
B
R

IC
S

R
S

-98-52
K

leist&
S

angiorgi:
Im

perative
O

bjects
and

M
obile

P
rocesses

BRICS
Basic Research in Computer Science

Imperative Objects and Mobile Processes

Josva Kleist
Davide Sangiorgi

BRICS Report Series RS-98-52

ISSN 0909-0878 December 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/52/



Imperative Objects and Mobile Processes

Josva Kleist∗ Davide Sangiorgi†

December, 1998

Abstract

An interpretation of Abadi and Cardelli’s first-order Imperative Ob-
ject Calculus into a typed π-calculus is presented. The interpretation
validates the subtyping relation and the typing judgements of the Object
Calculus, and is computationally adequate. The proof of computational
adequacy makes use of (a π-calculus version) of ready simulation, and of a
factorisation of the interpretation into a functional part and a very simple
imperative part. The interpretation can be used to compare and contrast
the Imperative and the Functional Object Calculi, and to prove properties
about them, within a unified framework.

1 Introduction

In their book [1], Abadi and Cardelli present and investigate a Functional and
an Imperative Object Calculus, and type systems for them. These calculi can
express, as primitive or derived forms, various major object-oriented idioms;
they have simple but interesting typing and subtyping rules. The syntactic
simplicity of the calculi, and their clear object-oriented flavour, makes them an
important basis for understanding object-oriented languages. All Object Calculi
are sequential.

In this paper we study the interpretation of the (first order) Imperative
Object Calculus (IOC) into a typed π-calculus. Our main motivations are:

1. There is a general lack of mathematical techniques for giving the semantics
to, and proving properties about, object-oriented languages , especially the
imperative ones. (For instance, it seems difficult to come up with reason-
able notions of bisimulation for IOC. This contrasts with the Functional
Object Calculus (FOC), for which one such notion has been developed.)
However, most “real world” programming languages are imperative. Usu-
ally, objects encapsulate a state, which can be manipulated by activating
the methods of the object.

∗BRICS, Department of Computer Science, Aalborg University, Denmark. Email:
kleist@cs.auc.dk
†INRIA Sophia-Antipolis, France. Email: davide.sangiorgi@sophia.inria.fr
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The π-calculus has a rich algebraic theory and a high expressive power.
Its emphasis on the notions of name and of mobility makes it appealing
for describing objects and their local states.

2. IOC is an interesting core object-oriented language, because it is small
and yet very expressive; for instance classes and functions, as well as the
Functional Object Calculus (FOC), can be encoded in it. A study of IOC
can provide a solid basis for investigating more complex languages, that
may include also, for instance, constructs for distribution and concurrency.

3. We wish to understand what are objects from a π-calculus (and more
generally, a process calculus) point of view.

The only work on behavioural equivalences for IOC that we are aware of
is Gordon, Hankin and Lassen’s [7]. In this work, however, IOC is untyped.
Gordon, Hankin and Lassen study contextual equivalence for this untyped IOC,
prove that it coincides with a variant of Mason and Talcott’s CIU equivalence
[15], and use the latter to validate some basic laws of the calculus.

More work exists on the semantics of the Functional Object Calculus FOC.
Typed contextual equivalence and applicative bisimulation for FOC have been
examined by Gordon and Rees [8], who show that these two notions of equiva-
lence coincide. They also show that Abadi and Cardelli’s equational theory for
FOC [1] is sound w.r.t. operational equivalence. Abadi and Cardelli [1, Chapter
14] shows that the equational theory for FOC is also sound with respect their
denotational semantics of FOC. Aceto et al. [3] show that the denotational
semantics is sound but not fully abstract w.r.t. operational equivalence. Ex-
tending the above-mentioned techniques, based on applicative bisimulation and
denotational models, to the Imperative Object Calculus IOC appears rather
hard.

An interpretation of IOC into a form of imperative polymorph λ-calculus
with subtyping, recursive types and records has been found by Abadi, Cardelli
and Viswanathan [2]. This interpretation has been used to validate the sub-
typing and typing judgements of IOC. However, it would be difficult to prove
behavioural properties of IOC from this interpretation, because very little is
known of the theory of the target imperative λ-calculus.

Some previous studies of encodings of imperative or OOLs into process cal-
culi, namely [16, Chapter 8], [27], [11], [29, 14], and [24, 10], are an important
basis for our work. We briefly comment on the differences. Milner [16, Chapter
8] showed how to translate a small imperative language into CCS. Vaandrager
[27], Jones [11] and Walker, Liu and Philippou [29, 14, 20] have gone further,
by translating parallel object-oriented languages derived from the POOL fam-
ily. Walker, Liu and Philippou have also used the encodings for proving the
validity of certain program transformations on the source languages. The main
limitation of these works is that they do not show how to handle typed object-
oriented languages — the source languages have rather simple type systems
and the translations do not act on types. Dealing with types is important when
the type system of the object-oriented language contains non-trivial features like
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subtyping and polymorphism, otherwise many useful program equalities are lost
and the semantics cannot be used to validate the typing rules of the language.
By contrast, types play a central role in our interpretation. For this reason, our
interpretation of objects is different from those in the above-mentioned works.
In [10, 24], interpretations of, respectively, untyped and typed FOC into the
π-calculus are given. No use is made of the π-calculus interpretation for for
validating behavioural properties of the source Object Calculus.

The syntax of FOC and IOC are similar, but their operational semantics are
very different (for instance, the operational semantics of IOC makes an exten-
sive use of stores and stacks, not needed for FOC because it is functional). Re-
markably, despite these differences in the operational semantics, the π-calculus
interpretation of IOC in this paper can be derived with a simple change from
that of FOC in [24]. As a consequence we can use the π-calculus interpretations
to compare and contrast the Imperative and Functional Object Calculi — for
instance, their discriminating power — and to prove properties about them,
within a single framework.

The type language we use for the π-calculus is taken from [21, 24]. In
these type systems, as well as other type systems for the π-calculus like [12,
28, 9], types are assigned to names. The types in [21] show the arity and the
directionality of a name and, recursively, of the names carried by that name; the
difference in [24] is variant types in place of tupling. All values are “simple”, in
the sense that they are built out of names only, and cannot contain, for instance,
process expressions.

The main technical contents of this paper are the following. We give a trans-
lation of both IOC terms and IOC types and type environments into the typed
π-calculus. We then provide correctness proofs. Precisely, we prove that (1) the
translation validates the subtyping judgements of IOC, that is, A is a subtype
of B iff the translation of A is a subtype of the translation of B; (2) a IOC type
judgement E ` a : A, asserting that object a has type A under the type assump-
tions E, is true iff its π-calculus translation is true, and (3) a well-typed IOC
term reduces to a value iff its π-calculus interpretation does so (computational
adequacy). From these results and the compositionality of the encoding, as a
corollary we get the soundness of the translation w.r.t. behavioural equivalences
like Morris-style contextual equivalence or barbed congruence [19]. Soundness
assures us that the equalities on IOC terms provable from the interpretation are
operationally valid on IOC. As for the translations of λ-calculi into π-calculus,
the opposite implication fails.

The IOC language we interpret into the π-calculus has a first-order type sys-
tem. The interpretation can be easily extended to accommodate other features,
like recursive types, variant tags, and polymorphism.

Technically, the hardest part of our work is the proof of computational ade-
quacy. The proof is split into two parts. First we factorize our encoding into a
functional part, where processes are “stateless”, and a very simple imperative
part, where processes have a state. This factorisation is useful because: (1)
it allows us take full advantage of various π-calculus proof techniques for func-
tional processes; (2) it shows what – we believe – are the simplest non-functional
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π-calculus processes that are needed for translating the imperative features of
IOC. This factorised encoding is less compact than the original one; but it
allows us to establish a close correspondence with Abadi-Cardelli’s operational
semantics of IOC.

The second part of the proof of computational adequacy is to establish a
relation between the original encoding and the factorised one. To this end, we
could not use known behavioural equivalences of the π-calculus (for instance,
known bisimilarities were too strong; trace equivalence too weak to yield the
desired property). We solved the problem by adapting (a weak version of) the
notion of ready simulation [4, 13] to the π-calculus. Roughly, ready simula-
tion was introduced in CCS-like languages as the least congruence contained in
trace inclusion induced by certain classes of operators. To our knowledge, our
application of ready simulation to derive properties of processes is novel.

Having established the correctness of our interpretation, we give some exam-
ples of how the theory of the π-calculus can be used to reason about IOC. The
advantage of using π-calculus for the proofs is that we can take advantage of the
already available theory, including its algebraic laws and its co-inductive proof
techniques. Here, we use the π-calculus to validate some basic equational theory
for IOC. Something interesting about the coinductive π-calculus proofs is that
non-trivial equalities can be proved using finitary relations (this is more rare
with CIU equivalence on untyped IOC [7] or applicative bisimulation on FOC
[8] because the definition, or the transition system, on which they are based,
contains an infinite quantification on contexts, or terms, of the language).

Among the laws we prove is (Eq Sub Object). This law allows us to
eliminate methods of objects that are not visible in the type assigned to the
object. We are not aware of proposals of this, or similar laws, for IOC. In
Abadi-Cardelli’s book, the analogous of law (Eq Sub Object) is at the heart
of the equational theory of FOC, but no equational theory for IOC is proposed
(in the book or, as far as we know, elsewhere). Strikingly, we can prove (Eq

Sub Object) using a bisimulation relation consisting of just two elements.
Essentially the same proof can be used for (Eq Sub Object) on FOC.

In this short version of the paper, for lack of space most of the proofs are
omitted.

2 The Imperative Object Calculus

In this section we present the (first-order) Imperative Object Calculus (IOC)
from [1]. Grammar, operational and typing rules are reported in Appendix A.

Syntax. An object [li=ς(xi:A)bi
i∈1..n] consists of a collection of named methods

li = ς(xi:A)bi for distinct names li, and where xj ’s are the self parameters. The
letter ς (sigma) is a binder for the self variable in a method; ς(x:A)b is a method
that when activated evaluates its body b with x bound to the enclosing object.
A method activation a.l results in the activation of the method bound to l
in a; this method is evaluated with a as argument for self. Instantiating this
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parameter at call time results in what is named late binding — the self of a
method can change dynamically at runtime. A method update a.l⇐ς(x:A)b
replaces the method named l in the object a with ς(x:A)b and evaluates to the
modified object. Cloning creates a copy of the original object. A let x:A = a in b
expression first evaluates the let-part, binding the result to x, then the in-part
is evaluated with the variable x in scope. Sequential evaluation of objects a; b
can be defined thus: let x:A = a in b for some x 6∈ fv(b).

Operational semantics. Object terms are evaluated w.r.t. a global store σ. If the
evaluation of an object terminates, the object reduces to a value [li=ιi

i∈1..n]
and an updated store. The store σ contains closures; a closure is the pair
〈ς(x)b,S〉 of a method body ς(x)b together with a local stack. A stack S maps
variables to values. For any mapping f we let dom(f) denote the domain of f .
A stack S is well-formed w.r.t. a store σ, written σ · S ` � if for all x ∈ dom(S)
S(x) = [li=ιi

i∈1..n] all ιi is defined in σ. A store σ is well-formed, written σ ` �
if the stacks in all closures in the store are well-formed w.r.t. the store.

If σ is a store, then we let σ, ι7 → 〈ς(x)b,S〉 denote the extension of σ with
the new entry 〈ς(x)b,S〉 on the new location ι, assuming that σ · S ` �. We
write σ[ι7 → 〈ς(x)b, s〉] for the update of location ι of store σ, assuming that
ι ∈ dom(σ) and again σ · S ` �.

The operational semantics is untyped; type annotations are simply removed
when evaluating terms. We write a⇓v · σ (“a converge to the value v and store
σ”) if we can deduce ∅ · ∅ ` a ; v · σ and a⇓ iff a⇓v · σ for some v and σ. If
there is no v and σ such that a⇓v · σ we write a⇑ (“a diverges”).

Type system. There are two forms of judgments for IOC: Type judgments and
subtyping judgments. Type judgments are of the form E ` a:A and state that
the object a has type A under the assumptions in E, where E describes typing
assumptions for free self variables. If E is empty we shall sometimes just write
a:A instead of ∅ ` a:A. Subtype judgments A <: B state that the type A is
a subtype of B. Subtyping allows an object to be replaced by another with
additional methods, but the common methods must have the same type. This
invariance is necessary for the soundness of the reduction rules, i.e. avoiding
requests on methods which do not exist.

3 A typed mobile calculus

In this section we present the typed π-calculus on which we shall interpret IOC.

Syntax. The syntax of the typed π-calculus is given in Table 1. The process
constructs are those of the monadic π-calculus [18] with matching replaced by
a case construct. The latter can be thought of as a more disciplined form of
matching, in which all tests on a given name are localised to a single place. The
construct wrong stands for a process in which a run-time type error has occurred
— i.e., for instance a communication in which the variant tag or the arity of
the transmitted value was unexpected by its recipient. A soundness theorem
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guarantees that a well-typed process expression cannot reduce to an expression
containing wrong.

Names
p, q, r . . . x, y, z

Variant Tags
`, l, h

Types
T ::= µ(X)T recursive type

| X type variable
| [ `1 T1..`n Tn ] variant type
| 〈T1 . . . Tn〉 tuple type
| T I channel type

I /O Tags
I ::= r input only

| w output only
| b either

Values
v ::= x name

| 〈v1..vn〉 tuple value
| ` v variant value

Processes
P ::= 0 nil process

| P |P parallel
| (νx:T )P restriction
| p(x).P input
| pv.P output
| !P replication
| let x1..xn = v in P

tuple destructor
| case v of [j∈1..n `j (xj)� Pj ]

case
| wrong error

where:

• In a recursive type µ(X)T , variable X must be guarded in T , i.e., occur under-
neath a I/O-tag or underneath a variant tag;

• in the case statement, the tags `i (i ∈ 1..n) are pairwise distinct.

Table 1: The syntax of the typed π-calculus

Operational semantics. For the semantics of the π-calculus we adopt a labelled
transition system. The advantage of a labeled semantics, compared to a re-
duction semantics [17, 24], is that it easily allows us to define labeled forms of

bisimulation. Process transitions are of the form P
µ
- P ′, where µ is given

by the following syntax:

µ ::= (νñ:T̃ )p̄v | pv | τ | wrong

The label (νñ:T̃ )p̄v denotes the output of the value v on the name p. The
restriction (νñ:T̃ ) where ñ must be a subset of the names in v indicates that the
names ñ are bound names having types T̃ . The label pv denotes the input of the
value v over the name p. The action τ denotes an internal action. Finally, wrong
denotes a run-time error. The rules for the operational semantics are standard
rules of the π-calculus; for instance the rules for input, and the communication
rule are:

−
p(x).P

pv
- P{v/x}

P
(νñ:T̃ )p̄v

- P ′ Q
pv
- Q′

P | Q τ
- (νñ:T̃ )(P ′ | Q′)

ñ ∩ fn(Q) = ∅
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The new, but expected, rules are those for let and case, in which run-time
errors may be generated. For case we have (let is similar):

`j ∈ {`1 . . . `n}
case `j v of [ `1 (x1)� P1; . . . ; `n (xn)� Pn ]

τ
- Pj{v/x}

v 6= `j v
′ or `j 6∈ {`1 . . . `n}

case v of [ `1 (x1)� P1; . . . ; `n (xn)� Pn ]
wrong
- wrong

We write P
µ
-

d Q if P
µ
- Q is the only transitions that P can perform.

And as usual we let
µ

=⇒ denote weak transitions, and P =⇒ P ′ means “P
τ

=⇒ P ′

or P = P ′”.

Typing and subtyping. We recall that I/O annotations [21] are to separate the
capabilities of reading and writing on a channel (we use “read” and “write”
as synonymous for “input” and “output”, respectively). For instance, a type

p : 〈Sr Tw〉b (for appropriate type expressions S and T ) says that name p can
be used both to read and to write and that any message at p carries a pair of
names; moreover, the first component of the pair can be used by the recipient
only to read, the second only to write.

Subtyping judgements, shown in Table 2, are of the form Σ ` S <: T ,
where Σ represents the subtyping assumptions. We often write S <: T when
the subtyping assumptions are empty. Note that type annotation r (an input
capability) gives covariance, w (an output capability) gives contravariance, and
b (both capabilities) gives invariance. A type environment Γ a finite assignment
of types to names.

A typing judgement Γ ` P asserts that process P is well-typed in Γ, and
Γ ` v : T (Table 2) that value v has type T in Γ. There is one typing rule for
each process construct except wrong. The interesting rules are those for input
and output prefixes and for case. In the rules for input and output prefixes,
the subject of the prefix is checked to possess the appropriate input or output
capability in the type environment. A subject reduction theorem guarantees us
that if P is well-typed and P =⇒ Q, then Q does not contain the process wrong.

Some derived constructs. In the translation we shall use: Recursive defini-

tions, A(x̃)
def
= P which can be defined the standard way from replication (c.f.

[17]); polyadic inputs a(x1 . . . xn).P , defined as a(y).let 〈x1 . . . xn〉 = y in P for
y 6∈ fn(P ); variant inputs, like p

[
j∈1..n

`j
[
i∈1..m

`i,j (x̃i,j)� Pi,j
]]

. The last

abbreviation allows us to go down two levels into the structure of a variant
value received in an input at p; in fact, this term interacts with output particles
of the form p`r `s,r w̃ (with r ∈ 1..n, s ∈ 1..m, and tuple w̃ of the same length
as x̃r,s) and, in doing so, it reduces to Pr,s{w̃/x̃r,s}.

Barbed bisimulation and congruence. The behavioural equality we adopt for
the π-calculus is barbed congruence. Barbed congruence is a bisimulation-based
relation that has been used for a broad variety of calculi; its main advantage
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Subtyping rules:

Σ ` S <: T Σ ` T <: S

Σ ` Sb <: T b

I ∈ {b, r} Σ ` S <: T

Σ ` SI <: T r

I ∈ {b,w} Σ ` T <: S

Σ ` SI <: T w

Σ ` Si <: Ti i ∈ 1..n

Σ ` [ `1 S1..`n Sn ] <: [ `1 T1..`n+m Tn+m ]

Σ ` Si <: Ti ∀i ∈ 1..n

Σ ` 〈S1..Sn〉 <: 〈T1..Tn〉
−

Σ, S <: T,Σ′ ` S <: T

Σ, µ(X)S <: T ` S{µ(X)S/X} <: T

Σ ` µ(X)S <: T

Σ, S <: µ(X)T ` S <: T{µ(X)T/X}
Σ ` S <: µ(X)T

Process typing:

−
Γ ` 0

Γ ` P Γ ` Q
Γ ` P |Q

Γ ` P
Γ ` !P

Γ, x:SI ` P
Γ ` (νx:SI)P

Γ ` p : Sw Γ ` w : S Γ ` P
Γ ` pw.P

Γ ` v : 〈T1..Tn〉 Γ, x1:T1, . . . xn:Tn ` P
Γ ` let x1..xn = v in P

Γ ` p : Sr Γ, x:S ` P
Γ ` p(x).P

Γ ` v : [ `1 T1..`n Tn ] for each i, Γ, xi:Ti ` Pi
Γ ` case v of [ `1 (x1)� P1; . . . ; `n (xn)� Pn ]

Value typing:

Γ(p) = T

Γ ` p : T

Γ ` v : S S <: T

Γ ` v : T

Γ ` v : T

Γ ` ` v : [` T ]

Γ ` vi : Ti ∀i ∈ 1..n

Γ ` 〈x1..xn〉 : 〈T1..Tn〉

Table 2: Subtyping and typing for the π-calculus

is that it can be uniformly defined on different calculi, for it requires of the
calculus little more than a notion of reduction – the τ -step of the π-calculus.

Barbed congruence is defined as the congruence induced by barbed bisimu-
lation. We write P⇓p if P is observable at p, that is P can accept an input or
an output communication with the environment along p; formally P⇓p is true

if P
µ

=⇒ P ′, for some P ′ and µ where µ is an input or output action at p.

Definition 1 (barbed bisimulation and congruence) Barbed bisimulation
is the largest symmetric relation

.≈ on processes s.t. P
.≈ Q implies:

1. whenever P =⇒ P ′ then there exists Q′ such that Q =⇒ Q′ and P ′
.≈ Q′;

2. for each name p, P⇓p iff Q⇓p.

Two processes P and Q are barbed congruent, written P ≈ Q, if C[P ]
.≈ C[Q]

for all contexts C.
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In an untyped calculus, no contraint is made on processes or contexts. In
a typed setting, process compared should have the same type, and should only
be tested in contexts which respect such a type. We write P ≈Γ Q if Γ ` P,Q
and C[P ]

.≈ C[Q] holds, in all contexts that respect Γ. We omit the formal
definitions of the typed relations.

Barbed congruence requires a quantification over all contexts. Therefore
proving process equalities can be heavy. Against this, it is important to have
powerful proof techniques. One such a technique consists in using labeled bisim-
ilarities whose definition does not require context quantification. For instance,
in the untyped π-calculus barbed congruence can be recovered using the well-
known early labeled bisimilarity. Its typed version, typed early labeled bisim-
ulation is studied by Boreale and Sangiorgi [5]. These techniques of labeled
bisimilarities can be made more powerful by combining then with up-to tech-
niques, like “up to parallel composition” and “up to injective substitutions”.

4 The interpretation

To understand the π-calculus interpretation, it may be helpful to see first an
intermediate interpretation into the Higher-Order π-calculus (HOπ) [23], an
extension of the π-calculus where arguments of communications and recursive
definitions may be, besides names, also abstractions, i.e., parameterised pro-
cesses. For the interpretation of IOC, we only need abstractions in recursive
definitions. More precisely, we need certain parameters of recursive definitions
to be functions from names to processes. An example of such a recursive defi-
nition is

K(f, p)
def
= p(x).(f〈p〉|K〈f, x〉)

Here, f is a function parameter, and p a name parameter; f〈p〉 is the process
obtained by applying function f to name p. We write functions from names to
processes using a lambda notation, like in λ(x, y).P . The interpretation into
HOπ is shown in Table 3. We have omitted the type annotations.1.

The translation {[a]}p of an IOC term a is located at a channel p. When a is
an object value, with methods li (i ∈ 1..n), its translation is a process whose first
action is to signal its valuehood by providing an access s to its value-core, which
is a process of the form OB〈f1 . . . fn, s〉. This process is ready to accept along
the access name s requests of selection, update and cloning for the methods lj .
The body of a method lj is the function fj ; the set of these functions form the
state of OB〈f1 . . . fn, s〉.

We explain the behaviour of OB〈f1 . . . fn, s〉 on operations of selection, up-
date and cloning. In case of a select operation lj sel p (which reads “acti-
vate method lj and use p as location for the resulting object”) the body fj
of method lj is activated, with arguments 〈s, p〉; argument s, the access name

1We are omitting type annotations for ease of reading; they would be however necessary
to make the definition formal. Types are taken into account in the interpretations into the
π-calculus in Table 4
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{[[li=ς(xi)bi i∈1..n]]}p def
= (νs)(ps | OB〈λ(x1, r).{[b1]}r, . . . , λ(xn, r).{[bn]}r, s〉)

{[a.lj]}p
def
= (νq)({[a]}q | q(x).xlj sel p)

{[a.lj⇐ς(xj)b]}p def
= (νq)({[a]}q | (νb)q(x).

xlj upd 〈p, λ(xj , r).{[b]}r〉)

{[x]}p def
= px

{[clone(a)]}p def
= (νq)({[a]}q | q(x).xclone p)

{[let x = a in b]}Ep
def
= (νq)({[a]}q | q(x).{[b]}p)

where OB is so defined:

OB(f1 . . . fn, s)
def
=

s
[
j∈1..n

lj
[

sel (x)� fj〈s, x〉 | OB〈f1 . . . fn, s〉;
upd (x, y)� x̄s | OB〈f1 . . . fj−i, y, fj+1 . . . fn, s〉

]
;

clone (x) �OB〈f1 . . . fn, s〉 | (νs′)(x̄s′ | OB〈f1 . . . fn, s
′〉)
]

Table 3: The intermediate translation into HOπ (sketch)

of the value-core OB〈f1 . . . fn, s〉, represents the self-parameter. An update re-
quest lj upd 〈p, f〉 (which reads “replace current method body for lj with f ,
and use p as the location of the resulting object”) results in a side effect on
OB, whereby the j-th component of its state is updated to f . In a clone re-
quest clone p (which reads “create a copy of the current object with location
p”), a new object is created that has the same value-core OB〈f1 . . . fn, s〉. Note
the recursive definition of OB〈f1 . . . fn, s〉, that shows that OB〈f1 . . . fn, s〉 may
accept arbitrarily many requests at s.

Now, following the translation of HOπ into π-calculus [23], we can turn
the previous interpretation into a π-calculus one. For this, it suffices to make
a recursive call with a functional argument, like K〈λx.P 〉, into a first-order
recursive call whose argument is a pointer to the function, like in:

(νb)(K〈b〉|!b(x).P )

Correspondingly, a function application becomes an output of the arguments of
the function along the pointer to the function. The result of this transformation,
with the addition of type annotations, is presented in Table 4.

As for interpretation of Object Calculi into the λ-calculus [2], so our transla-
tion of terms has an environment E as parameter in order to put the necessary
type annotations in the translation of method selection. This parameter could
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be avoided by having, for instance, more type information on the syntax of
method selection. We assume that p, q, r, b, s . . . are not IOC variables.

In the remainder of the paper, we shall call processes of the form OBA〈b1 . . . bn, s〉
an object manager (in the interpretation of an object, OBA〈b1 . . . bn, s〉 acts like
an administrator for the object; it “owns” the object methods, in the sense that
it is the only process which can reach them, via names bi’s).

{[[li=ς(xi:A)bi
i∈1..n]]}Ep

def
= (νs:{[A]}b)(ps | (νbi:T b

A,i
i∈1..n)(OBA〈b1 . . . bn, s〉 |∏

j∈1..n

!bj(xj , r).{[bj ]}E,xj:Ar ))

{[a.lj]}Ep
def
= (νq:{[[lj : Bj ]]}wb

)({[a]}Eq | q(x).xlj sel p)

{[a.lj ⇐ ς(xj :A).b]}Ep
def
= (νq:{[A]}wb

)({[a]}Eq | (νb:T b
A,j)q(x).

(xlj upd 〈p, b〉 | !b(xj , r).{[b]}E,xj:Ar ))

{[x]}Ep
def
= px

{[clone(a)]}Ep
def
= (νq:{[A]}wb

)({[a]}Eq | q(x).xclone p)

{[let x:A = a in b]}Ep
def
= (νq:{[A]}wb

)({[a]}Eq | q(x).{[b]}E,x:A
p )

The object manager OBA is so defined:

OBA(b1:T
w
A,1 . . . bn:T

w
A,n, s:{[A]}b)

def
=

s
[
j∈1..n

lj
[

sel (x)� b̄j〈s, x〉 | OBA〈b1 . . . bn, s〉;
upd (x, y)� x̄s | OB〈b1 . . . bj−i, y, bj+1 . . . bn, s〉

]
;

clone (x) �OBA〈b1 . . . bn, s〉 | (νs′ : {[A]}b)(x̄s′ | OBA〈b1 . . . bn, s′〉)
]

and where

• A = [lj : Bj ] and TA,j
def
= 〈{[A]}w, {[Bj]}ww〉

• in the encoding of selection, Bj is the unique type s.t. E ` a:[. . . , lj:Bj , . . .]
holds, if one such judgement exists (the unicity of this type if a consequence
of the minimum-type property of IOC), Bj can be any type otherwise;

• in the rule for update, x does not occour free in b.

Table 4: The interpretation of IOC into π-calculus

Finally we need to show how to translate types. The translation of an
object type must be a type that specifies a repeated selection, update and clone
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operations.

{[[lj:Bj j∈1..n]]} def
= µX.

[
j∈1..n

lj
[

sel {[Bj ]}ww

;

upd 〈Xww

, 〈Xw, {[Bj]}ww〉w〉 ];

clone Xww
]

The pattern of occurrences of w tags is determined by the protocol which im-
plements select and update operations. What is important, however, is the
level of nesting of w tags: An even number of nesting gives covariance, whereas
an odd number of nesting gives contravariance. Thus, the component {[Bj]} is
in covariant position on selection, and in contravariance position on update:
This explains the invariance of object types on the common components, in rule
(OSub Obj) (the interpretation of IOC into the λ-calculus [2] does the same).
Type environments are then interpreted componetwise:

{[∅]} def
= ∅

{[E, x:A]} def
= {[E]}, x:{[A]}w

5 Simplifying the imperative part of the encod-
ing

In the interpretation of IOC in Section 4, the key process is the object manager
OB. This process is given as a recursive definition in which certain parameters
may change during time. Having a state, this processes may be regarded as “im-
perative”. In this section we modify the encoding, so that the only imperative
processes are cell-like processes, each of which just stores a name. All remain-
ing processes will be stateless, and therefore may be regarded as “functional”.
We thus obtain a clean separation of the interpretation into a functional part
and a very simple imperative part. Technically, this factorisation allows us take
full advantage of various π-calculus proof techniques for functional names and
functional processes, discussed below.

A π-calculus name is functional if its response to incoming messages does
not change over time. Typically, a name a is functional if it only appears in
subexpressions of the form (νa)(!a(p).P |Q) where P and Q only possess the
output capability on a, or of the form (νa)(a(p).P |Q) if, in addition, a can only
be used once in output. (In [25] names obeying these constraints are called
uniformly receptive.)

Functional names have advantages. First, they can be implemented more
efficiently than arbitrary names as done, for instance, in the language PICT
[22]. Another advantage of functional names is their algebraic properties, among
which copying or distributivity laws like

(νa)(!a(b).P |Q|R) = (νa)(!a(b).P |Q) | (νa)(!a(b).Q|R),

whose effect is to localise computation. Another property is τ -insensitiveness:
Interactions along a functional name may not affect a process behaviour. As

12



a consequence, when comparing the behaviour of two processes there are fewer
configurations to take into account. Let us call a process functional if all inputs
made by the process during its lifetime are at functional names. Functional
languages (the λ-calculus, the Functional Object Calculus FOC) may be inter-
preted into a sublanguage of the π-calculus in which all processes are functional.

The new, factorised, encoding is defined in Table 5. To enhance readability
we drop types, as they are the same as in the previous encoding. Only the clause
for evaluated objects changes. Previously, the access name of the methods was
part of (the state of) the object manager. By contrast, now a level of indirection
is introduced, such that when updating a method, the indirection, instead of
the object manager, changes; this way the object manager becomes functional.

A cell Cell〈ι, n〉 stores a pointer n to a method; and can be accessed for read
and write operations at ι. The cells are the only imperative processes in the
encoding. Being imperative, a cell may be shared by several clients, but may
not be copied among them. By contrast, all other resources are functional and
they may be copied among their clients. The copy operator Copy is used to
create new cells in a clone operation.

This factorised encoding is less compact, but has a simpler correctness proof,
than the previous encoding of Section 4. In the next section, we use this fac-
torised encoding for proving the correctness of the original one.

6 Correctness of the interpretation

6.1 Correctness of the interpretation of types

Theorem 2 (correctness for subtyping) For all A,B, it holds that ` A ≤
B iff ∅ ` {[A]} ≤ {[B]}.

Theorem 3 (correctness on type judgements)

1. If E ` a:A then, for all p, it holds that {[E]}, p:{[A]}ww ` {[a]}Ep .

2. If {[E]}, p:[[A]]w
w ` [[a]]Ep , then E ` a:A.

6.2 Operational correctness

We first prove the operational correctness of the factorised encoding of Section 5;
then we relate this encoding to the original one of Section 4.

Operational correctness of the factorised encoding. The proof of the correctness
of the interpretation w.r.t. Abadi-Cardelli operational semantics has a few tricky
points. First of all we need to extend the translation to deal with configurations
(objects plus stores plus stacks) in the semantics. We therefore need to add
translations of stores (σ), stacks (S) and values (v). We found it quite difficult to
make such an extension of the original encoding {[−]} of Section 4, due to sharing
of closures. We solve this problem by using instead the factorised encoding [[−]]
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Below, we let ι̃ denote ι1 . . . ιn, and ι̃′ denote ι′1 . . . ι
′
n.

[[[li=ς(xi:A)bi
i∈1..n]]]p

def
= (νs)(p̄s | (νι̃)(OBf 〈ι1 . . . ιn, s〉 |∏

i∈1..n

(νbi)(Cell〈ιi, bi〉 |!bi(xi, r).[[bi]]r)))

The other clauses are as for the original translation in Table 4.

The object manager is now defined thus:

OBf (ι̃, s)
def
=

!s
[
i∈1..n

li
[

sel (x)� (νg)(ιiread g.g(m).m〈s, x〉);
upd (x, y)� ιiwrite y.xs)

]
;

clone (x)� (νι̃′, s′)(OBf 〈ι̃′, s′〉 | Copyn〈ι̃, ι̃′, x, s′〉)
]

where Cell(ι,m) and Copyn (n ≥ 0) are so defined:

Cell(ι,m)
def
= ι[ read (x)� xm | Cell〈ι,m〉;

write (y)� Cell〈ι, y〉]

Copyn(ι̃, ι̃′, x, s)
def
= (νg)ιnread g.g(m).(Cell〈ι′n,m〉 | Copyn−1〈ι̃, ι̃′, x, s〉)

Copy0(ι̃, ι̃′, x, s)
def
= xs

Table 5: The factorised encoding

of Section 5. A location ι of a store holds a method closure (which is a method
together its stack); we translate it using a cell located at ι that holds the address
of the method closure (which is the translation of the method together with a
private stack).

[[∅]] def
= 0

[[ι7 → 〈ς(x)b,S〉 : σ]]
def
= (νdom(S),m)(Cell〈ι,m〉 | !m(x, r).[[b]]r | [[S]]) | [[σ]]

A stack binds values to variables, so we translate it as an object manager located
on the variable name.

[[∅]] def
= 0

[[x7 → [li=ιi
i∈1..n] : S]]

def
= OBf 〈ι1 . . . ιn, x〉 | S

We have two types of configurations in the operational semantics for Imper-
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ative Object Calculus; initial configurations on the form σ · S ` a and final
configurations on the form v · σ. They are translated as follows:

[[σ · S ` a]]p def
= (νdom(σ))([[σ]] | (νdom(S))([[S]] | [[a]]p))

[[[li=ιi
i∈1..n] · σ]]p

def
= (νs, dom(σ))(p̄s | OBf 〈ι1 . . . ιn, s〉 | [[σ]])

That is, in both cases we simply translate each component of the configurations
and appropriately hide their access. Below, ∼ is the strong version of barbed
congruence.

Theorem 4 If σ · S ` a; v · σ′ then: [[σ · S ` a]]p =⇒d ∼ [[v · σ′]]p.

Lemma 5 Suppose a is well-typed. If a⇑ then [[∅ · ∅ ` a]]p has an infinite

computation [[∅ · ∅ ` a]]p
τ
-

d P1 . . .
τ
-

d Pn
τ
-

d . . ..

Theorem 6 Suppose a is well-typed. If [[∅ · ∅ ` a]]p⇓p, there exists a value v,
and a store σ, s.t. σ · S ` a; v · σ

Relating the original and the factorised encodings. We have not been able to
prove that the translations of an IOC object, according to the factorised en-
coding {[−]} and to the original encoding [[−]] are equated by some known be-
havioural equivalence of the π-calculus — the factorised encoding yields richer
behaviours. However, we have been able to extend the notion of ready simula-
tion [4, 13] to the π-calculus and prove that the two translations of an object are
in a ready simulation relation. This is a rather weak result, but, together with
the correctness of the factorised encoding, it will suffice to prove the operational
correctness of the original encoding.

Definition 7 (Ready simulation) Ready simulation is the largest relation ≺
s.t. P ≺ Q implies:

1. If P
µ
- P ′; then there exist a Q′ s.t. Q

µ̂
=⇒ Q′ and P ′ ≺ Q′. With

µ̂
=⇒def

==⇒ if µ = τ and
µ

=⇒ otherwise.

2. If Q
µ
- ; then P

µ
=⇒.

Theorem 8 {[a]}p ≺ [[∅ · ∅ ` a]]p.

Lemma 9 Suppose a is well-typed. Then {[a]}p cannot deadlock, i.e. whenever

{[a]}p =⇒ P then there are µ, P ′ s.t. P
µ
- P ′.

Proof. Assume that {[a]}p can deadlock, that is there exists a P such that

{[a]}p =⇒ P 6 µ→. Now since {[a]} ≺ [[∅ · ∅ ` a]]p there must exist a Q such that
[[∅ · ∅ ` a]]p =⇒ Q with P ≺ Q.

By Theorem 4 if a converges then [[∅ · ∅ ` a]]p will also converge and by
Lemma 5 if a diverges then [[∅ · ∅ ` a]]p will also diverge; so [[∅ · ∅ ` a]]p cannot

deadlock. Then there must exist a µ s.t. Q
µ
- . By the second clause of the

definition of ready simulation we infer P
µ

=⇒, which is a contradiction. 2
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Corollary 10 Suppose a is well-typed.

• {[a]}p⇑ iff [[∅ · ∅ ` a]]p⇑

• {[a]}p⇓ iff [[∅ · ∅ ` a]]p⇓

Proof. Both {[a]}p and [[∅·∅ ` a]]p are deadlock-free. Then the corollary follows
from Theorem 8 and the fact that [[∅ · ∅ ` a]]p either converges or diverges (it
cannot do both, because of Theorem 4 and Lemma 5). 2

Adequacy and soundness of the original interpretation. From Theorems 4 and
6 and Corollary 10, we infer:

Corollary 11 (computational adequacy) If ∅ ` a : A for some type A, then
a⇓ iff {[a]}p⇓p.

Behavioural equivalences like barbed congruence or the Morris-style contex-
tual equivalence can also be defined in IOC (in fact, on IOC the two equivalences
coincide). We write a 'B b if a and b are closed terms of IOC of type B and
are barbed congruent.

We can show soundness of the translation using compositionality of the en-
coding and adequacy. This tells us that the equalities that can be proven using
the translation are valid equalities.

Theorem 12 (soundness) Assume a:A and b:A. If {[a]}p ≈p:{[A]}ww {[b]}p then
a 'A b.

As for the encodings of the λ-calculi into π-calculus, so in the case of IOC
the converse of soundness does not hold.

7 Comparisons with the interpretation of FOC

In their book, Abadi and Cardelli consider not only the imperative, but also the
functional paradigm for Object Calculi. In this section we briefly compare the
(first-order) Imperative and Functional Object Calculi, and their encodings into
the π-calculus. The syntax of the Functional Object Calculus (FOC) is the same
as for the imperative except that we do not have the the let and clone constructs.
The operational semantics, however, is very different. In the functional case,
stores and stacks are not necessary and a simple reduction semantics can be
given, using the rules below, where a = [li=ς(xi:Ai)bi

i∈1..n]:

a.lk ; bk{a/xk} (k ∈ 1..n)

a.lk⇐ς(x:A)b ; [lk=ς(x:A)b, li=ς(xi:Ai)bi
i∈1..n\{k}] (k ∈ 1..n)

As a consequence of the differences in the operational semantics, certain basic
laws of FOC, like a.lk = bk{a/xk} (k ∈ 1..n), do not hold in IOC.
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In [24] FOC is translated onto the same typed π-calculus we use in this pa-
per. Remarkably, despite the strong differences in the operational semantics,
the interpretations of IOC and FOC into the π-calculus are structurally very
close. Roughly, the only difference between the two translations is in the object
manager. The FOC manager, reported below, is a functional process (it is repli-
cated, see the discussion on functional processes in Section 5). This difference
has consequences on the update requests: On such a request, the FOC manager
always generates a new object manager, whereas the IOC manager works by
having side effect on itself.

OBA(b1:T
w
A,1 . . . bn:T

w
A,n, s:{[A]}b)

def
=

!s
[
j∈1..n

lj
[

sel (x) � b̄j〈s, x〉;
upd (x, y)� (νs′:{[A]}b)(xs′ | OB〈b1 . . . bj−i, y, bj+1 . . . bn, s

′〉)
]]

The functional and the imperative nature of, respectively, FOC and IOC, is
reflected in the functional and the imperative nature of the object managers of
the π-calculus interpretations. The commonalities between the interpretations
of FOC and IOC allow us to reuse certain proofs, most notably those on types
(see Theorem 2 and 3), but also certain proofs about behavioural properties
of objects (a good example of this is the proof of the law (Eq Sub Obj), in
Section 8).

8 Reasoning about objects

In this section we give some examples of how the π-calculus interpretation can
be used to validate some basic behavioural properties of IOC.

Lemma 13 Let o = [li=ς(xi:A)bi
i∈1..n], A = [li:Bi

i∈1..n], and o:A. Then

1. o.lj 'Bi let xj :A = o in bj

2. If x:A ` b:Bj then o.lj⇐ς(x:A)b 'A [lj=ς(x:A)b, li=ς(xi:A)bi
i∈1..n\{j}]

3. clone(o) 'A o

4. If a⇓, a:B, b:C x 6∈ fv(b), then let x:B = a in b 'C b.

5. If x 6∈ fv(o), y 6∈ fv(a), a:B and (let x:B = a in let y:A = o in b) : C, then

(let x:B = a in let y:A = o in b) 'C (let y:A = o in let x:B = a in b)

6. (law (Eq Sub Object)): If m ≥ n, then o 'A [li=ς(xi:B)bi
i∈1..m].

Laws 1-5 can be validated using the theory of the untyped π-calculus. For in-
stance, using laws such as the expansion law, (νp)(p(x).P | pv.Q) ≈ (νp)(P{v/x}|Q)
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and (νp)(!p(x).P |Q) ≈ Q if p is not free in Q, we can prove law (5) as follows.

{[let y = o in let x = a in b]}p
= (νq)((νs, b1 . . . bn)(qs | OB〈b1 . . . bn, s〉 |

∏
i∈1..n

!bi(xi, r).{[bi]}r) |

q(y).(νq′)([[a]]q′ | q′(x).{[b]}p))
≈ (νq′)({[a]}q′ | q′(x).(νs, b1 . . . bn)({[b]}{s/y} | OB〈b1 . . . bn, s〉 |∏

i∈1..n

!bi(xi, r).{[bi]}r))

≈ (νq′)([[a]]q′ | q(x).(νq)((νs)(qs | OB〈b1 . . . bn, s〉 |∏
i∈1..n

!bi(xi, r).{[bi]}r) | q(y).{[b]}p))

= {[let x = a in let y = o in b]}p

It is interesting to look at the difference between FOC and IOC on objects
of the form o.lj , for o = [li=ς(xi:A)bi

i∈1..n] (j ∈ 1..n), using the π-calculus
interpretations of FOC and IOC . In the case of FOC, o is interpreted as a
functional process and we can therefore apply copy laws to derive {[o.lj]}p ≈
{[bj{a/xj}]}p. By contrast, in the case of IOC, object o is interpreted as a process
with a state, and we can only infer {[o.lj]}p ≈ {[let xj :A = o in bj ]}p, as by
Lemma 13(1).

Law (Eq Sub Object) of Lemma 13 can be validated using the typed
labeled bisimulation technique. Roughly, a typed bisimulation relations consists
of triples (Γ, P,Q), and (Γ, P,Q) being in a typed bisimulation means that P
and Q are undistinguishable by an observer whose use of names respect the
type informations in Γ. We describe a typed bisimulation for proving (Eq Sub

Object). Having fixed a and b, their translations are:

[[a]]p = (νs:[[A]]w)(ps | (νbi:T b
A,i

i∈1..n)(OBA〈s, b1 . . . bn〉 |
∏
i∈1..n!bi(xi, r).[[bi]]r))

[[b]]p = (νs:[[A′]]w)(ps | (νbi:T b
A,i

i∈1..m)(OBA
′
〈s, b1 . . . bm〉 |

∏
i∈1..m!bi(xi, r).[[bi]]r))

Now, let Γ′ = s:[[A]]w, b1:T
r
A,1, . . . , bn:T

r
A,n and Γ′′ = p:[[A]]w

r

, b1:T
r
A,1, . . . , bn:T

r
A,n.

where TA,j
def
= 〈{[A]}w, {[Bj]}ww〉. Consider the relation consisting of these two

triples:

1)
(
Γ′,OBA〈b1 . . . bn, s〉,

(νbi:T
b
A,i

i∈n+1..m)(OBA
′
〈b1 . . . bm, s〉 |

∏
i∈n+1..m

!bi(xi, r).[[bi]]r)
)

2)
(
Γ′′, (νs:[[A]]w)(p̄s | OBA〈b1 . . . bn, s〉,

(νs:[[A′]]w)(νbi:T
b
A,i

i∈n+1..m)(p̄s | OBA
′
〈b1 . . . bm〉 |

∏
i∈n+1..m

!bi(xi, r).[[bi]]r)
)
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This relation is typed bisimulation up to parallel composition and up to injective
substitutions.

This is the first proof of (Eq Sub Object) for IOC we are aware of. The
proof can be easily adapted to the analogous law for FOC.

9 Extensions and further work

Our interpretation of IOC can be extended to accommodate other type features
discussed in [1], like variant tags, recursive types, polymorphic types. Variant
tags are tags on method names which allow only selection or update operations
on a method, so to have a richer subtyping relation. These tags yield the same
form of subtyping on IOC types as that induced by the tags {r,w, b} on the π-
calculus types. We can capture them with a simple refinement of the encoding
of types. For recursive types, we just map type variables of a IOC type to type
variables of the π-calculus types. Similarly, is possible to handle polymorphic
types, using polymorphic extensions of the π-calculus [26].

The extensibility of the interpretation of imperative objects, and its resem-
blance to the interpretation of functional objects, suggests that the represen-
tation of objects into the π-calculus is a robust one, and that it could be used
for giving the semantics to, and proving properties of, a wide range of object-
oriented languages, possibly combining imperative, functional and concurrent
features. We have began examining the case of Obliq [6], which has imperative
objects and constructs for concurrency and distribution.

We hope the study of the Object Calculi from within the π-calculus will help
to develop concurrent or distributed versions of the Object Calculi.

An interesting and challenging question is finding a direct characterisation
of the equivalence induced on IOC terms by the encoding into the π-calculus
(where two IOC terms are equated if their process translations are behaviourally
equivalent).
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[10] H. Hüttel and J. Kleist. Objects as mobile processes. Technical report
RR-96-38, BRICS - Basic Research in Computer Science, 1996.

[11] C. Jones. A π-calculus semantics for an object-based design notation. In
E. Best, editor, Proc. CONCUR ’93, volume 715 of Lecture Notes in Com-
puter Science, pages 158–172. Springer Verlag, 1993.

[12] N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus. In
Proc. 23th POPL. ACM Press, 1996.

[13] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information and Computation, 94(1):1–28, Sept. 1991.

[14] X. Liu and D. Walker. Partial confluence of processes and systems of
objects. Submitted for publication, 1996.

[15] I. A. Mason and C. L. Talcott. Equivalence in functional languages with
effects. Journal of Functional Programming, 1(3):287–327, 1991.

[16] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[17] R. Milner. The polyadic π-calculus: a tutorial. Technical Report ECS–
LFCS–91–180, LFCS, Dept. of Comp. Sci., Edinburgh Univ., Oct. 1991.
Also in Logic and Algebra of Specification, ed. F.L. Bauer, W. Brauer and
H. Schwichtenberg, Springer Verlag, 1993.

[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts
I and II). Information and Computation, 100:1–77, 1992.

[19] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, 19th
ICALP, volume 623 of Lecture Notes in Computer Science, pages 685–695.
Springer-Verlag, 1992.

[20] A. Philippou and D. Walker. On transformations of concurrent object
programs. In Proc. CONCUR ’96, Lecture Notes in Computer Science,
pages 131–147. Springer Verlag, 1996.

20



[21] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
In Proceedings of LICS’93, pages 376–385. IEEE Computer Society Press,
1993.

[22] B. C. Pierce and D. N. Turner. Pict: A programming language based on
the pi-calculus. Indiana University Technical report, 1997., 1997.

[23] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis CST–99–93, Department of Com-
puter Science, University of Edinburgh, 1992.

[24] D. Sangiorgi. An interpretation of typed objects into typed π-calculus.
Technical Report RR-3000, INRIA — Sophia Antipolis, 1996.

[25] D. Sangiorgi. The name discipline of uniform receptiveness. In Proceedings
of ICALP’97, 1997.

[26] D.N. Turner. The polymorphic pi-calculus: Theory and Implementation.
PhD thesis, Department of Computer Science, University of Edinburgh,
1996.

[27] F. Vaandrager. A process algebra semantics of POOL. In Applications
of process algebra, volume 17 of Tracts in Theoretical Computer Science,
pages 173–236. Cambridge University Press, 1990.

[28] V. Vasconcelos and M. Tokoro. A typing system for a calculus of objects. In
Proc. Object Technologies for Advanced Software ‘93, volume 742 of Lecture
Notes in Computer Science, pages 460–474. Springer Verlag, 1993.

[29] D. Walker. Objects in the π-calculus. Information and Computation,
116:253–271, 1995.

A Grammar and rules for IOC

Syntax:

Type Environments E ::= ∅ | E, x : A
Types A,B ::= [li:Bi

i∈1..n]
Method names l,
Variables x, y, z
Terms a, b ::=

x Variable
| [li=ς(xi:A)bi

i∈1..n] Object
| a.l Method activation
| a.l⇐ς(x:A)b Method override
| clone(a) Cloning
| let x:A = a in b Local definition

21



Operational semantics:

(OC Var)

σ · S ` � x ∈ dom(S)

σ · S ` x; S(x) · σ

(OC Obj) where σ′ = (σ, ιi 7 → 〈ς(xi)bi,S〉 i∈1..n)

σ · S ` � ιi 6∈ dom(σ) ιi distinct ∀i ∈ 1..n

σ · S ` [li=ς(xi:A)bi i∈1..n]; [li=ιi i∈1..n] · σ′

(OC Sel)

σ · S ` a; [li=ιi
i∈1..n] · σ′ σ′(ιj) = 〈ς(xj)bj ,S ′〉

xj 6∈ dom(S ′) j ∈ 1..n σ′ · S ′, xj 7 → [li=ιi
i∈1..n] ` bj ; v · σ′′

σ · S ` a.lj ; v · σ′′

(OC Upd)

σ · S ` a; [li=ιi
i∈1..n] · σ′ j ∈ 1..n ιj ∈ dom(σ′)

σ · S ` a.lj⇐ς(x:A)b; [li=ιi i∈1..n] · σ′[ιj 7 → 〈ς(x)b,S〉]

(OC Clone)

σ · S ` a; [li=ιi
i∈1..n] · σ′ ∀i ∈ 1..n ι′i 6∈ dom(σ′) ι′i distinct

σ · S ` clone(a); [li=ιi i∈1..n] · (σ′, ι′i 7 → σ(ιi) i∈1..n)

(OC Let)

σ · S ` a; v′ · σ′ σ′ · S , x 7 → v′ ` b; v′′ · σ′′
σ · S ` let x:A = a in b; v′′ · σ′′

Subtyping rules:

(OSub Obj)

[li:Bi i∈1..n+m] <: [li:Bi i∈1..n]

Typing rules: (the order of assignments in a type environment is ignored)

(OT Subsumption)

E ` a:A A <: B

E ` a:B

(OT var) where x ∈ dom(E)

E(x) = A

E ` x:A

(OT Obj) where A = [li:Bi
i∈1..n]

E, xj :A ` bj :Bj ∀j ∈ 1..n

E ` [li=ς(xi:A)bi i∈1..n] : A

(OT Sel) where A = [li:Bi
i∈1..n]

E ` a : [li:Bi
i∈1..n] j ∈ 1..n

E ` a.lj :Bj

(OT Upd) where A = [li:Bi
i∈1..n]

E ` a:A E, x:A ` b:Bj j ∈ 1..n

E ` a.lj⇐ς(x:A)b : A

(OT Clone)

E ` a:A
E ` clone(a):A

(OT Let)

E ` a:A E, x:A ` b:B
E ` let x:A = a in b : B
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