
B
R

IC
S

R
S

-98-50
A

ceto
&

Inǵolfsdóttir:
Testing

H
ennessy-M

ilner
Logic

w
ith

R
ecursion

BRICS
Basic Research in Computer Science

Testing Hennessy-Milner Logic with
Recursion

Luca Aceto
Anna Ingólfsdóttir

BRICS Report Series RS-98-50

ISSN 0909-0878 December 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/50/



Testing Hennessy-Milner Logic with Recursion?

Luca Aceto?? and Anna Ingólfsdóttir? ? ?

BRICS
†, Department of Computer Science, Aalborg University,

Fredrik Bajers Vej 7-E, DK-9220 Aalborg Ø, Denmark.

Abstract. This study o�ers a characterization of the collection of properties

expressible in Hennessy-Milner Logic (HML) with recursion that can be tested

using �nite LTSs. In addition to actions used to probe the behaviour of the

tested system, the LTSs that we use as tests will be able to perform a distin-

guished action nok to signal their dissatisfaction during the interaction with the

tested process. A process s passes the test T i� T does not perform the action

nok when it interacts with s. A test T tests for a property φ in HML with

recursion i� it is passed by exactly the states that satisfy φ. The paper gives

an expressive completeness result o�ering a characterization of the collection of

properties in HML with recursion that are testable in the above sense.

1 Introduction

Observational semantics for concurrent processes are based upon the general

idea that two processes should be equated, unless they behave di�erently, in

some precise sense, when they are made to interact with some distinguishing

environment. Such an idea is, in arguably its purest form, the foundation of

the theory of the testing equivalences of De Nicola and Hennessy [4, 6]. In the

theory of testing equivalence, two processes, described abstractly as labelled

transition systems (LTSs) [8], are deemed to be equivalent i� they pass exactly

the same tests. A test is itself an LTS � i.e., a process � which may perform

a distinguished action to signal that it is (un)happy with the outcome of its

interaction with the tested process. Intuitively, the purpose of submitting a

process to a test is to discover whether it enjoys some distinguished property

or not. Testing equivalence then stipulates that two processes that enjoy the

same properties for which tests can be devised are to be considered equivalent.

The main aim of this study is to present a characterization of the collection of

properties of concurrent processes that can be tested using LTSs. Of course,

in order to be able to even attempt such a characterization (let alone provide

it), we need to precisely de�ne a formalism for the description of properties of

LTSs, single out a collection of LTSs as tests, and describe the testing process

and when an LTS passes or fails a test.

As our speci�cation formalism for properties of processes, we use Hennessy-

Milner Logic (HML) with recursion [10]. This is a very expressive property

? The work reported in this paper was mostly carried out during the authors' stay at the

Dipartimento di Sistemi ed Informatica, Università di Firenze, Italy.
?? Partially supported by a grant from the CNR, Gruppo Nazionale per l'Informatica Matem-

atica (GNIM). Email:luca@cs.auc.dk.
? ? ? Supported by the Danish Research Council. Email: annai@cs.auc.dk.
†
Basic Research in Computer Science, Centre of the Danish National Research Foundation.



language which results from the addition of least and greatest �xed points to the

logic considered by Hennessy and Milner in their seminal study [7]. The resulting

property language is indeed just a reformulation of the modal µ-calculus [10].

Following the idea of using test automata to check whether processes enjoy

properties described by formulae in such a language [2, 1], we use �nite LTSs as

property testers. In addition to actions used to probe the behaviour of the tested

system, the LTSs that we use as tests will be able to perform a distinguished

action nok (read `not okay') to signal their dissatisfaction during the interaction

with the tested process. As in the approach underlying the testing equivalences,

a test interacts with a process by communicating with it, and, in keeping with

the aforementioned references, the interaction between processes and tests will

be described using the (derived) operation of restricted parallel composition

from CCS [13].

We say that a process s fails the test T i� T can perform the action nok

when it interacts with s. Otherwise s passes T . A test T tests for a property

φ in HML with recursion i� it is passed by exactly the states that satisfy φ.

The main result of the paper is an expressive completeness result o�ering a

characterization of the collection of properties in HML with recursion that are

testable in the above sense. We refer to this language as SHML (for `safety

HML'). More precisely we show that:

� every property φ of SHML is testable, in the sense that there exists a test

Tφ such that s satis�es φ if and only if s passes Tφ, for every process s; and

� every test T is expressible in SHML, in the sense that there exists a formula

φT of SHML such that, for every process s, the agent s passes T if and only

if s satis�es φT .

This expressive completeness result will be obtained as a corollary of a stronger

result pertaining to the compositionality of the property language SHML. A

property language is compositional if checking whether a composite system s‖T
satis�es a property φ can be reduced to deciding whether the component s has

a corresponding property φ/T . As the property φ/T is required to be express-

ible in the property language under consideration, compositionality clearly puts

a demand on its expressive power. Let Lnok be the property language that

only contains the simple safety property [nok]ff, expressing that the nok action

cannot be performed. We prove that SHML is the least expressive, composi-

tional extension of the language Lnok (Thm. 3.19). This yields the desired ex-

pressive completeness result because any compositional property language that

can express the property [nok]ff is expressive complete with respect to tests

(Propn. 3.13). Any increase in expressiveness for the language SHML can only

be obtained at the loss of testability.

The paper is organized as follows. After reviewing the model of labelled

transition systems and HML with recursion (Sect. 2), we introduce tests and

describe how they can be used to test for properties of processes (Sect. 3). We

then proceed to argue that not every formula in HML with recursion is testable

(Propn. 3.4), but that its sub-language SHML is (Sect. 3.1). Our main results

on the compositionality and completeness of SHML are presented in Sect. 3.2.

2



2 Preliminaries

We begin by brie�y reviewing the basic notions from process theory that will

be needed in this study. The interested reader is referred to, e.g., [7, 10, 13] for

more details.

Labelled Transition Systems Let Act be a set of actions, and let a, b range

over it. We assume that Act comes equipped with a mapping · : Act → Act
such that a = a, for every a ∈ Act. Action ā is said to be the complement of

a. We let Actτ (ranged over by µ) stand for Act∪ {τ}, where τ is a symbol not

occurring in Act. Following Milner [13], the symbol τ will stand for an internal

action of a system; such actions will typically arise from the synchronization of

complementary actions (cf. the rules for the operation of parallel composition

in Defn. 2.2).

De�nition 2.1. A labelled transition system (LTS) over the set of actions Actτ
is a triple T = 〈S,Actτ ,−→〉 where S is a set of states, and −→ ⊆ S ×Actτ ×S
is a transition relation. An LTS is �nite i� its set of states and its transition

relation are both �nite. It is rooted if a distinguished state root(T ) ∈ S is singled

out as its start state.

As it is standard practice in process theory, we use the more suggestive notation

s
µ→ s′ in lieu of (s, µ, s′) ∈−→. We also write s

µ9 if there is no state s′ such

that s
µ→ s′. Following [13], we now proceed to de�ne versions of the transition

relations that abstract from the internal evolution of states as follows:

s
ε⇒ s′ i� s

τ→∗ s′

s
µ⇒ s′ i� ∃s1, s2. s

ε⇒ s1
µ→ s2

ε⇒ s′

where we use
τ→∗ to stand for the re�exive, transitive closure of

τ→.

De�nition 2.2 (Operations on LTSs).

� Let Ti = 〈Si,Actτ ,−→i〉 (i ∈ {1, 2}) be two LTSs. The parallel composition

of T1 and T2 is the LTS T1 ‖ T2 = 〈S1 × S2,Actτ ,−→〉, where the transition
relation −→ is de�ned by the rules (µ ∈ Actτ , a ∈ Act):

s1
µ→1 s

′
1

s1‖s2
µ→ s′1‖s2

s2
µ→2 s

′
2

s1‖s2
µ→ s1‖s′2

s1
a→1 s

′
1 s2

a→2 s
′
2

s1‖s2
τ→ s′1‖s′2

In the rules above, and in the remainder of the paper, we use the more

suggestive notation s ‖ s′ in lieu of (s, s′).
� Let T = 〈S,Actτ ,→〉 be an LTS and let L ⊆ Act be a set of actions. The

restriction of T over L is the LTS T \L = 〈S\L,Actτ ,;〉, where S\L =
{s\L | s ∈ S} and the transition relation ; is de�ned by the rules:

s
τ→ s′

s\L τ
; s′\L

s
a→ s′

s\L a
; s′\L

where a, a 6∈ L.

3



The reader familiar with [13] may have noticed that the above de�nitions of

parallel composition and restriction are precisely those of CCS. We refer the

interested reader to op. cit. for more details on these operations.

Hennessy-Milner Logic with Recursion In their seminal study [7], Hen-

nessy and Milner gave a logical characterization of bisimulation equivalence [14]

(over states of image-�nite LTSs) in terms of a (multi-)modal logic which has

since then been referred to as Hennessy-Milner Logic (HML). For the sake of

completeness and clarity, we now brie�y review a variation of this property

language for concurrent processes which contains operations for the recursive

de�nition of formulae � a feature that dramatically increases its expressive

power. The interested reader is referred to, e.g., [10] for more details.

De�nition 2.3. Let Var be a countably in�nite set of formula variables, and

let nok denote an action symbol not contained in Act. The collection HML(Var)
of formulae over Var and Act ∪ {nok} is given by the following grammar:

φ ::= tt | ff | φ ∨ φ | φ ∧ φ | 〈α〉φ | [α]φ | X | min(X,φ) | max(X,φ)

where α ∈ Act ∪ {nok}, X is a formula variable and min(X,φ) (respectively,

max(X,ϕ)) stands for the least (respectively, largest) solution of the recursion

equation X = ϕ.

We use SHML(Var) (for `safety HML') to stand for the collection of formulae

in HML(Var) that do not contain occurrences of ∨, 〈α〉 and min(X,φ).

A closed recursive formula of HML(Var) is a formula in which every formula

variable X is bound, i.e., every occurrence of X appears within the scope of

some min(X,φ) or max(X,φ) construct. A variable X is free in the formula φ if

some occurrence of it in φ is not bound. For example, the formula max(X,X) is
closed, but min(X, [a]Y ) is not because Y is free in it. The collection of closed

formulae contained in HML(Var) (respectively, SHML(Var)) will be written HML

(resp. SHML). In the remainder of this paper, every formula will be closed,

unless speci�ed otherwise, and we shall identify formulae that only di�er in the

names of their bound variables. For formulae φ and ψ, and a variable X, we

write φ{ψ/X} for the formula obtained by replacing every free occurrence of

X in φ with ψ. The details of such an operation in the presence of binders are

standard (see, e.g., [15]), and are omitted here.

Given an LTS T = 〈S,Actτ ,−→〉, an environment is a mapping ρ : Var →
2S . For an environment ρ, variable X and subset of states S, we write ρ[X 7→ S]
for the environment mapping X to S, and acting like ρ on all the other variables.

De�nition 2.4 (Satisfaction Relation). Let T = 〈S,Actτ ,−→〉 be an LTS.

For every environment ρ and formula ϕ contained in HML(Var), the collection
[[ϕ]]ρ of states in S satisfying the formula ϕ with respect to ρ is de�ned by

4



structural recursion on ϕ thus:

[[tt]]ρ
def
= S

[[ff]]ρ
def
= ∅

[[ϕ1 ∨ ϕ2]]
def
= [[ϕ1]]ρ ∪ [[ϕ2]]ρ

[[ϕ1 ∧ ϕ2]]
def
= [[ϕ1]]ρ ∩ [[ϕ2]]ρ

[[〈α〉ϕ]]
def
=
{
s | s α⇒ s′ for some s′ ∈ [[ϕ]]ρ

}
[[[α]ϕ]]

def
=
{
s | for every s′, s α⇒ s′ implies s′ ∈ [[ϕ]]ρ

}
[[X]]ρ

def
= ρ(X)

[[min(X,ϕ)]]ρ
def
=
⋂
{S | [[ϕ]]ρ[X 7→ S] ⊆ S}

[[max(X,ϕ)]]ρ
def
=
⋃
{S | S ⊆ [[ϕ]]ρ[X 7→ S]} .

The interested reader will �nd more details on this de�nition in, e.g., [10]. Here

we just con�ne ourselves to remarking that, as the interpretation of each formula

φ containing at most X free induces a monotone mapping [[φ]] : 2S → 2S , the
closed formulae min(X,φ) and max(X,φ) are indeed interpreted as the least and

largest solutions, respectively, of the equation X = φ. If ϕ is a closed formula,

then the collection of states satisfying it is independent of the environment ρ,

and will be written [[ϕ]]. In the sequel, for every state s and closed formula ϕ,

we shall write s |= ϕ (read `s satis�es ϕ') in lieu of s ∈ [[ϕ]].
When restricted to SHML, the satisfaction relation |= is the largest relation

included in S×SHML satisfying the implications in Table 1. A relation satisfying

the de�ning implications for |= will be called a satis�ability relation. It follows

from standard �xed-point theory [16] that, over S ×HML, the relation |= is the

union of all satis�ability relations and that the above implications are in fact

biimplications for |=.

Remark. Since nok is not contained in Act, every state of an LTS trivially

satis�es formulae of the form [nok]φ. The role played by these formulae in the

developments of this paper will become clear in Sect. 3.2. Dually, no state of an

LTS satis�es formulae of the form 〈nok〉ϕ.
Formulae φ and ψ are logically equivalent (with respect to |=) i� they are sat-

is�ed by the same states. We say that a formula is satis�able i� it is satis�ed

by at least one state in some LTS, otherwise we say that it is unsatis�able.

3 Testing Formulae

As mentioned in Sect. 1, the main aim of this paper is to present a complete

characterization of the class of testable properties of states of LTSs that can

be expressed in the language HML. In this section we de�ne the collection of

tests and the notion of property testing used in this study. Informally, testing

involves the parallel composition of the tested state with a test. Following the

spirit of the classic approach of De Nicola and Hennessy [4, 6], we say that the

5



s |= tt ⇒ true

s |= ff ⇒ false

s |= ϕ1 ∧ ϕ2 ⇒ s |= ϕ1 and s |= ϕ2

s |= [α]ϕ ⇒ ∀s′. s α⇒ s′ implies s′ |= ϕ

s |= max(X,ϕ) ⇒ s |= ϕ{max(X,ϕ)/X}

Table 1. Satisfaction implications

tested state fails a test if the distinguished reject action nok can be performed

by the test while it interacts with it, and passes otherwise. The formal de�nition

of testing then involves the de�nition of what a test is, how interaction takes

place and when the test has failed or succeeded. We now proceed to make these

notions precise.

De�nition 3.1 (Tests). A test is a �nite, rooted LTS over the set of actions

Actτ ∪ {nok}.

In the remainder of this study, tests will often be concisely described using the

regular fragment of Milner's CCS [13] given by the following grammar:

T ::= 0 | α.T | T + T | X | �x(X = T )

where α ∈ Actτ ∪ {nok}, and X ranges over Var. As usual, we shall only be

concerned with the closed expressions generated by the above grammar, with

�x(X = T ) as the binding construct, and we shall identify expressions that only

di�er in the names of their bound variables. In the sequel, the symbol ≡ will

be used to denote syntactic equality up to renaming of bound variables. The

operation of substitution over the set of expressions given above is de�ned ex-

actly as for formulae in HML(Var). The operational semantics of the expressions

generated by the above grammar is given by the classic rules for CCS. These

are reported below for the sake of clarity:

α.T
α→ T

T1
α→ T ′1

T1 + T2
α→ T ′1

T2
α→ T ′2

T1 + T2
α→ T ′2

T{�x(X = T )/X} α→ T ′

�x(X = T )
α→ T ′

where α is either nok or an action in Actτ . The intention is that the term T

stands for the test whose start state is T itself, whose transitions are precisely

those that are provable using the above inference rules, and whose set of states

is the collection of expressions reachable from T by performing zero or more

transitions. We refer the reader to [13] for more information on the operational

semantics of CCS.

De�nition 3.2 (Testing Properties). Let ϕ be a formula in HML, and let T

be a test.

� A state s of an LTS passes the test T i� (s‖root(T ))\Act
nok; . Otherwise we

say that s fails the test T .

6



� We say that the test T tests for the formula ϕ (and that ϕ is testable) i� for

every LTS T and every state s of T , s |= ϕ i� s passes the test T .
� Let L be a collection of formulae in HML. We say that L is testable i� each

of the formulae in L is.

Example 3.3. The formula [a]ff states that a process does not a�ord a
a⇒-

transition. We therefore expect that a suitable test for such a property is

T ≡ ā.nok.0. Indeed, the reader will easily realize that (s‖T )\Act
nok; i� s

a;,

for every state s. The formula [a]ff is thus testable, in the sense of this paper.

The formula max(X, [a]ff∧[b]X) is satis�ed by those states which cannot per-

form a
a⇒-transition, no matter how they engage in a sequence of

b⇒-transitions.

A suitable test for such a property is �x(X = ā.nok.0 + b̄.X), and the formula

max(X, [a]ff ∧ [b]X) is thus testable.

As already stated, our main aim in this paper is to present a characterization of

the collection of HML-properties that are testable in the sense of Defn. 3.2. To

this end, we begin by providing evidence to the e�ect that not every property

expressible in HML is testable.

Proposition 3.4 (Two Negative Results).

1. Let φ be a formula in HML. Suppose that φ is satis�able. Then, for every

action a in Act, the formula 〈a〉φ is not testable.

2. Let a and b be two distinct actions in Act. Then the formula [a]ff ∨ [b]ff is

not testable.

Remark. If ϕ is unsatis�able, then the formula 〈a〉ϕ is logically equivalent to

ff. Since ff is testable using the test nok.0, the requirement on ϕ is necessary

for Propn. 3.4(1) to hold. Note moreover that, as previously remarked, both the

formulae [a]ff and [b]ff are testable, but their disjunction is not (Propn. 3.4(2)).

Our aim in the remainder of this paper is to show that the collection of testable

properties is precisely SHML. This is formalized by the following result.

Theorem 3.5. The collection of formulae SHML is testable. Moreover, every

testable property in HML can be expressed in SHML.

The remainder of this paper will be devoted to a proof of the above theorem. In

the process of developing such a proof, we shall also establish some results per-

taining to the expressive power of SHML which may be of independent interest.

3.1 Testability of SHML

We begin our proof of Thm. 3.5 by showing that the language SHML is testable.

To this end, we de�ne, for every open formula φ in the language SHML(Var), a
regular CCS expression Tφ by structural recursion thus:

Ttt
def
= 0 T[a]φ

def
= ā.Tφ

Tff
def
= nok.0 TX

def
= X

Tφ1∧φ2

def
= τ.Tφ1 + τ.Tφ2 Tmax(X,φ)

def
= �x(X = Tφ) .

7



For example, if φ ≡ max(X, [a]ff∧ [b]X) then Tφ is the test �x(X = τ.ā.nok.0 +
τ.b̄.X). We recall that we identify CCS descriptions of tests that only di�er in

the name of their bound variables since they give rise to isomorphic LTSs. Our

order of business in this section will be to show the following result:

Theorem 3.6. Let φ be a closed formula contained in SHML. Then the test Tφ
tests for it.

In the proof of this theorem, it will be convenient to have an alternative, novel

characterization of the satisfaction relation for formulae in the language SHML.

This we now proceed to present.

De�nition 3.7. Let T = 〈S,Actτ ,−→〉 be an LTS. The satisfaction relation |=ε

is the largest relation included in S×SHML satisfying the following implications:

s |=ε tt ⇒ true

s |=ε ff ⇒ false

s |=ε ϕ1 ∧ ϕ2 ⇒ s′ |=ε ϕ1 and s′ |=ε ϕ2, for every s
′ such that s

ε⇒ s′

s |=ε [a]ϕ ⇒ s
a⇒ s′ implies s′ |=ε ϕ, for every s

′

s |=ε max(X,ϕ) ⇒ s′ |=ε ϕ{max(X,ϕ)/X}, for every s′ such that s
ε⇒ s′

A relation satisfying the above implications will be called a weak satis�ability

relation.

The satisfaction relation |=ε is closed with respect to the relation
ε⇒, in the

sense of the following proposition.

Proposition 3.8. Let T = 〈S,Actτ ,−→〉 be an LTS. Then, for every s ∈ S
and ϕ ∈ SHML, s |=ε ϕ i� s′ |=ε ϕ, for every s′ such that s

ε⇒ s′.

Proof. The only interesting thing to check is that if s |=ε ϕ and s
ε⇒ s′, then

s′ |=ε ϕ. To this end, it is su�cient to prove that the relation R de�ned thus:

R def
= {(s, ϕ) | ∃t. t |=ε ϕ and t

ε⇒ s}

is a weak satis�ability relation. The straightforward veri�cation is left to the

reader. 2

We now proceed to establish that the relations |=ε and |= coincide for formulae

in SHML.

Proposition 3.9. Let φ be a formula contained in SHML. Then, for every state

s of an LTS, s |= φ i� s |=ε φ.

In the proof of Thm. 3.6, it will be convenient to have at our disposal some

further auxiliary results. For ease of reference, these are collected in the following

lemma.

Lemma 3.10.

8



1. Let φ be a formula in SHML. Assume that Tφ
nok→. Then φ is logically

equivalent to ff.

2. Let φ be a formula in SHML. Assume that Tφ
τ→ T . Then there are formulae

φ1 and φ2 in SHML such that T ≡ Tφ1, and φ is logically equivalent to φ1∧φ2.

3. Let φ be a formula in SHML. Assume that Tφ
ā→ T . Then there is a formula

ψ in SHML such that T ≡ Tψ, and φ is logically equivalent to [a]ψ.

Using these results, we are now in a position to prove Thm. 3.6.

Proof of Thm. 3.6: In light of Propn. 3.9, it is su�cient to show that, for

every state s of an LTS and closed formula φ ∈ SHML,

s |=ε φ i� (s‖Tφ)\Act
nok; .

We prove the two implications separately.

� `If Implication'. It is su�cient to show that the relation

R def
=
{

(s, φ) | (s‖Tφ)\Act
nok; and φ ∈ SHML

}
is a weak satis�ability relation. The details of the proof are left to the reader.

� `Only If Implication'. We prove the contrapositive statement. To this

end, assume that

(s‖Tφ)\Act
ε⇒ (s′‖T ′)\Act

nok→

for some state s′ and test T ′. We show that s 6|=ε φ holds by induction on

the length of the computation (s‖Tφ)\Act
ε⇒ (s′‖T ′)\Act.

• Base Case: (s‖Tφ)\Act ≡ (s′‖T ′)\Act
nok→. In this case, we may in-

fer that Tφ
nok→. By Lemma 3.10(1), it follows that φ is unsatis�able.

Propn. 3.9 now yields that s 6|=ε φ, which was to be shown.

• Inductive Step: (s‖Tφ)\Act
τ→ (s′′‖T ′′)\Act

ε⇒ (s′‖T ′)\Act
nok→, for

some state s′′ and test T ′′. We proceed by a case analysis on the form

the transition

(s‖Tφ)\Act
τ→ (s′′‖T ′′)\Act

may take.

∗ Case: s
τ→ s′′ and T ′′ ≡ Tφ.

In this case, we may apply the inductive hypothesis to infer that

s′′ 6|=ε φ. By Propn. 3.8, it follows that s 6|=ε φ, which was to be

shown.

∗ Case: Tφ
τ→ T ′′ and s = s′′.

By Lemma 3.10(2), it follows that φ is logically equivalent to φ1 ∧φ2

for some formulae φ1 and φ2 in SHML, and that T ′′ ≡ Tφ1 . By induc-

tion, we may now infer that s 6|=ε φ1. Since φ is logically equivalent

to φ1 ∧ φ2, this implies that s 6|=ε φ (Propn. 3.9), which was to be

shown.

9



∗ Case: s
a→ s′′ and Tφ

ā→ T ′′, for some action a ∈ Act.
By Lemma 3.10(3), it follows that φ is logically equivalent to [a]ψ for

some formula ψ in SHML, and that T ′′ ≡ Tψ. By induction, we may

now infer that s′′ 6|=ε ψ. Since φ is logically equivalent to [a]ψ and

s
a→ s′′ 6|=ε ψ, this implies that s 6|=ε φ (Propn. 3.9), which was to be

shown.

This completes the inductive argument, and the proof of the `only if'

implication.

The proof of the theorem is now complete. 2

3.2 Expressive Completeness of SHML

We have just shown that every property ϕ which can be expressed in the lan-

guage SHML is testable, in the sense of Defn. 3.2. We now address the problem

of the expressive completeness of this property language with respect to tests.

More precisely, we study whether all properties that are testable can be ex-

pressed in the property language SHML � in the sense that, for every test T ,

there exists a formula ψT in SHML such that every state of an LTS passes the

test T if, and only if, it satis�es ψT . Our aim in this section is to complete the

proof of Thm. 3.5 by arguing that the language SHML is expressive complete,

in the sense that every test T may be expressed as a property in the language

SHML in the precise technical sense outlined above. This amounts to establish-

ing an expressive completeness result for SHML akin to classic ones presented

in, e.g., [9, 5, 17]. In the proof of this expressive completeness result, we shall

follow an indirect approach by focusing on the compositionality of a property

language L with respect to tests and the parallel composition operator ‖. As we
shall see (cf. Propn. 3.13), if a property language L, that contains the property
[nok]ff, is compositional with respect to tests and ‖ (cf. Defn. 3.12) then it is

expressive complete (cf. Defn. 3.11). We shall show that SHML is compositional

with respect to tests and ‖, and obtain the expressive completeness of such a

language as a corollary of this stronger result.

We begin with some preliminary de�nitions, introducing the key concepts of

compositionality and (expressive) completeness.

De�nition 3.11 (Expressive completeness). Let L be a collection of for-

mulae in HML. We say that L is (expressive) complete (with respect to tests) if

for every test T there exists a formula ϕT ∈ L such that, for every state s of an

LTS, s |= ϕT i� s passes the test T .

Compositionality, on the other hand, is formally de�ned as follows:

De�nition 3.12 (Compositionality). Let L be a collection of formulae in

HML. We say that L is compositional (with respect to tests and ‖) if, for every
ϕ ∈ L and every test T , there exists a formula ϕ/T ∈ L such that, for every

state s of an LTS, s ‖ root(T ) |= ϕ i� s |= ϕ/T .

Intuitively, the formula ϕ/T states a necessary and su�cient condition for state

s to satisfy ϕ when it is made to interact with the test T .

10



Our interest in compositionality stems from the following result that links it

to the notion of completeness. In the sequel, we use Lnok to denote the property
language that only consists of the formula [nok]ff. (Recall that nok is a fresh

action not contained in Act.)

Proposition 3.13. Let L be a collection of formulae in HML that includes Lnok.
Suppose that L is compositional. Then L is complete with respect to tests.

Proof. Consider an arbitrary test T . We aim at exhibiting a formula φT ∈ L
meeting the requirements in Defn. 3.11. Since L is compositional and contains

the formula [nok]ff, we may de�ne ϕT to be the formula ([nok]ff)/T . Let s be
an arbitrary state of an LTS. We can now argue that s passes T i� it satis�es

φT thus:

s passes the test T i� (s‖root(T ))\Act
nok;

i� (s‖root(T ))\Act |= [nok]ff

i� (s‖root(T )) |= [nok]ff

(As nok 6∈ Act)

i� s |= ([nok]ff)/T

(As L is compositional)

i� s |= ϕT .

This completes the proof. 2

As we shall now show, SHML is compositional with respect to tests and ‖, and
thus expressive complete with respect to tests. We begin by de�ning a quotient

construction for formulae of SHML, in the spirit of those given for di�erent

property languages and over di�erent models in, e.g., [12, 3, 11].

De�nition 3.14 (Quotient Construction). Let T be a test, and let t be one

of its states. For every formula ϕ SHML, we de�ne the formula ϕ/t (read `ϕ

quotiented by t') as shown in Table 2.

ff/t
def
= ff

tt/t
def
= tt

(φ1 ∧ φ2)/t
def
= φ1/t ∧ φ2/t

([α]φ)/t
def
= [α](φ/t) ∧

∧{
t′ | t α⇒ t′

}(φ/t′) ∧
∧{

(b, t′) | t b⇒ t′
}[b]

(
([α]φ)/t′

)

max(X,φ)/t
def
= (φ{max(X,φ)/X})/t

Table 2. Quotient construct for SHML

11



Some remarks about the de�nition presented in Table 2 are now in order. The

de�nition of the quotient formula ϕ/t presented ibidem should be read as yield-

ing a �nite list of recursion equations, over variables of the form ψ/t′, for every
formula ϕ and state t of a test. The quotient formula ϕ/t itself is the component

associated with ϕ/t in the largest solution of the system of equations having ϕ/t

as leading variable. For instance, if ϕ is the formula [a]ff and t is a node of a

test whose only transition is t
b̄→ t, then, as the reader can easily verify, ϕ/t is

the largest solution of the recursion equation:

ϕ/t
def
= [a]ff ∧ [b](ϕ/t)

which corresponds to the formula max(X, [a]ff ∧ [b]X) in the property language

SHML. This formula states the, intuitively clear, fact that a state of the form

s ‖ t cannot perform a
a⇒-transition i� s cannot execute such a step no matter

how it engages in a sequence of synchronizations on b with t. Note that the

quotient of a recursion-free formula may be a formula involving recursion. It

can be shown that this is inevitable, because the recursion-free fragment of

SHML is not compositional. Finally, we remark that, because of our �niteness

restrictions on tests, the right-hand side of the de�ning equation for ([α]φ)/t is
a �nite conjunction of formulae.

The following key result states the correctness of the quotient construction.

Theorem 3.15. Let ϕ be a closed formula in SHML. Suppose that s is a state

of an LTS, and t is a state of a test. Then s ‖ t |= ϕ i� s |= ϕ/t.

Proof. We prove the two implications separately.

� `Only If Implication'. Consider the environment ρ mapping each vari-

able ϕ/t in the list of equations in Table 2 to the set of states {s | s‖t |= ϕ}.
We prove that ρ is a post-�xed point of the monotonic functional on envi-

ronments associated with the equations in Table 2, i.e., that if s ∈ ρ(φ/t)
then s ∈ [[ψ]]ρ, where ψ is the right-hand side of the de�ning equation for

φ/t. This we now proceed to do by a case analysis on the form the formula

ϕ may take. We only present the details for the most interesting case in the

proof.

• Case: ϕ ≡ [α]ψ. Assume that s‖t |= [α]ψ. We show that state s

is contained in [[ξ]]ρ for every conjunct ξ in the right-hand side of the

de�ning equation for ([α]ψ)/t.

∗ Case: ξ ≡ [α](ψ/t). To show that s ∈ [[ξ]]ρ, it is su�cient to prove

that s′ ∈ [[ψ/t]]ρ, for every s′ such that s
α⇒ s′. To this end, we reason

as follows:

s
α⇒ s′ implies s‖t α⇒ s′‖t

implies s′‖t |= ψ

(As s‖t |= [α]ψ)

i� s′ ∈ ρ(ψ/t)

(By the de�nition of ρ)

i� s′ ∈ [[ψ/t]]ρ .

12



∗ Case: ξ ≡ ψ/t′ with t α⇒ t′. To show that s ∈ [[ξ]]ρ, it is su�cient to

prove that s ∈ [[ψ/t′]]ρ, for every t′ such that t
α⇒ t′. To this end, we

reason as follows:

t
α⇒ t′ implies s‖t α⇒ s‖t′

implies s‖t′ |= ψ

(As s‖t |= [α]ψ)

i� s ∈ ρ(ψ/t′)

(By the de�nition of ρ)

i� s ∈
[[
ψ/t′

]]
ρ .

∗ Case: ξ ≡ [b̄]
(
([α]ψ)/t′

)
with t

b⇒ t′. To show that s ∈ [[ξ]]ρ, it is

su�cient to prove that s′ ∈ [[([α]ψ)/t′]]ρ, for every s′ such that s
b̄⇒ s′.

To this end, we reason as follows:

s
b̄⇒ s′ and t

b⇒ t′ imply s‖t τ⇒ s′‖t′

implies s′‖t′ |= [α]ψ

(By Propns. 3.8 and 3.9, as s‖t |= [α]ψ)

i� s′ ∈ ρ(([α]ψ)/t′)

(By the de�nition of ρ)

i� s′ ∈
[[

([α]ψ)/t′
]]
ρ .

The proof for the case φ ≡ [α]ψ is now complete.

� `If Implication'. Consider the relation R de�ned thus:

R def
= {(s‖t, ϕ) | s |= ϕ/t} .

It is not hard to show that R is a satis�ability relation.

The proof of the theorem is now complete. 2

Corollary 3.16. The property language SHML is compositional with respect to

tests and the parallel composition operator ‖.

Proof. Given a property ϕ ∈ SHML and a test T , de�ne ϕ/T to be the formula

ϕ/root(T ) given by the quotient construction. The claim is now an immediate

consequence of Thm. 3.15. 2

Theorem 3.17. The property language SHML is expressive complete.

Example 3.18. Applying the construction in the proof of Propn. 3.13, and the

de�nition of the quotient formula to the tests

T1 ≡ �x(X = ā.nok.0 + b̄.X) and

T2 ≡ �x(X = τ.ā.nok.0 + τ.b̄.X)

yields that the formula tested by both T1 and T2 is max(X, [a]ff ∧ [b]X).

13



Collecting the results in Thms. 3.6 and 3.17, we have now �nally completed

the proof of Thm. 3.5. Thus, as claimed, the collection of testable properties

coincides with that of the properties expressible in SHML. The following result

gives another characterization of the expressive power of SHML which has some

independent interest.

Theorem 3.19. The property language SHML is the least expressive extension

of Lnok that is compositional with respect to tests and ‖.

Proof. Assume that L is a property language that extends Lnok and is compo-

sitional. We show that every property in SHML is logically equivalent to one in

L, i.e., that L is at least as expressive as SHML. To this end, let ϕ be a property

in SHML. By Thm. 3.6, there is a test Tϕ such that s |= ϕ i� s passes the test

Tϕ, for every state s. Since L is an extension of Lnok that is compositional,

Propn. 3.13 yields that L is complete. Thus there is a formula ψ ∈ L such that

s |= ψ i� s passes the test Tϕ, for every state s. It follows that ψ and ϕ are

satis�ed by precisely the same states, and are therefore logically equivalent. 2

Acknowledgements: We thank Kim Guldstrand Larsen for previous joint

work and discussions that gave us the inspiration for this study. The anonymous

referees provided useful comments.

References

1. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen, The power of reacha-

bility testing for timed automata, in Proceedings of the Eighteenth Conference on the

Foundations of Software Technology and Theoretical Computer Science, V. Arvind and

R. Ramanujam, eds., Lecture Notes in Computer Science, Springer-Verlag, December

1998.
2. L. Aceto, A. Burgueño, and K. G. Larsen, Model checking via reachability testing

for timed automata, in Proceedings of TACAS '98, Lisbon, B. Ste�en, ed., vol. 1384 of

Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 263�280.

3. H. R. Andersen, Partial model checking (extended abstract), in Proceedings of the Tenth

Annual IEEE Symposium on Logic in Computer Science, San Diego, California, 26�29

June 1995, IEEE Computer Society Press, pp. 398�407.

4. R. De Nicola and M. Hennessy, Testing equivalences for processes, Theoretical Com-

put. Sci., 34 (1984), pp. 83�133.

5. D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, On the temporal basis of fair-

ness, in Conference Record of the Seventh Annual ACM Symposium on Principles of

Programming Languages, Las Vegas, Nevada, Jan. 1980, pp. 163�173.

6. M. Hennessy, Algebraic Theory of Processes, MIT Press, Cambridge, Massachusetts,

1988.
7. M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency,

J. Assoc. Comput. Mach., 32 (1985), pp. 137�161.
8. R. Keller, Formal veri�cation of parallel programs, Comm. ACM, 19 (1976), pp. 371�

384.
9. S. Kleene, Representation of events in nerve nets and �nite automata, in Automata

Studies, C. Shannon and J. McCarthy, eds., Princeton University Press, 1956, pp. 3�41.

10. D. Kozen, Results on the propositional mu-calculus, Theoretical Comput. Sci., 27 (1983),

pp. 333�354.

11. F. Laroussinie, K. G. Larsen, and C. Weise, From timed automata to logic - and

back, in Mathematical Foundations of Computer Science 1995, 20th International Sympo-

sium, J. Wiedermann and P. Hájek, eds., vol. 969 of Lecture Notes in Computer Science,

Prague, Czech Republic, 28 Aug.�1 Sept. 1995, Springer-Verlag, pp. 529�539.

14



12. K. G. Larsen and L. Xinxin, Compositionality through an operational semantics of

contexts, Journal of Logic and Computation, 1 (1991), pp. 761�795.

13. R. Milner, Communication and Concurrency, Prentice-Hall International, Englewood

Cli�s, 1989.

14. D. Park, Concurrency and automata on in�nite sequences, in 5th GI Conference, Karl-

sruhe, Germany, P. Deussen, ed., vol. 104 of Lecture Notes in Computer Science, Springer-

Verlag, 1981, pp. 167�183.

15. A. Stoughton, Substitution revisited, Theoretical Comput. Sci., 59 (1988), pp. 317�325.

16. A. Tarski, A lattice-theoretical �xpoint theorem and its applications, Paci�c Journal of

Mathematics, 5 (1955), pp. 285�309.

17. M. Y. Vardi and P. Wolper, Reasoning about in�nite computations, Information and

Computation, 115 (1994), pp. 1�37.

15



Recent BRICS Report Series Publications

RS-98-50 Luca Aceto and Anna Inǵolfsdóttir. Testing Hennessy-Milner
Logic with Recursion. December 1998. 15 pp. To appear in
Thomas, editor,Foundations of Software Science and Computa-
tion Structures: Second International Conference, FoSSaCS ’99
Proceedings, LNCS, 1998.

RS-98-49 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. A
Cook’s Tour of Equational Axiomatizations for Prefix Iteration.
December 1998. 14 pp. Appears in Nivat, editor,Foundations
of Software Science and Computation Structures: First Inter-
national Conference, FoSSaCS ’98 Proceedings, LNCS 1378,
1998, pages 20–34.

RS-98-48 Luca Aceto, Patricia Bouyer, Augusto Burguẽno, and Kim G.
Larsen. The Power of Reachability Testing for Timed Automata.
December 1998. 12 pp. Appears in Arvind and Ramanujam,
editors, Foundations of Software Technology and Theoretical
Computer Science: 18th Conference, FST&TCS ’98 Proceed-
ings, LNCS 1530, 1998, pages 245–256.

RS-98-47 Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten
Weise, and Yi Wang. Efficient Timed Reachability Analysis us-
ing Clock Difference Diagrams. December 1998. 13 pp.

RS-98-46 Kim G. Larsen, Carsten Weise, Yi Wang, and Justin Pearson.
Clock Difference Diagrams. December 1998. 18 pp.

RS-98-45 Morten Vadskær Jensen and Brian Nielsen.Real-Time Lay-
ered Video Compression using SIMD Computation. December
1998. 37 pp. Appears in Zinterhof, Vajtersic and Uhl, editors,
Parallel Computing: Fourth International ACPC Conference,
ACPC ’99 Proceedings, LNCS 1557, 1999.

RS-98-44 Brian Nielsen and Gul Agha.Towards Re-usable Real-Time Ob-
jects. December 1998. 36 pp. To appear inThe Annals of Soft-
ware Engineering, IEEE, 7, 1999.

RS-98-43 Peter D. Mosses.CASL: A Guided Tour of its Design. December
1998. 31 pp. To appear in Fiadeiro, editor,Recent Trends in
Algebraic Development Techniques: 13th Workshop, WADT ’98
Selected Papers, LNCS, 1999.


