
B
R

IC
S

R
S

-98-51
P.K

.Jensen:
A

utom
ated

M
odeling

ofR
eal-T

im
e

Im
plem

entation

BRICS
Basic Research in Computer Science

Automated Modeling of
Real-Time Implementation

Peter Krogsgaard Jensen

BRICS Report Series RS-98-51

ISSN 0909-0878 December 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/51/



Automated Modeling of Real-Time
Implementation

Peter Krogsgaard Jensen
BRICS∗

Department of Computer Science
Aalborg University, Denmark

pkj@cs.auc.dk

December, 1998

Abstract

This paper describes ongoing work on the automatic construc-
tion of formal models from Real-Time implementations. The
model construction is based on measurements of the timed behav-
ior of the threads of an implementation, their causal interaction
patterns and external visible events. A specification of the timed
behavior is modeled in timed automata and checked against the
generated model in order to validate their timed behavior.

1 Introduction

When developing a Real-Time application it is a problem to obtain pre-
cise information about how much CPU time is needed to complete the
jobs of the application. A widely used way to make schedulability anal-
ysis is to use an offline worst case execution time (WCET) calculation.
However, when several processes (or threads) interact via shared data,
this calculation often becomes extremely complicated. This problem has
been addressed in [9] using a framework where the offline analysis is ex-
tended with some application dependent knowledge and use of priority

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1



inheritants protocol. The work described in this paper is directed towards
automatic collection of application dependent knowledge, resulting in less
manual (and error prone) work to do schedulability analysis.

Besides schedulability, the logical correctness is also important to
Real-Time applications. A number of formal tools are already available
to support the correctness analysis during the design phase of such ap-
plications, but there is still a gap between design and implementation
- and this may cause human errors. One approach is automatic code
generation, but often the formal method is used only for essential algo-
rithms and to model parallel composition. This makes it impossible to
auto-generate the complete implementation. The work described here
attempts to bridge the gap from implementation to design, by automatic
synthesis of a formal model, which incorporates the actual (measured)
timing behavior of the application. The model can then be fully analyzed
by existing automated tools like e.g. Uppaal [5].

In this work, we suggest a semi-automated iterative way to attack
the above problems: First an initial implementation is developed and
instrumented with the logging of relevant events; then a series of runs
are logged and three different models are synthesized - including a timing
diagram; finally the models are analyzed by using an automated real-time
model checker and timing errors are corrected in the next iteration. The
corrections may be validated by a new iteration.

It is our plan to implement tool support for the above method at a
prototype level and to evaluate its feasibility through realistic case stud-
ies. In the present paper we present an preliminary result, i.e. we present
our event logging tool and the tool for generating timing diagrams. Also,
we sketch how to derive the models to be used by the model checker, and
we present the preliminary experiences on a non-trivial case study. The
prototype tool does not support testing, but assumes that the log stream
it experiences is sufficient for creating a complete model.

A result obtained with the prototype tool, is the automatic calculation
of the average case execution time (ACET). ACET is calculated as the
average of a set of execution times, between f.ex. job start and job end.
The ACET therefore becomes a number for how much CPU a particular
job needs. Another result is the deducting of timed behavior which is
pictured in a timing diagram, called execution time graph (ETG), this is
done to present an overview of the interaction pattern between threads.
The ETG is in fact an annotated message sequence diagram, where both
synchronous and asynchronous interaction is pictured. This is the current

2



state of the prototype tool.
The work done in by Havelund, Skou & Larsen in [3] indicates that

it is possible to verify time requirements in a single processor interleaved
system, and in this way an alternative to offline schedulability analysis
is obtained.

The work described here is based on a series of tests of an industrial
process control application, performed on a single CPU system using the
RT-Mach micro kernel. The soft- and hardware system is described in
section 2. In section 3 is a description of the necessary analysis to gen-
erate the implementation model, which still remains to be fully defined.
Finally, in section 4 is located a plan for the future work.

2 The RT Test System

The target system is a single CPU running an RT-Mach micro kernel
extended with event logging on both kernel and user level. The software
system consist of four parts: event logging subsystem, submarine test
application with testbed, ACET analysis prototype tool, and the Uppaal

model checker. The event logging subsystem, the prototype tool and the
Uppaal model checker are application independent, and will analyze
any instrumented application running on RT-Mach. Figure 1 shows the
data flow in the software system, but before going through this the main
components are described individually.

The event logging subsystem is a part of the RT-Mach micro kernel,
and can log scheduling- and user-events with a time stamp local to the
machine. The event logging subsystem is developed by the RT-Mach
group at CMU, and has been used by several tools. The system has
been customized by the author to connect it to the prototype tool. The
logging is fast and best effort, but congestion and packet loss is handled
by dropping affected sub-traces during analysis.

The submarine test application is a 4000 lines multi threaded program
set. It is a small process control system, where an unmanned submarine is
directed from a ship. The submarine system handles a variety of periodic
jobs automatically, and it receives sporadic commands from an operator
at the command bridge. The application has been instrumented with a
small number of system calls for logging. A testbed controls the input
to the application under test, making it possible to simulate different
types of situations and errors in the submarine environment. This work
is trying to improve test analysis, by automating critical tasks, therefore

3



we assume that the application is put through a sufficiently thorough
test. The log information we analysis is then assumed to come from such
test. In out example the testbed is used to drive the application through
a realistic series of runs, such that all types of jobs are executed, and the
different input is impressed on the application many times with random
intervals. We will not further elaborate on what a sufficient test is, as
this is not the scope of the paper.

The ACET analysis prototype tool is used to observe the system. Job
knowledge, originating from the log information, is used to deduct job-
patterns and to book the time spent to the correct job. How to produce
a formal implementation model is described in section 3.

The Uppaal model checker is an automatic model checker working
on timed automata (TA). It incorporates Real-Time clocks as well as
discrete analysis. This highly specialized tool is described in [5].

In figure 1 the dashed line divide application dependent and inde-
pendent parts of the system. The dotted line is the network boundary,
where the left part is executed on the target computer, the right part is
spread on the adjacent network. All arrows are dataflow. The applica-
tion exchanges directions, commands, information and alive signals with
the testbed. The testbed is controlled by an operator, either interac-
tively or it can be programmed to operate automatically. Via the system
calls made by the test application, the kernel generates logging events
and ship these of the local host. The stream of log events are received
by the prototype tool which can store, calculate and display information
about the logging events received. The tool can run in both automatic
and manual mode. In manual mode a designer can take interactive con-
trol and generate ETG diagrams, and job- and thread-level models. The
job- and thread-models are combined with the selected platform model
and an operator defined requirement model in Uppaal. The complete
model can now be checked against its requirements by the analyst which
is interactive with Uppaal.

3 Building the model

The complete model consist of a requirement, an implementation and
a platform-model. The requirement model contains external observable
events and their timing constrains. An implementation model has two
levels: job- and thread-level. The job level maintains information about
the period or mean arrival time (MAT) for each job executed during test.

4



Console
(testbed)

Submarine
test
application Command

interface

Simulator
(testbed)

Application 
dependent

Application
independent

Command
interface

Logging
subsystem
(RTMach)

ACET
analysis
tool

Command
interface

Command
interface

system
calls

thread 
Job and

model

boundary
Network

Designer

Platform

Target

Commands

Information

Directions

Alive signal

Operator

Operator

Information

Logpackages

Logfiles Disk

Logfile

Analyst

Requirement
model

Disk

model

UPPAAL

Figure 1: Dataflow in the experimental system.

The thread level describes the ACET and causal interaction patterns.
The platform level contains the scheduling algorithm if needed.

The practical analysis performed in the prototype tool is divided in
two layers, job analysis where job behavior is described in the job model,
and ETG analysis where threads and interaction patterns are described
in the thread model. The requirement- and platform-model are more
static and will be created manually, once for each application/platform.

3.1 Application assumptions

In order to make the analysis we must assume that the application is a
set of threads each responsible for one or a set of clearly defined task(s)
- like “listen on network”, “transmit on network”, or “do calculation A”.
We also assumes that the application will solve a job, by using the same
threads in the same sequence for each repetition of the job. Furthermore
we assume that a thread, which uses a resource, will use the same resource
for each repetition of the job. These assumptions enables us to view the
work done by a Real-Time application as a set of skeletons, and the

5



analysis described here will synthesis these skeletons. Further it will
calculate how often a skeleton is used, how much CPU it consumes, and
what resources it accesses.

3.2 Job Model

To describe the job behavior of an arbitrary Real-Time application, a con-
nection must be established between the threads of the implementation
and the specification defining the job requirements. This is done by in-
strumentation, such that a thread, during execution, will state which job
it is working on, and further log important (external observable) events.
A job trace is created when events are assembled from all the threads
participating in the job execution. For each job type the job model must
know the frequency, and it is found by calculating the period, or MAT
and standard deviation from time stamping of the job traces. This is
enough information to produce a job model which will reflect the series
of runs the application experienced.

3.3 Thread Model

To describe each thread of the application, its ACET and interaction with
other threads must be modeled. The ACET is needed to model the CPU
consumption, and the interaction patterns between threads are needed
because they will restrict the computation. From a job trace a skeleton
of the interaction can be extracted, be examining the use of mutexes and
semaphores, the message passing, and the IPC. All job traces with the
same skeleton are concentrated into one ETG, using the ACET - in place
of the WCET - as the measure for how much CPU a certain job needs.
It is now possible to create an automaton for each thread (in the ETG),
and the set of automata will describe the interaction of the threads when
they are working for a certain job.

When this is done for all jobs in the application, the behavior of each
thread is completely described, and the thread model will constrain the
model checking such that only the implemented behavior is possible.

3.4 Model checking

To complete the description of our Real-Time system, a platform model
is needed. It will be application independent, but must incorporate the
scheduling algorithm. With this method it is possible to use different

6



scheduling algorithms and even verify the implementation model on a
non-existing platform.

The model checking is done on a requirement model, consisting of a
set of timed automata which define the end-to-end time requirement with
respect to the external observable events. Figure 2 shows an example
model, where a sporadic event must be answered within 1.0 second. A
question to the model is whether it is possible that Msg-Out is not done
before t equals 1.0 - or even worse is it possible that Msg-In can happen
without Msg-Out happens afterwards.

Msg-In ?
t := 0

t < 1.0
Msg-Out !

Figure 2: Requirement model expressed as a timed automaton for a time
requirement where a sporadic event Msg-In must be answered with Msg-

Out within 1.0 second. The implementation model is responsible for
generating the matching events as the model is synchronous.

During model checking the job model is responsible for initiating jobs,
the thread model restrict sequences of interaction, the platform model
restrict CPU usage, and the requirement model defined the questions that
must be examined. Finally it is left to the model checker to go through all
allowed computations, and possible finding erroneous, or perhaps more
efficient computations, that those actually seen during test.

4 Future work

Work is currently done, to automate the generation of the implementa-
tion model. The logging and analysis of traces is completed, while the
interaction patterns remains to be incorporated. The logging subsys-
tem must reveal detailed information about mutex access and the type
of thread-to-thread call. In particular the thread-to-thread call is inter-
esting because several different types of synchronous and asynchronous
call/messages are possible. A plausible solution is to create a piece of
middleware through which the applications must call to interact with
each other. This enables an application independent logging.

7



Having seen that it is feasible to log information from a running Real-
Time application, we must address the question of how our observation
changes the original system. It is changed in two ways: extra code com-
plexity during development of the application, and extra CPU cycles
during execution. The overhead added to the design phase is small cal-
culated as extra lines of code. The CPU overhead still remains to be
measured, as we are still making changes to the RT-Mach kernel.

5 Acknowledgement

The described work is going on at Aalborg University under supervision
of Professor Arne Skou.

References

[1] C. M. Chen Lee, Katsuhi Yosida and R. Rajkumar. Predictable commu-
nication protocol processing in real-time mach. Proceedings of Real-Time
Application Symposium, 1996.

[2] D. Haban and K. G. Shin. Application of real-time monitoring to schedul-
ing tasks with random execution times. IEEE Transaction on Software
Engineering, 16(12), December 1990.

[3] K. Havelund, A. Skou, and K. G. Larsen. Formal verification of an
audio/video power controller using the real-time model checker uppaal.
Work in progress, 1998.

[4] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating the timing
analysis of pipelining and instruction caching. Proceedings of Real-Time
Systems Symposium, December 1995.

[5] K. G. Larsen, J. Bengtsson, F. Larsson, P. Pettersson, and W. Yi. Up-

paal - a tool suite for automatic verification of real-time systems. Pro-
ceedings of the 4th DIMACS Workshop on Verification and Control of
Hybrid Systems, October 1995.

[6] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves:
Operating system support for multimedia applications. Proceedings of the
IEEE International Conference on Multimedia Computing and Systems,
May 1994.

[7] J. E. Sasinowski and J. K. Strosnider. Artifact: A platform for evaluat-
ing real-time window system designs. Proceedings of Real-Time Systems
Symposium, December 1995.

[8] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Com-
puters, 39(7), 1990.

8



[9] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-monotonic
scheduling theory: A framework for developing real-time systems. Pro-
ceedings of the IEEE, 82(1), January 1994.

[10] H. Tokuda and P. Rao. Real-time mach: Towards a predictable real-
time system. Proceedings of the USENIX Mach Workshop. Burlington,
Vermont: The USENIX Association, 1990.

[11] A. Wellings and A. Burns. HRT-HOOD: A Structured Design Method for
Hard Real-Time Ada Systems. ELSEVIER, Amsterdam, Netherlands.,
1995.

9



Recent BRICS Report Series Publications

RS-98-51 Peter Krogsgaard Jensen.Automated Modeling of Real-Time
Implementation. December 1998. 9 pp. Appears inThe 13th
IEEE Conference on Automated Software Engineering, ASE ’98
Doctoral Symposium Proceedings, 1998, pages 17–20.

RS-98-50 Luca Aceto and Anna Inǵolfsdóttir. Testing Hennessy-Milner
Logic with Recursion. December 1998. 15 pp. To appear in
Thomas, editor,Foundations of Software Science and Computa-
tion Structures: Second International Conference, FoSSaCS ’99
Proceedings, LNCS, 1998.

RS-98-49 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. A
Cook’s Tour of Equational Axiomatizations for Prefix Iteration.
December 1998. 14 pp. Appears in Nivat, editor,Foundations
of Software Science and Computation Structures: First Inter-
national Conference, FoSSaCS ’98 Proceedings, LNCS 1378,
1998, pages 20–34.

RS-98-48 Luca Aceto, Patricia Bouyer, Augusto Burguẽno, and Kim G.
Larsen. The Power of Reachability Testing for Timed Automata.
December 1998. 12 pp. Appears in Arvind and Ramanujam,
editors, Foundations of Software Technology and Theoretical
Computer Science: 18th Conference, FST&TCS ’98 Proceed-
ings, LNCS 1530, 1998, pages 245–256.

RS-98-47 Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten
Weise, and Yi Wang. Efficient Timed Reachability Analysis us-
ing Clock Difference Diagrams. December 1998. 13 pp.

RS-98-46 Kim G. Larsen, Carsten Weise, Yi Wang, and Justin Pearson.
Clock Difference Diagrams. December 1998. 18 pp.

RS-98-45 Morten Vadskær Jensen and Brian Nielsen.Real-Time Lay-
ered Video Compression using SIMD Computation. December
1998. 37 pp. Appears in Zinterhof, Vajtersic and Uhl, editors,
Parallel Computing: Fourth International ACPC Conference,
ACPC ’99 Proceedings, LNCS 1557, 1999, pages 377–387.

RS-98-44 Brian Nielsen and Gul Agha.Towards Re-usable Real-Time Ob-
jects. December 1998. 36 pp. To appear inThe Annals of Soft-
ware Engineering, IEEE, 7, 1999.


