
B
R

IC
S

R
S

-95-1
F

randsen
etal.:

D
ynam

ic
A

lgorithm
s

for
the

D
yck

Languages

BRICS
Basic Research in Computer Science

Dynamic Algorithms
for the Dyck Languages

Gudmund Skovbjerg Frandsen
Thore Husfeldt
Peter Bro Miltersen
Theis Rauhe
Søren Skyum

BRICS Report Series RS-95-1

ISSN 0909-0878 January 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

DYNAMIC ALGORITHMS
FOR THE DYCK LANGUAGES

GUDMUND SKOVBJERG FRANDSEN, THORE HUSFELDT,
PETER BRO MILTERSEN, THEIS RAUHE, AND SØREN SKYUM

BRICS∗

Department of Computer Science, University of Aarhus,
Ny Munkegade, DK–8000 Århus C, Denmark

11th January 1995

Abstract. We study dynamic membership problems for the Dyck languages,
the class of strings of properly balanced parentheses. We also study the Dy-
namic Word problem for the free group. We present deterministic algorithms
and data structures which maintain a string under replacements of symbols,
insertions, and deletions of symbols, and language membership queries. Up-
dates and queries are handled in polylogarithmic time. We also give both
Las Vegas- and Monte Carlo-type randomised algorithms to achieve better
running times, and present lower bounds on the complexity for variants of
the problems.

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
This work was partially supported by the ESPRIT II Basic Research Actions Program of the

EC under contract no.  (project ALCOM II). Gudmund Frandsen was partially supported
by CCI-Europe. Peter Bro Miltersen was partially supportedby a grant from the Danish Natural
Science Research Council, part of his research was done done at the Department of Computer
Science, University of Toronto.

1

1. Introduction

1.1. Dyck Languages. The language of properly balanced parentheses contains
strings like () and ()(()) but not)). The notion of balancedness also makes sense
if we add more types of parentheses: ([])() balances but [) does not.

More formally, let A = {a1, . . . , ak} and Ā = {ā1, . . . , āk} be two disjoint sets of
opening and closing symbols,respectively. For example, the pair A = {(, [,do, if }
and Ā = {),], od,fi} captures the nested structure of programming languages.
The one-sided Dyck language Dk over A∪Ā is the context-free language generated
by the following grammar:

S → SS | a1Sā1 | · · · | akSāk | ε.

Closely related is the two-sided Dyck language D′k over A ∪ Ā defined by

S → SS | a1Sā1 | ā1Sa1 | · · · | akSāk | ākSak | ε.

This corresponds to two-sided cancellation, so now also)(and (][) balance, while
[) still does not.

The two-sided Dyck language has an algebraic interpretation. If we identify
āi with a−1

i and view concatenation as the product operator then x ∈ D′k if and
only if x equals the identity in the free group generated by A. For example,
ā1a2ā2a1 ∈ D′2 because a−1

1 a2a
−1
2 a1 evaluates to unity.

The Dyck languages are covered in detail in Harrison’s classical treatment [6].

1.2. The Dynamic Membership problem. In this paper we consider the
problem of maintaining membership in Dk or D′k of a string from (A ∪ Ā)n dy-
namically. More precisely, we want to implement a data type that contains a
string x ∈ (A ∪ Ā)n of even length, initially an

1 , with the following operations:
change(i, a): change xi to a ∈ A ∪ Ā,
member: return ‘yes’ if and only if x ∈ Dk.

The problem is well motivated: several modern editors have editing modes
for specific programming languages where a rudimentary on-line syntax check is
performed whenever the source is changed. We would like to know whether such
a check can be performed faster than in the straightforward way. For such an
application, the set of operations considered above is clearly not sufficient. At
the very least, we need an operation insert(i, a) that inserts a symbol a between
the (i − 1)th and the ith character in the string, and an operation delete(i)
that deletes the ith character in the string. Furthermore, the following opera-
tions would also be useful: an operation prefix(i) that tells whether the prefix
x1x2 · · ·xi is a member of the language, and, for the one-sided languages, an op-
eration match(i) that given the position i of a parenthesis returns the index of its
match, as well as an operation mismatch that returns the index of the first un-
matched parenthesis. We choose the restricted set of operations above for reasons
of expositional simplicity; most of our results are also valid under the extended
set, we state explicitly when they are not.

Of course, the Dyck languages do not capture all aspects of the far more com-
plicated grammar of real programming languages. Ultimately, we could wish for

2

a fast dynamic algorithm for recognition of (a large subclass of) the determin-
istic context-free languages, which would allow us to implement on-line syntax
checking in an editor. Hopefully, this paper is a step in the right direction. We
do not expect the algorithms in this paper to be particularly useful in practice
as is, however. Even though they run in polylogarithmic time (and the hidden
constants are of moderate size), one should keep in mind that the original, se-
quential algorithm is extremely simple and probably outperforms them in normal
applications. Although extremely long files do arise in practice, problems of quite
a different nature—like paging, network access, etc.—would dwarf the execution
time of both a dynamic and a sequential algorithm for parenthesis matching.

1.3. Results. Our main model of computation will be a unit-cost random access
machine with word-size O(logn), where n is the size of the input; this model is
also known as a random access computer.

Our main result is that the Dynamic Membership problem for all Dyck lan-
guages can be solved in polylogarithmic time per operation, the bound exact is
O(log3 n log∗ n). We use a technique for maintaining dynamic sequences under
equality tests by Mehlhorn, Sundar, and Uhrig [10], which also gives (Las Vegas-
style) randomised algorithms that run in slightly better expected time: O(log3 n).

We achieve better bounds for Monte Carlo-style algorithms. Using the fin-
gerprint method of Karp and Rabin [7], where strings are represented by (non-
unique) fingerprints in the form of a matrix product modulo a small randomly
chosen prime, Dk can be done in time O(log2 n) and D′k in time O(logn). For
D1 and D′1 we can use simpler techniques to achieve better bounds. The table
below states the order of the upper bounds. Except for the O(1) algorithm for
D1, all algorithms are also valid (and have the same complexity) when we extend
the operations to insertion and deletion of single characters, prefix queries, and
(for the one-sided case) match queries.

Table 1: Running times of algorithms with logarithmic word size.

Type of algorithm
Language Operations

Deterministic Las Vegas Monte Carlo

D1 or D′1 all O(log n)

D′1 change member Θ(1)

Dk all O(log3 n log∗ n) O(log3 n) O(log2 n)

D′k all O(log3 n log∗ n) O(log3 n) O(logn)

We have no lower bounds for the restricted set of operations (change, mem-
ber). However, if the prefix-operation is added, we can get a weak lower bound of
Ω(log log n/ log log log n) using a technique from [11], obviously, the same bound
holds with the mismatch query instead. If instead we allow insertion and dele-
tion, a lower bound of Ω(log n/ log log n) can be derived from a result of Fredman
and Saks [4]. The same lower bound holds if we replace member by match in
the restricted of operations (for one-sided languages).

3

Table 2: Lower bounds for logarithmic word size.

Language Operations Lower bound

D1 or D′1 change prefix Ω
(log log n

log log log n

)
D1 or D′1 insert delete member Ω

(log n
log log n

)
D1 change match Ω

(log n
log log n

)
It is interesting that all upper bounds for the two-sided case are at least as

good as the upper bounds for the one-sided case, implying that the former may
be easier than the latter. In a more restricted model for dynamic algorithms,
namely the cell probe model with cell size 1 (the bit probe model), we can indeed
separate the complexity of the two problems: for D1, we prove a lower bound
of Ω(log n/ log log n) by a technique of Fredman [3], while we can bound the
complexity of D′1 from above by O(log log n) using a construction of [2]. The latter
bound is shown to be tight by a reduction from the Dynamic Word problem for
the monoid ({0, 1}, ∨), for which a lower bound is given in [2]. The upper bound
for D1 is O(log n log logn), not quite matching the lower bound. These results are
only valid for the restricted set of operations (and are only of theoretical interest
anyway). The table below summarises these results.

Table 3: Bit probe complexity.

Language Operations Upper bound Lower bound

D1 change member O(logn log logn) Ω
(log n

log log n

)
D′1 change member Θ(log log n)

1.4. Related results. It is interesting that all Dyck languages seem to be
equally hard in most non-dynamic computational models. Ritchie and Spring-
steel [13] showed that the one-sided Dyck languages are in deterministic logspace,
Lipton and Zalcstein [8] extended this to the two-sided case (see also [6, Exercises
22 and 23]). One can phrase this even stronger in terms of circuit complexity: all
Dyck languages are complete for TC0 under AC0-reductions, (this appears to be
folklore).

Dynamic Word and Prefix problems for finite monoids are studied in [2, 11].
The free group of k generators studied in the present paper is infinite.

Turning from context-free to regular languages, it is easy to find logarithmic
time algorithms for the Dynamic Membership problem for the latter class. The
results from [2] give better upper bounds depending on the language’s syntactic
monoid M(L).

1.5. Preliminaries and notation. Strings will be denoted by lower-case letters
u, v, x, We let ui denote the ith letter of string u and we write ui:j for ui · · ·uj.
For letter a and string u, we put

|u|a = |{i | ui = a}|,

4

the number of occurrences of a in u. All logarithms are base two.
We call a string reduced if it contains no neighbouring pair of matching paren-

theses. So, for the one-sided case, ([]) is not reduced but [)(is. In the two-sided
case, the latter is not reduced. To formalise this (following Harrison [6]), we
introduce two mappings

µ1, µ2 : (A ∪ Ā)∗ → (A ∪ Ā)∗.

We want µ1(u) and µ2(u) to be the reduced form of u using one- and two-sided
cancellation, respectively. To this end we define for each 1 ≤ i ≤ k and j = 1, 2:

µ1(ε) = µ2(ε) = ε, µ1(uai) = µ1(u)ai,

µ2(uai) =
{

µ2(u)ai, if µ2(u) /∈ (A ∪ Ā)∗āi,

u′, if µ2(u) = u′āi,

µj(uāi) =
{

µj(u)āi, if µj(u) /∈ (A ∪ Ā)∗ai,

u′, if µj(u) = u′ai.

One can show properties like µ1(uaiāiv) = µ1(uv) and µ2(uaiāiv) = µ2(uāiaiv) =
µ2(uv).

We formally define u−1 as ūn · · · ū1 with the convention ¯̄a = a and ε−1 = ε.

2. Algorithms for One Pair of Parentheses

We begin with two easy upper bounds for D1 and D′1, respectively.

Proposition 2.1. The Dynamic Membership problem for D′1 can be done in con-
stant time per operation.

Proof. Note first that for all x ∈ {a, ā}∗ we have

x ∈ D′1 ↔ |x|a = |x|ā.

The only if direction is obvious. The other follows from the fact that a reduced
string over {a, ā}∗ cannot contain both a and ā.

Hence we only need to count the number of occurrences of a and ā in x. With
unit cost operations, this is easily done in constant time per update.

The solution does not extend to the extended set of operations, in fact a larger
lower bound is proved below. We leave it to the reader to prove a logarithmic up-
per bound. Using am algorithm by Dietz [1] a solution with an O(logn/ log log n)
upper bound on the amortised complexity for the extended set of operations can
also be found.

Proposition 2.2. The Dynamic Membership problem for D1 can be done in
O(logn) time per operation.

5

Proof. First note that for any x ∈ {a, ā}∗, the reduced string µ1(x) is of the form
āral for integers l, r ≥ 0. We can view l and r as the number of excessive left and
right parentheses, respectively.

We maintain a balanced binary tree whose ith leaf represents xi and where
each internal node represents the concatenation of its children’s strings. With
each node we store the tuple (r, l) describing the reduced form of the string it
represents.

For the operations first note that x ∈ D1 if and only if the root contains the
tuple (0, 0), corresponding to µ1(x) = ε. To handle the updates it suffices to note
that the value of a node can be easily derived from the values of its children, since

µ1(ār1al1 ār2al2) =
{

ār1al2+l1−r2 , if l1 ≥ r2,

ār1+r2−l1al2 , otherwise.

We can redo these calculations bluntly at each level and achieve a running time
proportional to the height of the tree.

The data structure is easily generalised to the extended set of operations. Most
complicated are the insert and delete operations. To accommodate these, we
have to maintain balance in the tree using any scheme for balancing dynamic
search trees, e.g. red–black trees [5]. We will not comment on such extensions any
further; the reader can check that they are also possible for all the algorithms in
Sections 3 and 4. The algorithm in the proof of Proposition 4.2 calls for the most
complicated extensions, in that we also need to be able to split and merge trees.

3. Algorithms for Many Pairs of Parentheses

We move now to the main result, extending the above to larger k. The basic
idea resembles very much the data structure from Proposition 2.2: we represent
x as a balanced binary tree, where internal nodes correspond to substrings of x.
At each node, we store entire sequences (rather than just a tuple as above) that
are formed from the sequences stored at its children. To this end we first need a
recent surprising construction for dynamically maintaining sequences.

3.1. A data structure for strings equality. Mehlhorn, Sundar, and Uhrig [10]
present a data structure for dynamically maintaining a family of strings under
equality tests. We use a slightly modified set of updates that is better suited to
our problem. More precisely, we want to maintain an initially empty family S of
strings from a finite alphabet Σ under the following operations:

create(σ): create a new (one-letter) string s = σ ∈ Σ and add it to S,
destroy(s): remove s from S,
concatenate(s, s′): create a new string s′′ = ss′ and add it to S,
split(s, i): create new strings s′ = s1 · · · si and s′′ = si+1 · · · sn, and add
them to S,

equal(s, s′): return ‘yes’ if and only if s = s′,
lcp(s, s′): return the length of the longest common prefix of s and s′.

6

The techniques from [10] can easily be modified to cope with the above updates.
The time bounds are summarised in the following lemma:

Lemma 3.1 ([10]). Let Si denote the family of strings after the ith operation
and define

Nm = max
0≤i≤m

∑
s∈Si

|s|.

There is a data structure for the above problem such that the mth operation takes
time O(log2 Nm log∗Nm).

3.2. The two-sided case.

Proposition 3.1. The Dynamic Membership problem for D′k can be done in
O(log3 n log∗ n) time per operation.

Proof. We maintain a balanced binary tree whose ith leaf represents xi and where
each internal node represents the concatenation of its children’s strings. With the
node representing (say) y we store µ2(y) and µ2(y−1).

Let us see how we handle the operations. The query operation is easy since
the root contains µ2(x). For the change operation, we will show how to use
the data structure from Section 3.1 to maintain the two sequences at each node.
First note that the leaves of the tree are easily changed because µ2(xi) = xi and
µ2(x−1

i) = x̄i.
From the leaf, the change propagates towards the root of the tree. To handle

the changes at an internal node we exploit a useful property of the reduction
function µ2: given u, v ∈ (A ∪ Ā)∗, write

µ2(u) = u′aw and µ2(v) = w−1bv′, with ā 6= b,(3.1)

for some u′, v′, w ∈ (A ∪ Ā)∗ and a, b ∈ (A ∪ Ā). Then one can show

µ2(uv) = u′abv′.(3.2)

Consider for concreteness an internal node whose children represent (say) u
and v, respectively. Let w denote the longest common prefix of µ2(u−1) and
µ2(v), which can be found from the information at the children of the node in
time O(log2 N log∗N), where N denotes the total length of all sequences in the
tree. Now split µ2(u) and µ2(v) as in (3.1) above and construct µ2(uv) by (3.2),
using a constant number of operations, each of which takes time O(log2 N log∗N).
We remember to remove unused strings. The total number of operations for an
update is then O(log n log2 N log∗N). To bound N we note that at each level of
the tree, the total length of all sequences maintained at that level is 2n and hence
N = O(n logn), which gives the desired bound and completes the proof.

7

3.3. The one-sided case. The proof for Dk is similar to that for D′k but marred
by the less nice algebraic properties of µ1.

Proposition 3.2. The Dynamic Membership problem for Dk can be done in
O(log3 n log∗ n) time per operation.

Proof. As before, we maintain a balanced binary tree whose ith leaf represents
xi and where each internal node represents the concatenation of its children’s
strings.

We define yet another cancellation function µ, where every left paranthesis
cancels every right paranthesis, regardless of its type, by

µ(ε) = ε, µ(uai) = µ(u)ai,

µ(uāi) =
{

µ(u)āi, if µ(u) /∈ (A ∪ Ā)∗A,

u′, if µ(u) ∈ u′A.

For every y we can write µ(y) as yĀyA for some yĀ ∈ Ā∗ and yA ∈ A∗. With the
tree node for y we store a bit that is true if and only if µ1(y) ∈ Ā∗A∗ (equivalently,
µ(y) = µ1(y)), as well as the strings yA and yĀ, and their formal inverses (yA)−1

and (yĀ)−1. The intuition is that if this bit is false then x cannot balance, since

µ1(y) ∈ Ā∗A∗ if and only if ∃u, v : uyv ∈ Dk,(3.3)

and then it suffices to store that information only. In the other case, µ1(y) consists
only of yĀ and yA, and these two strings (together with their formal inverses) are
easily maintained, as we shall see below.

We turn to the operations. First note that membership of x in Dk can be read
off the root node, since

x ∈ Dk if and only if µ1(x) ∈ Ā∗A∗ and xA = xĀ = ε.

For the updates it suffices to explain how we can derive the information at a
node from its children using a constant number of string operations. Let u and
v denote the strings represented by the node’s children and assume without loss
of generality |uA| ≥ |vĀ| (the other case is symmetrical). Write uA as uA,1uA,2,
where |uA,2| = |vĀ|. Then yA = uA,1vA and yĀ = uĀ. Moreover,

µ1(y) ∈ Ā∗A∗ if and only if µ1(u), µ1(v) ∈ Ā∗A∗ and uA,2 = (vĀ)−1.

The formal inverses (yA)−1 and (yĀ)−1 are easily maintained. This completes the
proof.

The upper bounds from the last two propositions can be improved to expected
time O(log3 n) by using the Las Vegas variant of the algorithm described in Sec-
tion 3.1, see [10].

8

4. Monte Carlo Algorithms

4.1. The two-sided case. We begin with D′k, which is quite simple. We use
the well-known fingerprint string matching technique of Karp and Rabin [7].

Proposition 4.1. The Dynamic Membership problem for D′k can be done in
O(logn) time per operation such that the probability of an erroneous answer in
any sequence of n updates is O(1

n).

Proof. We start by considering D′2 over the alphabet A = {a1, a2} and Ā =
{ā1, ā2}. Define the congruence ∼ by

u ∼ v if and only if µ2(u) = µ2(v).

Then the quotient (A ∪ Ā)∗/ ∼ is a group (the free group over {a1, a2}) with
concatenation as the operator and ε as the identity.

Following Lipton and Zalcstein [8] (see also [9, Problem 2.3.13]), we represent
(A ∪ Ā)∗/∼ as a group of 2 × 2 integer matrices using the group homomorphism

h : (A ∪ Ā)∗/∼ → M2(Z),

h(a1) =
(1 2

0 1

)
and h(a2) =

(1 0
2 1

)
.

In this terminology, x is in D′2 if and only if h(x) is the identity matrix.
This suggests a randomised algorithms in the spirit of [7]: compute h(x) modulo

a randomly chosen prime p and check whether the result is the identity matrix.
For the dynamic version we need to maintain h(x) mod p under updates to x,

we write n for |x|. For a fixed prime p ≤ n4 we can recompute h(x) mod p in
logarithmic time using a balanced binary tree, where the ith leaf contains h(xi)
and an internal node contains the product (in M2(Zp)) of the value of its children.
Thus the root contains h(x) mod p.

To bound the probability of error we note that all entries in the matrix h(x)
are bounded by 3n, so there can be at most n distinct primes p such that h(x) ≡ 1
mod p if in fact h(x) 6= 1. Choosing p ≤ n4 randomly and choosing a new p for
every n operations by the global rebuilding technique of Overmars [12] we guar-
antee that the probability of an erroneous answer in a sequence of n consecutive
queries is bounded by O(1

n
).

The above construction can be extended to larger k using the fact that the free
group on k generators is a subgroup of the free group on two generators g1, g2.
Indeed, if for 1 ≤ i ≤ k we put ci = gi

1g
i
2 then c1, . . . , ck generate a free group,

see [9, Problem 1.4.12].

4.2. The one-sided case. The algorithm for Dk is somewhat more difficult.
We will combine the tree-structure we used for the deterministic algorithm for Dk

(Proposition 3.2) with the Monte Carlo algorithm for D′k from the last proposition.
Recall that in the deterministic algorithm, we use the expensive string operations
from Section 3.1 to test whether certain internal substrings (namely, uA,2 and
(vĀ)−1) constitute a match. But since uA,2 ∈ A∗ and vĀ ∈ Ā∗, this is true if and

9

only if uA,2vĀ ∈ D′k, so we can use the much faster Monte Carlo algorithm for
D′k instead.

Proposition 4.2. The Dynamic Membership problem for Dk can be done in
O(log2 n) time per operation such that the probability of an erroneous answer
in any sequence of n updates is O(1

n
).

Proof. As before, we maintain a balanced binary tree whose ith leaf represents
xi and where each internal node represents the concatenation of its children’s
strings.

For every y we define yA, yĀ, u, v, uA = uA,1uA,2, and vĀ as in the proof of
Proposition 3.2. In particular, we assume |uA| ≥ |vĀ| (the other case is symmetri-
cal). Write w = uA,2vĀ. With the tree node for y (of length m, say) we maintain
the following information:

(1) a bit that is true if and only if µ1(y) ∈ Ā∗A∗,
(2) three balanced binary search trees whose leaves store the indices (in x)

of yA, yĀ, and w, respectively,
(3) the lengths |yA|, |yĀ|, and |w|,
(4) a string w# ∈ (A∪Ā∪{#})m defined as follows: since w is a subsequence

of y, we can write w = yi1 . . . yil for some i1 < · · · < il. Then we define

w# = #i1−1yi1#
i2−i1−1yi2#

i3−i2−1yi3 · · ·#il−il−1−1yil#
m−il.

One can view this as a padded w of fixed length.
Note that we do not store y itself.

Turning to the operations, we first note that the query is handled as in the proof
of Proposition 3.2. A tedious case analysis shows that when a single letter of y is
changed then at most two changes are induced in each of yA and yĀ and at most
four changes in w and w#. The corresponding updates at the node representing y
can be done in time O(logn) given knowledge about the updates at lower levels.

To see whether w ∈ D′k, we apply the technique from the last proposition,
using w# as instance; the extra letter # is handled by letting h map it to the
identity matrix. Hence we can maintain the information at each level of the tree
in time O(logn), from which the stated time bound follows.

To bound the error probability, note that we use O(n) distinct versions of the
data structure from Proposition 4.1. Using a prime from a larger set (say, p ≤ n5),
we obtain the stated bound.

5. Bit Probe Complexity

We turn now to consider solutions in the cell probe model with constant cell
size, the bit probe model. Only the basic set of operations are considered. We will
see that the strong restrictions of the model facilitate proving quite tight bounds
and an exponential gap between the complexities of D1 and D′1. The lower bound
techniques below are specific to the bit probe model, while both upper bounds
are refinements of the algorithms in Section 2.

For the bounds in this and the following section, we must define the model of
computation more precisely.

10

5.1. The Cell Probe Model. In the cell probe model (with cell size b), we
focus on the number of memory cells accessed during the computation, all other
operations are for free. More formally, to every instance of an update or query
operation (say, change(3, a2)) we associate a decision assignment tree: a rooted
tree of 2b-ary read nodes and unary write nodes; the read nodes are labelled with a
memory location l, and the write nodes are labelled with both a memory location l
and a value v ∈ {0, . . . , 2b − 1}. Trees that correspond to query operations
additionally have ‘yes’ or ‘no’-leaves (or whatever possible answers there are to
the query). To execute an operation, we start at the root of the corresponding
tree and proceed towards the leaves. If at a write node (say, with label (l, v)), we
write v into memory location l and proceed to the node’s unique child. If at a
read node (say, with label l), we proceed to the child pointed to by the contents of
location l. The complexity of an operation is the maximum depth of its instances’
trees. For example, the complexity of the change operation is the maximum depth
of the trees for change(i, a) for 1 ≤ i ≤ n and a ∈ A ∪ Ā.

Note that the cell probe model is non-uniform. Obviously, lower bounds for
this model are valid also on the random access machine with unit cost operations
and word size b. In this section, we study the cell probe model with b = 1 (called
the bit probe model), in the next section, we give lower bounds for b = O(log n).

5.2. A fast one-bit counter. Since both Propositions 2.2 and 2.1 were based
on counting, we will briefly review a construction from [2] that will be useful to
us: a fast counter for cell size one.

The counter maintains a value c from some interval {l, . . . , h}, for integers l, h.
The counter supports the following operations:

increment: increment c by 1, provided c < h,
decrement: decrement c by 1, provided c > l,
test: return ‘yes’ iff c = t for some fixed t ∈ {l, . . . , h}.

It can be implemented such that incrementing and decrementing can be performed
in time log log(h − l) + O(1) and the test operations takes constant time, see [2].

5.3. The two-sided case. The next two results give tight bounds on the bit
probe complexity complexity of the language D′1.

Proposition 5.1. The Dynamic Membership problem for D′1 can be done in
O(log log n) time per operation in the bit probe model.

Proof. Recall from the proof of Proposition 2.1 that we only need to count the
number of as and ās in the input. To this end we use the counter from the last
paragraph, with l = −n, h = n, and T = {0}.

Proposition 5.2. The Dynamic Membership problem for D′1 requires Ω(log log n)
time per operation in the bit probe model.

Proof. We use a result from [2], that the Dynamic Word problem for any commu-
tative non-group requires time Ω(log log n) in the bit probe model. The Dynamic
Word problem for a group G is to maintain a string g1 · · ·gn of group elements

11

under the change operation and a query that returns ‘yes’ if and only if g1∗· · ·∗gn

(where ∗ denotes the product in G) is the identity.
We reduce the word problem for the monoid ({0, 1}, ∨) to an instance of D′1.

From x ∈ {0, 1}n we construct a string y ∈ {a, ā}2n such that y2i−1:2i = aā if
xi = 0, and y2i−1:2i = aa if xi = 1. Clearly, y ∈ D′1 if and only if x contains only
zeroes.

Note that the same proof works also for the one-sided case D1. However, we
will see that we can give a much stronger bound for that language in a moment.

5.4. The one-sided case. We turn to the one-sided Dyck language D1. Again,
the proof is a modification of the random access machine algorithm.

Proposition 5.3. The Dynamic Membership problem for D1 can be done in
O(logn log logn) time per operation in the bit probe model.

Proof. Consider the proof of Proposition 2.2. With constant cell size, each of these
calculations would take O(logn) per level, for a total running time of O(log2 n).
We can do better by observing that the we need at most four increments and
decrements of r and l values at each level. Using the counter from Section 5.2,
we achieve the stated bound.

Now for the lower bound, which falls two log log n factors short of matching the
bound above. We thus establish that, perhaps surprisingly, there is an exponential
gap between the complexities of D1 and D′1 for constant cell size. The technique
is due to Fredman.

Proposition 5.4. The Dynamic Membership problem for D1 requires

Ω
(log n

log log n

)
time par operation in the bit probe model.

Proof. Fredman [3] essentially shows the stated lower bound on the complexity
of the Which Side? problem, which is to maintain a single value t ∈ {1, . . . , n}
under the following operations:

change(i): set t = i,
which side(i)?: return ‘left’ if t < i and ‘right’ if t > i.

We reduce this problem to the Dynamic Membership problem for D1. For an
instance of Which Side? of size n we will maintain a string x ∈ {a, ā}2n, initially
aa(aā)n−1. Generally, x will be of the form (aā)2n with the exception x2t−1:2t =
aa. The change operation is easily simulated to maintain this invariant. To
simulate the which side(i)? operation, we put x2i−1:2i = āā. Now x will balance
iff i > t. We remember to change x2i−1:2i back after the query.

12

6. Lower Bounds for Logarithmic Cell Size

We do not know any lower bound on the complexity of any Dyck language
with the basic set of operations. However, when we extend the operations in
two different ways, we can show lower bounds for all Dyck languages. First, we
will modify the operations by replacing member with match and show a lower
bound that is valid for all one-sided Dyck languages.

The first two lower bounds use a result of Fredman and Saks [4] that gives a
lower bound of Ω(log n/ log log n) on the (amortised) complexity of the Dynamic
Parity Prefix problem: given a vector x1, . . . , xn of bits, maintain a data structure
that is able to react to the following operations for all i = 1, . . . , n:

change(i): negate the value of xi,
parity(i): return

⊕i
j=1 xj, the parity of the first i elements.

6.1. With match queries. Using the above, we can show the same lower bound
for all one-sided Dyck languages when the only operations are change and match.

Proposition 6.1. The Dynamic Membership problem with match queries for any
one-sided Dyck language requires

Ω
(log n

log log n

)
time per operation with logarithmic cell size.

Proof. Let x ∈ {0, 1}n be an instance of the Dynamic Parity Prefix problem.
Define z ∈ {a, ā}3n by

z = a2h(xn)a2h(xn−1)a2 · · ·a2h(x2)a2h(x1),

where h(0) = ā and h(1) = a.
We represent x by the string

y = a3nzā3nz−1.

Note that y is always in D1 and hence any match query will be well-defined.
Indeed, we have

match(6n − 3i + 1) = 6n + i + 2 · |x1:i|1 for i = 1, . . . , n,

so we can calculate
⊕i

j=1 xi in constant time given the answer to the match
query.

6.2. With insert and delete. We can show an Ω(logn/ log logn) lower bound
with membership queries, provided insertions and deletions are allowed. Our
reduction goes via the List Representation problem: maintain a list L ∈ {0, 1}∗
under the following operations:

insert(i): insert ‘1’ between the (i − 1)th and the ith element,
delete(i): delete the ith element,
value(i): return Li.

13

The lower bound is stated without proof for a slightly different problem in [4],
we give the proof here for completeness.

Lemma 6.1. List Representation requires

Ω
(log n

log log n

)
time per operation with logarithmic cell size.

Proof. Let x ∈ {0, 1}n be an instance of the Parity Prefix problem and assume
without loss of generality that n is even. Initially, set L = (01)n2

. We will
maintain the following invariant:

i⊕
j=1

xj ⊕ k = L2ni+k, for i = 1, . . . , n and k = −|x1:i|0, . . . , |x1:i|1.

So L2ni =
⊕i

j=1 xj, which shows how to use value to perform the parity opera-
tion. Whenever xi is changed from zero to one, we perform insert(i(2n−1)), and
whenever xi is changed from one to zero, we perform delete(i(2n−1)). Note that
under replacement updates, it is easy to keep track of the value of each xi using
only constant overhead, so we can indeed distinguish the two cases above. The
straightforward but tedious proof that these operations maintain the invariant is
left to the reader.

We have left to show that the operations on the Dyck membership problems
suffice to simulate the crucial value operation in the problem above.

Proposition 6.2. The Dynamic Membership problem with inser and delete for
any Dyck language requires

Ω
(log n

log log n

)
time per operation with logarithmic cell size.

Proof. Let x be an instance of any Dyck language D that contains the pair {0, 1}
of matching parentheses. We will show that we can simulate a value operation
that given i returns xi. Note that with that operation we can solve the Dynamic
List Representation problem above, which implies the stated lower bound by the
last lemma.

From x of length n construct a string y of length 4n as follows: the left half of y
represents x in the sense that for i = 1, . . . , n we have y2i = xi and y2i−1 = 0, and
the right half of y is constructed such that y ∈ D1 by putting y4n−i+1 = 1 − yi

for i = 1, . . . , 2n. These invariants are easily maintained under insertions and
deletions.

To see if xi is (say) zero, we change y2i into zero and see if y still balances. It
is clear that if indeed xi is zero, then y has not changed and the answer is yes.
On the other hand, if xi is one then the new y cannot balance as it contains too
many zeroes, no matter what language D is.

14

6.3. With prefix. Finally, we give a (weaker) lower bound for any Dyck lan-
guage, if the operations are augmented with a prefix query instead of insertions
and deletions.

Proposition 6.3. The Dynamic Membership problem with prefix for any Dyck
language requires

Ω
(log log n

log log logn

)
time per operation with logarithmic cell size.

Proof. Consider the Dyck language D1 over {a, ā} for concreteness (the proof is
the same for the two-sided case). Assume that we have an implementation for
the Dynamic Prefix problem for D1 that handles updates and queries in time
t = t(n). We will transform the prefix problem for D1 to a static problem and
show a lower bound for the latter by a reduction.

Consider the problem of finding a static data structure that is able to answer
the following type of query in time t:

balance(i): return ‘yes’ iff x1:i ∈ D1.

Note that no updates take place, and that the trivial solution (store all the answers
in advance) uses linear space. We will now show that we can use far less space if x
is not too different from (aā)n/2. The data structure is based on the algorithm for
the dynamic problem. Initialise the data structure for (aā)n/2 using init. Let M0
denote the resulting contents of the machine’s memory. Use the change operation
to transform (aā)n/2 into x; let Mx denote the resulting memory contents. Note
that M0 and Mx differ at no more than rt cells, where r denotes the number
of changes. We store the difference in a perfect hash table, using O(rt) space.
We can hardwire M0 into our algorithm and hence we can simulate the query
operations as if the memory was Mx using only O(rt) space.

We introduce now another static problem, for which a lower bound is known.
The Range Query problem is to find a scheme to store an arbitrary set S ⊆
{1, . . . , n}, using space O(|S|O(1)), such that the following type of query can be
answered:

parity(i): return the value |S ∩ {1, . . . , i}| mod 2.

Note that by storing S in an ordered list, we achieve a size |S| data structure
that makes all queries answerable in time O(|S|). Beame and Fich (personal
communication) improving Miltersen [11], have shown that for any scheme (with
the stated size bound) there exists a set S for which there is a lower bound of

t = Ω
(log log n

log log logn

)
(6.1)

on the time t needed for a query.
All that is left is to reduce the Range Query problem to the static Dyck problem

introduced above. Given S ⊆ {1, . . . , n}, construct the string x ∈ {a, ā}2n as

15

follows: for each i /∈ S, we let x2i−1:2i = aā, and for each i ∈ S, we let

x2i−1:2i =
{

aa, if |S ∩ {1, . . . , i − 1}| = 0 mod 2,

āā, otherwise.

It is easy to see that

|S ∩ {1, . . . , i}| = 0 mod 2 if and only if x1:2i ∈ D1.

Hence we can use the data structure for the static Dyck prefix problem to solve the
Range Query Problem for arbitrary S. The size of this data structure is O(|S|t),
which is polynomial in |S| (recall that we can assume t ∈ O(|S|)), and therefore
the lower bound (6.1) applies.

References

1. Paul F. Dietz, Optimal algorithms for list indexing and subset rank, Proc. First Workshop
on Algorithms and Data Structures (WADS) (F. Dehne, J.-R. Sack, and N. Santoro, eds.),
Lecture Notes in Computer Science, vol. 382, Springer Verlag, Berlin, 1989, pp. 39–46.

2. Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum, Dynamic word prob-
lems, Proc 34th Ann. Symp. on Foundations of Computer Science (FOCS), 1993, pp. 470–
479.

3. Michael L. Fredman, The complexity of maintaining an array and computing its partial
sums, Journal of the ACM 29 (1982), 250–260.

4. Michael L. Fredman and Michael E. Saks, The cell probe complexity of dynamic data struc-
tures, Proc. 21st Ann. Symp. on Theory of Computing (STOC), 1989, pp. 345–354.

5. Leo J. Guibas and Robert Sedgewick, A dichromatic framework for balanced trees, Proc.
19th Ann. Symp. on Foundations of Computer Science (FOCS), IEEE Computer Society,
1978, pp. 8–21.

6. Michael A. Harrison, Introduction to formal language theory, Addison-Wesley, 1978.
7. Richard M. Karp and Michael O. Rabin, Efficient randomised pattern-matching algorithms,

IBM J. Res. Develop. 31 (1987), no. 2, 249–260.
8. Richard J. Lipton and Yechezkel Zalcstein, Word problems solvable in logspace, Journal of

the ACM 24 (1977), no. 3, 522–526.
9. Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Pure

and Applied Mathematics, vol. 13, Interscience Publishers, 1966.
10. K. Mehlhorn, R. Sundar, and C. Uhrig, Maintaining dynamic sequences under equality-tests

in polylogarithmic time, Proc. 5th Ann. Symp. on Discrete Algorithms (SODA), ACM-
SIAM, 1994, pp. 213–222.

11. Peter Bro Miltersen, Lower bounds for union-split-find related problems on random access
machines, Proc. 26th Ann. Symp. on Theory of Computing (STOC), ACM, 1994, pp. 625–
634.

12. Mark H. Overmars, The design of dynamic data structures, Lecture Notes in Computer
Science, vol. 156, Springer Verlag, Berlin, 1983.

13. R. W. Ritchie and F. N. Springsteel, Language recognition by marking automata, Informa-
tion and Control 20 (1972), 313–330.

16

Recent Publications in the BRICS Report Series

RS-95-1 Gudmund Skovbjerg Frandsen, Thore Husfeldt, Pe-
ter Bro Miltersen, Theis Rauhe, and Søren Skyum.Dy-
namic Algorithms for the Dyck Languages. January 1995.
21 pp.

RS-94-48 Jens Chr. Godskesen and Kim G. Larsen.Synthesizing
Distinguishing Formulae for Real Time Systems. Decem-
ber 1994. 21 pp.

RS-94-47 Kim G. Larsen, Bernhard Steffen, and Carsten Weise.A
Constraint Oriented Proof Methodology based on Modal
Transition Systems. December 1994. 13 pp.

RS-94-46 Amos Beimel, Anna Ǵal, and Mike Paterson. Lower
Bounds for Monotone Span Programs. December 1994.
14 pp.

RS-94-45 Jørgen H. Andersen, K̊are J. Kristoffersen, Kim G.
Larsen, and Jesper Niedermann. Automatic Synthesis
of Real Time Systems. December 1994. 17 pp.

RS-94-44 Sten Agerholm.A HOL Basis for Reasoning about Func-
tional Programs. December 1994. PhD thesis. viii+224
pp.

RS-94-43 Luca Aceto and Alan Jeffrey.A Complete Axiomatization
of Timed Bisimulation for a Class of Timed Regular Be-
haviours (Revised Version). December 1994. 18 pp. To
appear in Theoretical Computer Science.

RS-94-42 Dany Breslauer and Leszek Ga¸sieniec. Efficient String
Matching on Coded Texts. December 1994. 20 pp.

RS-94-41 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi
Wigderson. On Data Structures and Asymmetric Commu-
nication Complexity. December 1994. 17 pp.

RS-94-40 Luca Aceto and Anna Inǵolfsdóttir. CPO Models for
GSOS Languages — Part I: Compact GSOS Languages.
December 1994. 70 pp. An extended abstract of the paper
will appear in: Proceedings of CAAP '95, LNCS, 1995.

