]0; 1[ [c] ff), (γ1,∃ ]0; 1[ 〈b〉 tt)
and (γ1,∃ ]0; 1[ [b] ff). In fact there are several possibilities for Π1 depend-
ing on which term among (γ7, 〈b〉 tt), (γ8, 〈b〉 tt), γ9, 〈b〉 tt) and which term
among (γ7, [b] ff), (γ8, [b] ff), γ9, [b] ff) are contained in Π1 due to its max-
imality. In any case there are some (γ, 〈b〉 tt) and (γ ′, [b] ff) in Π1 with
γ, γ ′ ∈ {γ7, γ8, γ9}. Then there exists a maximal problem Π2 s.t. for some
r2 ∈ {{x},∅} and b2 ∈ B1({x}) with b2(γ) = tt and (r2(γ), tt) ∈ Π2. But
for any condition b ∈ B1({x}) we have: b(γ7) = b(γ8) = b(γ9), and thus
(γ ′, [b]ff) ∈ Π1 requires that (r2(γ ′), ff) is in Π2. Thus C is not a consistency
relation.

Thus no (1, 1)-automata satisfies ϕ. 2

Thus the formula in the above example is satisfiable by a 2–clock automa-
ton but by no (1, 1)–automata. Using the easily established fact that timed
bisimilar automata satisfy the same Lν–formulas it follows that the automaton
of Example 3 is inequivalent to all (1, 1)–automata with respect to timed bisim-
ilarity. Now combining the above bounded model–construction algorithm with
the characteristic property construction of the previous section we obtain an al-
gorithm for deciding whether a timed automaton can be simplified in either its
number clocks or the size of the constants these clocks are compared to. Using
this combined method it can (constructively) be seen that the 2–clock automa-
ton obtained by changing the c–edge enabling condition in Example 1 from
x = 0 to x > 0 may endeed be simplified to an equivalent (1, 1)–automaton.

Corollary 2 Given a timed automaton A, a clock set C and a natural num-
ber M , it is decidable whether there exists a (C,M)–automaton being timed
bisimilar to A.
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Conclusion

This paper has presented two main contributions: (1) a characteristic for-
mula construction which for any given timed automaton give a logical for-
mula uniquely characterizing it; and (2) a model construction algorithm, which
given a logical formula will (if possible) synthesize a satisfying timed automaton
within given bounds on the number of clocks and constants used.

The results presented may be pursued and improved in a number of direc-
tions: The notion of a characteristic formula construction may be applied to
other behavioural preorders in order to obtain corresponding preorder check-
ing algorithms. We have already shown that characteristic formula constructs
also exists for the “faster–than”–relation in [FT91] and the time–abstracted
equivalence in [LW93].

The results of this paper only solve (positively) the decidability of a bounded
satisfiability problem for Lν . However, it follows from this result that the
unconstrainted satisfiability problem is at least r.e. though we conjecture that
this problem is in fact undecidable. Decidability of the satisfiability problem
with only bounds on the number of clocks is also left as an open (and interesting)
problem.

Finally, future work includes study of the decidability of the satisfiability
problems for Lν extended with a minimal fixedpoint construction.
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A Proof of Theorem 2
Proof ⇐ We are going to show that B = {(〈ρ,v〉B, 〈η,u〉A) | 〈ρ, v u〉 |=B,D
Φ(η, [u])} is a timed strong bisimulation.

• Assume 〈η,u〉A
a−→ 〈η′, r(u)〉A. But as 〈ρ, v u〉B+ |= Φ(η, [u]) we have

〈ρ, v u〉B+ |= 〈a〉 (r in Φ(η′, r([u]))). Thus 〈ρ, v u〉B+
a−→ 〈ρ′, v′ u〉B+ s.t.

〈ρ′, v′ r(u)〉B+ |= Φ(η′, r([u])). Then 〈ρ, v〉B
a−→ 〈ρ′, v′〉B and by i.h.

(〈ρ′, v′〉B, 〈η′, r(u)〉A) ∈ B.

• Assume 〈ρ, v〉B
a−→ 〈ρ′, v′〉B. Then 〈ρ, v u〉B+

a−→ 〈ρ′, v′ u〉B+. And as
〈ρ, v u〉B+ |= Φ(η, [u]) we have 〈ρ′, v′ u〉B+ |= re in Φ(η′e, re(r[u])) for some
e ∈ E(η, [u], a). Then 〈ρ′, v′ re(u)〉B+ |= Φ(η′e, [re(u)]). Thus we have
(〈ρ′, v′〉B, 〈η′e, re(u)〉A) ∈ B.

• Finally to complete the proof we must show that for all d ∈ R, we have:
(〈ρ, v + d〉B, 〈η,u + d〉A) ∈ B. There exists k s.t. [u + d] = [u]k. As
〈ρ, v u〉B+ |= Φ(η, [u]) it follows that 〈ρ, v + d u + d〉B+ |= β([u]k) ⇒
Φ(η, [u]k). Clearly it implies 〈ρ, v+du+d〉B+ |= Φ(η, [u]k) or 〈ρ, v+du+
d〉B+ |= Φ(η, [u + d]). Thus (〈ρ, v + d〉B, 〈η,u + d〉A) ∈ B.

⇒ Let D the declaration associating each [η, γ] with Φ(η, γ). We define �D
by structural induction as follows:

〈ρ, v u〉B+ �D tt ⇔ true
〈ρ, v u〉B+ �D ff ⇔ false
〈ρ, v u〉B+ �D ϕ ∧ ψ ⇔ 〈ρ, v u〉B+ �D ϕ and 〈ρ, v u〉B+ �D ψ
〈ρ, v u〉B+ �D ϕ ∨ ψ ⇔ 〈ρ, v u〉B+ �D ϕ or 〈ρ, v u〉B+ �D ψ
〈ρ, v u〉B+ �D ∃∃ ϕ ⇔ ∃d ∈ R. 〈ρ, v+d u+d〉B+ �D ϕ
〈ρ, v u〉B+ �D ∀∀ ϕ ⇔ ∀d ∈ R. 〈ρ, v+d u+d〉B+ �D ϕ

〈ρ, v u〉B+ �D 〈a〉 ϕ ⇔ ∃ 〈ρ′, v′〉B . 〈ρ, v〉B
a−→ 〈ρ′, v′〉B and

〈ρ′, v′ u〉B+ �D ϕ

〈ρ, v u〉B+ �D [a] ϕ ⇔ ∀ 〈ρ′, v′〉B . 〈ρ, v〉B
a−→ 〈ρ′, v′〉B implies

〈ρ′, v′ u〉B+ �D ϕ
〈ρ, v u〉B+ �D x+m∼y+n ⇔ u(x) + m ∼ u(y) + n
〈ρ, v u〉B+ �D x in ϕ ⇔ 〈ρ, v u′〉B+ �D ϕ and u′ = [{x} → 0]u
〈ρ, v u〉B+ �D Φ(η, [u]) ⇔ 〈ρ, v〉B ∼ 〈η, u〉A

We are going to prove that �D is a satisfiabilty relation. To show this it
is sufficient to demonstrate that 〈ρ, v u〉B+ �D Φ(η, [u]) implies 〈ρ, v u〉B+ �D
D(Φ(η, [u])):

• Consider 〈η, u〉A
ae−→ 〈η′e, re(u)〉A. Since 〈ρ, v u〉B+ �D Φ(η, [u]), we have

〈η,u〉A ∼ 〈ρ, v〉B. Then there exists 〈ρ, v〉B
ae−→ 〈ρ′, v′〉B s.t. 〈η′e, re(u)〉A ∼

〈ρ′, v′〉B. Thus by def. of �D we have 〈ρ′, v′ re(u)〉B+ �D Φ(η′e, [re(u)]).
Finally we have 〈ρ, vu〉B+ �D 〈ae〉(re inΦ(η′e, r([u]))) for any e ∈ E(η, [u]).

• Consider 〈ρ, v〉B
a−→ 〈ρ′, v′〉B. Since 〈η,u〉A ∼ 〈ρ, v〉B, there exists 〈η,u〉A

a−→ 〈η′e, re(u)〉A s.t. 〈η′e, re(u)〉A ∼ 〈ρ′, v′〉B. Thus 〈ρ′, v′ re(u)〉B+ �D
Φ(η′e, [re(u)]), and we have 〈ρ′, v′ u〉B+ �D re in Φ(η′e, r([u])) for some
e ∈ E(η, [u], a).
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• Consider 〈ρ, v〉B
ε(d)−→ 〈ρ, v + d〉B. Then we know 〈η,u + d〉A ∼ 〈ρ, v + d〉B

and thus 〈ρ, v + d u + d〉B+ �D Φ(η, [u + d]). Let l ∈ N s.t. [u]l = [u + d],
We have 〈ρ, v + d u + d〉B+ �D β([u]l) ⇒ Φ(η, [u]l).

Then we have 〈ρ, vu〉B+ �D Φ(η, [u]) ⇒ 〈ρ, vu〉B+ �D D(Φ(η, [u])). Thus
�D is a satisfiability relation and is included in |=D. Thus, we can conclude
that 〈ρ, v u〉B+ |=D Φ(η, [u]) whenever 〈ρ, v〉B ∼ 〈η,u〉A. 2

B Proof of Proposition 1
Proof ⇒ Given A = 〈A,N, η0, C,E〉 a timed automata s.t. A |= Ψl (i.e.
〈η0, v0〉A |= Ψl). Let Φl be the subformula

[ ∧
i=1..l

∃ ]0; 1[ (〈ai〉 tt ∧
∧
j 6=i

[aj] ff)
]
.

Since A |= Ψl, there exists a state 〈η, v〉A satisfying Φl. But it requires that
there exists at least l different reachable regions with a ]0; 1[ delay from 〈η, v〉A

and then 2|C| + 1 ≥ l.

⇐ It is easy to build a p-clock automata (with l ≤ 2p + 1) satisfying Ψl:
Consider the p-clock automata s.t. the first l a-transitions 16 allow to reach a
state 〈η, v〉A s.t. 0 < v(xp) < . . . < v(x1) < 1. Moreover we build l transitions
〈η, η′i, ai, {}, bi〉 with b1 = (x1 < 1), b2 = (x1 = 1), b3 = (x2 < 1 ∧ x1 >
1), . . . 2

16In fact p transitions suffices to reach such a state.
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