
B
R

IC
S

R
S

-98-48
A

ceto
etal.:

T
he

P
ow

er
ofR

eachability
Testing

for
T

im
ed

A
utom

ata

BRICS
Basic Research in Computer Science

The Power of Reachability Testing for
Timed Automata

Luca Aceto
Patricia Bouyer
Augusto Burgueño
Kim G. Larsen

BRICS Report Series RS-98-48

ISSN 0909-0878 December 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/48/

The Power of Reachability Testing

for Timed Automata

Luca Aceto1 ?, Patricia Bouyer2, Augusto Burgueño3 ?? and Kim G. Larsen1

1
BRICS

†, Department of Computer Science, Aalborg University,

Fredrik Bajers Vej 7-E, DK-9220 Aalborg Ø, Denmark.

Email: {luca,kgl}@cs.auc.dk, Fax: +45 98 15 98 89
2 Laboratoire Spéci�cation et Véri�cation, CNRS URA 2236,

Ecole Normale Supérieure de Cachan,

61 av. du Président Wilson, 94235 Cachan Cedex, France.

Email: bouyer@lsv.ens-cachan.fr, Fax: +33 1 47 40 24 64
3 ONERA-CERT, Département d'Informatique,

2 av. E. Belin, BP4025, 31055 Toulouse Cedex 4, France.

Email: a.burgueno@acm.org, Fax: +33 5 62 25 25 93

Abstract. In this paper we provide a complete characterization of the class of

properties of (networks of) timed automata for which model checking can be

reduced to reachability checking in the context of testing automata.

1 Introduction

The main motivation for the work presented in this paper stems from our practi-

cal experience with Uppaal [8], a tool for the veri�cation of behavioural prop-

erties of real-time systems speci�ed as networks of timed automata [3]. One

of the main design criteria behind Uppaal has been that of e�ciency, and

its computational engine has originally been restricted to a collection of e�-

cient algorithms for the analysis of simple reachability properties of systems.

However, in practice one often wants to examine a model to discover whether it

enjoys a number of properties that cannot be directly expressed via reachability.

Model checking of properties other than plain reachability ones may currently

be carried out in Uppaal as follows. Given a property φ to model check, the

user must provide a test automaton Tφ for it. The test automaton must be

such that the original system S has the property expressed by φ precisely when

none of the distinguished reject states of Tφ can be reached by S‖Tφ, i.e., the
agent obtained by making the test automaton interact with the system under

investigation. This raises the question of which properties may be analyzed by

Uppaal in this manner. In this paper we answer this question by providing a

complete characterization of the class of properties of (networks of) timed au-

tomata for which model checking can be reduced to reachability testing in the

sense outlined above.
? Partially supported by the Human Capital and Mobility project Express, a grant from

the Italian CNR, Gruppo Nazionale per l'Informatica Matematica (GNIM), and a visiting

professorship at the Laboratoire Spéci�cation et Véri�cation, Ecole Normale Supérieure de

Cachan.
?? Partially supported by a Research Grant of the Spanish Ministry of Education and Culture

and by BRICS. This work was partially carried out while the author was visiting Aalborg

University.
†
Basic Research in Computer Science, Centre of the Danish National Research Foundation.

In our previous study [2], we have considered SBLL, a property language

suitable for expressing safety and bounded liveness properties of real-time sys-

tems. In particular, we have shown that SBLL is testable, in the sense that

suitable test automata may be derived for any property of SBLL. However,

as we shall demonstrate in this paper, SBLL is not expressive complete with

respect to reachability testing because it cannot express all the properties for

which test automata can be derived. As the main result of this paper, we present

an extension, L−∀S , of SBLL which is shown to characterize exactly the limit of

the testing approach. More precisely we show that:

� every property ψ of L−∀S is testable, in the sense that there exists a test

automaton Tψ such that S satis�es ψ if and only if S‖Tψ cannot reach a

reject state, for every system S; and

� every test automaton T is expressible in L−∀S , in the sense that there exists

a formula ψT of L−∀S such that, for every system S, the agent S‖T cannot

reach a reject state if and only if S satis�es ψT .

This expressive completeness result will be obtained as a corollary of a stronger

result pertaining to the compositionality of the property language L−∀S . A prop-

erty language is compositional i� every property φ of a composite system S‖T
can be reduced to a necessary and su�cient property φT of the component

S. As the property φT is required to be expressible in the property language

under consideration, compositionality clearly puts a demand on its expressive

power. Let Lbad be the property language with only one property φnb, express-

ing that no reject state can ever be reached (a simple safety property). We prove

that L−∀S is the least expressive, compositional extension of the language Lbad
(Thm. 5.4). This yields the desired expressive completeness result because any

compositional property language that can express the property φnb is expressive

complete with respect to reachability testing (Propn. 5.3).

The paper is organized as follows. After reviewing the variation on the

model of timed automata which will be considered in this study (Sect. 2), we

introduce test automata and describe how they can be used to test for properties

via reachability analysis (Sect. 3). The property language studied in this paper

is presented in Sect. 4. We then proceed to argue that the language L−∀S is

testable (Sect. 4.1). Our main results are presented in Sect. 5. Ibidem we

show that L−∀S is the least expressive, compositional property language that can

express the aforementioned safety property φnb, and use this result to derive its

expressive completeness with respect to reachability testing.

2 Preliminaries

Timed Labelled Transition Systems Let A be a �nite set of actions, and

U be a �nite set of urgent actions disjoint from A. We use Act to stand for

A ∪ U and let a, b, c range over it. We assume that Act comes equipped with a

mapping · : Act→ Act such that a = a, for every a ∈ Act. Moreover, we require

that a ∈ A i� a ∈ A, for every action a. (Note that, since A and U are disjoint,

it is also the case that a ∈ U i� a ∈ U .) We let Actτ stand for Act ∪ {τ}, where
τ is a symbol not occurring in Act, and use µ to range over it. The symbol τ

2

will stand for an internal action of a system. Let N and R≥0 denote the sets of

natural and non-negative real numbers, respectively. We use D to denote the

set of delay actions {ε(d) | d ∈ R≥0}, and L to stand for the union of Actτ and

D. The meta-variable α will range over L.
A timed labelled transition system (TLTS) is a structure T = 〈S,L, s0,−→〉

where S is a set of states, s0 ∈ S is the initial state, and −→⊆ S × L × S is a

transition relation satisfying the following properties:

� (Time Determinism) for every s, s′, s′′ ∈ S and d ∈ R≥0, if s
ε(d)−→ s′ and

s
ε(d)−→ s′′, then s′ = s′′;

� (Time Additivity) for every s, s′′ ∈ S and d1, d2 ∈ R≥0, s
ε(d1+d2)−→ s′′ i�

s
ε(d1)−→ s′

ε(d2)−→ s′′, for some s′ ∈ S;

� (0-Delay) for every s, s′ ∈ S, s ε(0)−→ s′ i� s = s′;

� (Forward Persistence of Urgent Actions) for every s, s′, s′′ ∈ S,
a ∈ U and d ∈ R≥0, if s

ε(d)−→ s′ and s
a−→ s′′, then there exists s ∈ S such

that s′
a−→ s;

� (Backward Persistence of Urgent Actions) for every s, s′, s′′ ∈ S,
a ∈ U and d ∈ R≥0, if s

ε(d)−→ s′ and s′
a−→ s′′, then there exists s ∈ S such

that s
a−→ s.

As usual, we write s
α−→ to mean that there is some state s′ such that s

α−→ s′,
and s 6 α−→ if there is no state s′ such that s

α−→ s′.

The axioms of time determinism, time additivity and 0-delay are standard

in the literature on TCCS (see, e.g., [9]). Those dealing with urgent actions

are motivated by the particular kind of timed automaton model considered in

veri�cation tools like HyTech [5] and Uppaal [8].

A delaying computation is a sequence of transitions s0
α1−→ s1

α2−→ . . .
αn−→ sn

(n ≥ 0) such that αi = τ or αi ∈ D, for every i ∈ {1, .., n}. Following [9], we

now proceed to de�ne versions of the transition relations that abstract from the

internal evolution of states as follows:

s
a

=⇒ s′ i� ∃s′′. s
τ−→∗ s′′ a−→ s′

s
ε(d)
=⇒ s′ i� there exists a delaying computation

s = s0
α1−→ s1

α2−→ . . .
αn−→ sn = s′ with d =

∑
{di | αi = ε(di)}

By convention, if the set {di | αi = ε(di)} is empty, then
∑
{di | αi = ε(di)} is

0. We de�ne a collection of transition relations parameterized by a set of urgent

3

actions S as follows:

s
ε(d)−→S s

′ i� s
ε(d)−→ s′ and ∀d′ ∈ [0, d[, a ∈ S, s′ ∈ S. s ε(d

′)−→ s′ implies s′ 6 a−→

s
ε(d)
=⇒S s

′ i� there exists a delaying computation

s = s0
α1−→S s1

α2−→S . . .
αn−→S sn = s′ with

d =
∑
{di | αi = ε(di)}

where the relation
τ−→S coincides with

τ−→. Intuitively, s
ε(d)−→S s

′ holds if s can
delay d units of time, and no action in the set S becomes enabled before time

d during this delay activity. Note that, since the set S only contains urgent

actions, this amounts to requiring that either d = 0 or s 6 a−→, for every a ∈ S.
Similarly, s

ε(d)
=⇒S s

′ holds if there exists a delaying computation of duration d

from state s whose delay transitions with positive duration occur only in states

in which none of the urgent actions in S are enabled.

De�nition 2.1 (Operations on TLTSs).

� Let Ti = 〈Si,L, s0
i ,−→i〉 (i ∈ {1, 2}) be two TLTSs. The parallel composi-

tion of T1 and T2 is the TLTS T1 ‖ T2 = 〈S1×S2,L, (s0
1, s

0
2),−→〉, where the

transition relation −→ is de�ned by the rules in below:

(1)
s1

µ−→1s
′
1

s1‖s2
µ−→s′1‖s2

(2)
s2

µ−→2s
′
2

s1‖s2
µ−→s1‖s′2

(3)
s1

a−→1s
′
1 s2

a−→2s
′
2

s1‖s2
τ−→s′1‖s′2

(4)
s1
ε(d)−→1s

′
1 s2

ε(d)−→2s
′
2

s1‖s2
ε(d)−→s′1‖s′2

d = 0 or ∀a ∈ U .
¬(s1

a−→1 ∧ s2
a−→2)

where si, s
′
i are states of Ti (i ∈ {1, 2}), µ ∈ Actτ , a, a ∈ Act and d ∈ R≥0.

In the above rules, and in the remainder of the paper, we use the more

suggestive notation s ‖ s′ in lieu of (s, s′).
� Let T = 〈S,L, s0,→〉 be a TLTS and let L ⊆ Act be a set of actions.

The restriction of T over L is the TLTS T \L = 〈S\L,L, s0\L,;〉, where
S\L = {s\L | s ∈ S} and the transition relation ; is de�ned by the rules

below:

(1)
s
τ−→s′

s\L τ
;s′\L (2)

s
ε(d)−→s′

s\Lε(d)
; s′\L

(3)
s

a−→s′
s\L a
;s′\L a, a 6∈ L

where s, s′ are states of T , L ⊆ Act, a ∈ Act, and d ∈ R≥0.

The reader familiar with TCCS [9] may have noticed that the above de�nition

of parallel composition has strong similarities with that of TCCS parallel com-

position � the only di�erence being that in TCCS all actions are urgent. This

yields precisely the parallel composition operator used in Uppaal [8].

4

Timed Automata Let C be a set of clocks. We use B(C) to denote the set of
boolean expressions over atomic formulae of the form x ∼ p and x−y ∼ p, with
x, y ∈ C, p ∈ N, and ∼∈ {<,>,=}. Expressions in B(C) are interpreted over

the collection of time assignments. A time assignment, or valuation, v for C is a

function from C to R≥0. Given a condition g ∈ B(C) and a time assignment v,

the boolean value g(v) describes whether g is satis�ed by v or not. (Note that

B(C) is closed under negation.) For every time assignment v and d ∈ R≥0, we

use v + d to denote the time assignment which maps each clock x ∈ C to the

value v(x) + d. Two assignments u and v are said to agree on the set of clocks

C ′ i� they assign the same real number to every clock in C ′. For every subset

C ′ of clocks, [C ′ → 0]v denotes the assignment for C which maps each clock

in C ′ to the value 0 and agrees with v over C\C ′. For an assignment u and a

subset C ′ of C, we write u � C ′ for the restriction of u to the set of clocks C ′.
Given two disjoint sets of clocks C1, C2, and two valuations v1, v2 for the clocks

of C1 and C2 respectively, v1 : v2 denotes the valuation for the clocks of C1∪C2

such that (v1 : v2)(x) = v1(x) i� x ∈ C1 and (v1 : v2)(x) = v2(x) i� x ∈ C2.

The notion of timed automaton we use in this paper is a variation on the

original one introduced by Alur and Dill [3], and underlies that used in, e.g.,

HyTech [5] and Uppaal [8].

De�nition 2.2. A timed automaton is a tuple A = 〈Actτ ,N, n0, C,E〉 where
N is a �nite set of nodes, n0 is the initial node, C is a �nite set of clocks, and

E ⊆ N×N×Actτ×2C×B(C) is a set of edges. The tuple e = 〈n, ne, µ, re, ge〉 ∈ E
stands for an edge from node n to node ne (the target of e) with action µ, where

re denotes the set of clocks to be reset to 0 and ge is the enabling condition (or

guard) over the clocks of A. All the timed automata we shall consider in this

paper will satisfy the following constraint:

- (Urgency) if 〈n, ne, µ, re, ge〉 ∈ E and µ ∈ U , then ge is a tautology, i.e.,

ge is satis�ed by every valuation for the clocks in C.

In what follows, we shall assume that the clocks used in timed automata come

from a �xed, countably in�nite collection of clocks CA.

The timed automaton depicted in Figure 1 has �ve nodes labelled n0 to n4,

one clock x, actions a ∈ U and b ∈ A, and four edges. The edge from node n1

to node n2, for example, is guarded by x ≥ 0, is labelled with the urgent action

a and resets clock x. Note that the guards of edges labelled with the urgent

action a are tautologies. A state of a timed automaton A is a pair (n, v) where
n is a node of A and v is a time assignment for C. The operational semantics

of a timed automaton A is given by the TLTS TA = 〈S,L, (n0, [C → 0]),−→〉,
where S is the set of states of A, and −→ is the transition relation de�ned as

follows (µ ∈ Actτ , ε(d) ∈ D):

(n, v)
µ−→ (n′, v′) i� ∃e = 〈n, n′, µ, re, ge〉 ∈ E. ge(v) ∧ v′ = [re → 0]v

(n, v)
ε(d)−→ (n′, v′) i� n = n′ and v′ = v + d

5

n0

n1

n2

x = 0
b

n4

n3

a

x ≥ 0

x := 0

x = 0
τ

x ≥ 0
a

Figure 1: Timed automaton A (a ∈ U and b ∈ A)

3 Testing Automata

As mentioned in Sect. 1, the main aim of this paper is to present a complete

characterization of the class of properties of (networks of) timed automata for

which model checking can be reduced to reachability analysis. In this section we

take the �rst steps towards the de�nition of model checking via (reachability)

testing by de�ning testing. Informally, testing involves the parallel composition

of the tested automaton with a test automaton. The testing process then con-

sists in performing reachability analysis in the composed system restricted over

all non internal actions. We say that the tested automaton fails the test if a

special reject state of the test automaton is reachable in the parallel composition

(restricted over all non internal actions) from their initial con�gurations, and

passes otherwise. The formal de�nition of testing then involves the de�nition of

what a test automaton is, how the parallel composition is performed and when

the test has failed or succeeded. We now proceed to make these notions precise.

De�nition 3.1. A test automaton is a tuple T = 〈Actτ ,N,NT , n0, C,C0, E〉
where Actτ , N , n0, C, and E are as in De�nition 2.2, NT ⊆ N is the set of

reject nodes, and C0 ⊆ C is the set of clocks whose value must be 0 at the

beginning of every run of the automaton.

An initial valuation for T is any valuation for the set of clocks C that assigns

the value 0 to every clock in C0. An initial state of T is any state (n0, u0) of T
with u0 an initial valuation.

In what follows, we shall assume that the clocks used in test automata come

from a �xed, countably in�nite collection of clocks CT disjoint from CA.

De�nition 3.2. Let T be a TLTS and let T be a test automaton. We say

that a node n of T is reachable from a state (s1 ‖ s2)\Act of (T ‖ TT)\Act i�
there is a delaying computation leading from (s1 ‖ s2)\Act to a state whose TT
component is of the form (n, u).

A state s of T fails the test T from the initial state (n0, u0) i� a reject node

of T is reachable in (T ‖ TT)\Act from the state (s ‖ (n0, u0))\Act. Otherwise,
we say that s passes the test T from the initial state (n0, u0).

6

k := 0

mT

τ

m0

m1

a
k > 0

(a)

k := 0

mT

τ

m0

m1

b
k > 0

(b)

Figure 2: The test automata Ta and Tb

Example 3.3. Consider the timed automaton A of Figure 1 and the test au-

tomaton Tb (b ∈ U) of Figure 2(b), where we label the arrow coming into the

initial node m0 of Tb with the assignment k := 0 to denote the fact that clock

k is contained in C0. (This convention will be used throughout the paper.)

The reject node mT of the test automaton is reachable from the initial state of

(A ‖ Tb)\Act as follows. First the automaton A can execute the τ -transition

and go to node n1, thus preempting the possibility of synchronizing on channel

b with Tb. Next both automata can let a positive amount of time pass, thus

enabling the τ -transition from node m0 in Tb and making mT reachable. In this

case we say that A fails the test. If we test A using the automaton Ta (a ∈ U)
of Figure 2(a), then, in all cases, A and Ta must synchronize on a and, since a

is urgent, no positive initial delay is possible. It follows that the reject node mT

of Ta is unreachable, and A passes the test.

4 Property Languages

In our previous study [2] we considered SBLL, a dense-time property language

with clocks suitable for the speci�cation of safety and bounded liveness prop-

erties of TLTSs. For the sake of clarity in the subsequent discussion, we now

recall the syntax of the language SBLL � modi�ed to take into account the cur-

rent distinction between urgent and non-urgent actions. The interested reader

is referred to [2] for more information.

De�nition 4.1 (The Property Language SBLL). Let K be a countably in-

�nite set of clocks, disjoint from CA and including CT . We use fail to denote

an action symbol not contained in Act. The set SBLL of formulae over K is

generated by the following grammar:

ϕ ::= ff | ϕ1 ∧ ϕ2 | g ∨ ϕ | ∀∀ϕ |
[a]ϕ | 〈a〉tt (a ∈ U) | x in ϕ | X | max(X,ϕ)

g ::= x ∼ p | x− y ∼ p

where a ∈ Act∪{fail}, x, y ∈ K, p ∈ N, ∼∈ {<,>,=}, X is a formula variable

and max(X,ϕ) stands for the maximal solution of the recursion equation X = ϕ.

7

Following [7], the formulae in SBLL were interpreted in [2] over extended states

of TLTSs, i.e., over pairs of the form 〈s, v〉, where s is a state of a TLTS and

v is a valuation for the clocks in K. For the sake of clarity in the presentation,

we recall that the satisfaction relation for SBLL is the largest relation satisfying

the relevant implications in Table 1 below and

〈s, u〉 |= ∀∀ϕ ⇒ ∀d ∈ R≥0,∀s′. s
ε(d)
=⇒ s′ implies 〈s′, u+ d〉 |= ϕ .

Our main result in op. cit. was that the property language SBLL is testable over

states of timed automata, in the sense that, for every formula ϕ ∈ SBLL, we can

construct a test automaton Tϕ such that every extended state 〈s, u〉 of a timed

automaton satis�es ϕ i� it passes the test Tϕ, in the sense of Defn. 3.2. It is now

natural to wonder whether every property ϕ that is testable in this fashion can

be expressed in the property language SBLL. This amounts to asking whether

every test automaton T is expressible in the language SBLL, in the sense that

there exists a formula ψT of SBLL such that every timed automaton A passes

the test T if and only if A satis�es ψT .

The starting point of our current investigation is the realization that test

automata have a greater expressive power than the speci�cation language SBLL.

As an example, consider the test automaton T depicted in Fig. 3, where a is an

urgent action. It can be shown that the property tested by the automaton in

m1

a τ
k := 0

m2

m3

τ
k = 0

mT

m0

k := 0

b

Figure 3: A test automaton that cannot be expressed in SBLL (a ∈ U)

Fig. 3 is not expressible in the language SBLL. Intuitively, the property that is

tested by the automaton in Fig. 3 requires that, by delaying without enabling

an a action in the process, a state can only evolve to one in which it cannot

perform the action b.

The kind of test automaton depicted in Fig. 3 suggests an enrichment of the

property language SBLL in which the delay construct ∀∀ is parameterized by a set

of urgent actions, whose elements should not become enabled as a state delays.

It is perhaps surprising that, as we shall show in the sequel (cf. Thm. 5.5), this

simple extension of SBLL yields a property language that is expressive complete

8

with respect to the collection of reachability properties expressible by means of

test automata, in the sense of Defn. 3.2.

The property language we study here is an extension of the one considered

in [2] (cf. Defn. 4.1), and is closely related to the modal logic Lν presented in

[7], and further investigated in [6].

De�nition 4.2. The property language L∀S consists of the formulae over K

generated by the grammar obtained from the one in Defn. 4.1 by replacing

constructs of the form ∀∀ϕ with ∀∀Sϕ, where S is a collection of urgent actions.

We use L−∀S to stand for the collection of formulae in L∀S that do not contain

occurrences of the basic propositions 〈a〉tt.
We write g in lieu of g ∨ ff, and clocks(ϕ) for the collection of clocks occurring

in the formula ϕ. We use the standard de�nition of closed formulae. In the

remainder of this paper, every formula will be closed.

Given a TLTS T = 〈S,L, s0,−→〉, we interpret, as usual, the closed formulae
in L∀S over extended states. We recall that an extended state is a pair 〈s, u〉
where s is a state of T and u is a time assignment for the formula clocks in K.

The satisfaction relation |= is the largest relation included in S ×L∀S satisfying

the implications in Table 1. We refer the reader to [2] for a discussion of the

de�nition of |=. Note that, since fail is not contained in Act, every extended

state of a TLTS trivially satis�es formulae of the form [fail]φ. The role played
by these formulae in the developments of this paper will become clear in Sect. 5.

4.1 Testing L−∀S

In Sect. 3 we have seen how we can perform tests on states of TLTSs. We

now aim at using test automata to determine whether a given state of a TLTS

satis�es a formula in L−∀S .

De�nition 4.3 (Testing Properties). Let ϕ be a formula in L∀S , and con-

sider a test automaton Tϕ = 〈Actτ ,N,NT ,m0, C,C0, E〉. For every extended

state 〈s, u〉 of a TLTS T , we say that 〈s, u〉 passes the test Tϕ i� no reject node

of Tϕ is reachable from the state (s ‖ (m0, [C0 → 0](u � C)))\Act.
The test automaton Tϕ tests for the formula ϕ (and we say that ϕ is testable)

i� the following holds: for every TLTS T and every extended state 〈s, u〉 of T ,

〈s, u〉 |= ϕ i� 〈s, u〉 passes the test Tϕ . (1)

If (1) holds for arbitrary states of timed automata then we say that the test

automaton Tϕ tests for the formula ϕ (and that ϕ is testable) over states of

timed automata.

Adapting constructions �rst developed in [2], we can now prove that:

Theorem 4.4. Every formula in L−∀S is testable, and every formula in L∀S is

testable over states of timed automata.

We remark here that the property languages SBLL and L∀S are not testable

because there is no test automaton for the formula 〈a〉tt. On the other hand,

the languages L∀S and L−∀S are equally expressive over states of timed automata.

We refer the interested reader to the full version of this work [1] for more details.

9

〈s, u〉 |= ff ⇒ false

〈s, u〉 |= ϕ1 ∧ ϕ2 ⇒ ∀s′. s τ−→∗ s′ implies 〈s′, u〉 |= ϕ1 and 〈s′, u〉 |= ϕ2

〈s, u〉 |= g ∨ ϕ ⇒ ∀s′. s τ−→∗ s′ implies g(u) or 〈s′, u〉 |= ϕ

〈s, u〉 |= [a]ϕ ⇒ ∀s′. s a
=⇒ s′ implies 〈s′, u〉 |= ϕ

〈s, u〉 |= 〈a〉tt ⇒ ∀s′. s τ−→∗ s′ implies s′
a−→ s′′ for some s′′

〈s, u〉 |= ∀∀Sϕ ⇒ ∀d ∈ R≥0 ∀s′. s
ε(d)
=⇒S s

′
implies 〈s′, u+ d〉 |= ϕ

〈s, u〉 |= x in ϕ ⇒ ∀s′. s
τ−→∗ s′ implies 〈s′, [x→ 0]u〉 |= ϕ

〈s, u〉 |= max(X,ϕ) ⇒ ∀s′. s
τ−→∗ s′ implies 〈s′, u〉 |= ϕ{max(X,ϕ)/X}

Table 1: Satisfaction implications

5 Compositionality and Expressive Completeness

We have previously shown that every property ϕ which can be expressed in the

language L∀S (and, a fortiori, in SBLL) is testable over states of timed automata,

and that L−∀S is testable over states of TLTSs, in the sense of Defn. 4.3. We now

address the problem of the expressive completeness of these property languages

with respect to test automata and (reachability) testing. More precisely, we

study whether all properties that are testable over TLTSs can be expressed

in the property languages SBLL and L−∀S�in the sense that, for every test

automaton T , there exists a formula ψT such that every extended state of a

TLTS passes the test T if and only if it satis�es ψT . Indeed, we have already

enough information to claim that the language SBLL is strictly less expressive

than the formalism of test automata. In fact, the automaton depicted in Fig. 3

is nothing but a test automaton for the formula ∀∀{a}[b]ff, which cannot be

expressed in SBLL. Our aim in this section is to argue that, unlike SBLL, the

language L−∀S is expressive complete, in the sense that every test automaton

T may be expressed as a property in the language L−∀S in the precise technical

sense outlined above. In the proof of this expressive completeness result, we shall

follow an indirect approach by focusing on the compositionality of a property

language L with respect to test automata and the parallel composition operator

‖. As we shall see (cf. Propn. 5.3), if a property language L is compositional

with respect to timed automata and ‖ (cf. Defn. 5.2) then it is complete with

respect to test automata and reachability testing (cf. Defn. 5.1). We begin with

some preliminary de�nitions, introducing the key concepts of compositionality

and (expressive) completeness.

De�nition 5.1 (Expressive completeness). A property language L over the

set of clocks K is (expressive) complete (with respect to test automata and

testing) if for every test automaton T there exists a formula ϕT ∈ L such that,

for every extended state 〈s, u〉 of a TLTS, 〈s, u〉 |= ϕT i� 〈s, u〉 passes the test
T .

Compositionality, on the other hand, is formally de�ned as follows [6]:

10

De�nition 5.2 (Compositionality). A property language L over the set of

clocks K is compositional (with respect to test automata and ‖) if, for every

ϕ ∈ L and every test automaton T = 〈Actτ ,N,NT , n0, C,C0, E〉 (with C dis-

joint from clocks(ϕ)), there exists a formula ϕ/T ∈ L over the set of clocks

C ∪ clocks(ϕ) such that, for every state s of a TLTS and every valuation u for

K,

〈s ‖ (n0, [C0 → 0](u � C)), u〉 |= ϕ ⇔ 〈s, [C0 → 0]u〉 |= ϕ/T .

Our interest in compositionality stems from the following result that links it to

the notion of completeness. In the sequel, we use Lbad to denote the property

language that only consists of the formula ∀∀∅[fail]ff, where fail is a fresh

action not contained in Act.

Proposition 5.3. Let L be a property language (over a set of clocks K) that

includes Lbad. Suppose that L is compositional with respect to test automata

and the parallel composition operator ‖. Then L is complete with respect to test

automata and testing.

Since L−∀S is an extension of Lbad, in light of the above proposition an approach

to proving that it is expressive complete is to establish that it is compositional

with respect to test automata and ‖. This is the import of the following stronger

result:

Theorem 5.4. The property language L−∀S is the least expressive extension of

Lbad that is compositional with respect to test automata and ‖.

In light of Propn. 5.3, we may �nally obtain that:

Theorem 5.5. The property language L−∀S is complete with respect to test au-

tomata and testing.

For example, the properties tested by the test automata in Figs. 2(a) and 3 may

be expressed in L−∀S as k in ∀∀{a}(k = 0) and ∀∀{a}[b]ff, respectively.
It is interesting to remark here that the property language L−∀S is testable also

over timed automata with invariants and committed nodes, which are precisely

those used in Uppaal. Moreover, Thm. 5.5 also holds for the model of timed

automata with invariants. We refer the interested reader to [4] for details on

these results.

References

1. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen, The power of reachability

testing for timed automata, 1998. Forthcoming paper.

2. L. Aceto, A. Burgueño, and K. G. Larsen, Model checking via reachability testing

for timed automata, in Proceedings of TACAS '98, Lisbon, B. Ste�en, ed., vol. 1384 of

Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 263�280. Also available as

BRICS Report RS�97�29, Aalborg University, November, 1997.

3. R. Alur and D. Dill, A theory of timed automata, Theoretical Computer Science, 126

(1994), pp. 183�235.

11

4. A. Burgueño, Model-checking via Testing and Parametric Analysis of Timed Systems,

PhD thesis, École Nationale Supérieure de l'Aéronautique et de l'Éspace, Toulouse, France,

June 1998.

5. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, HyTech: the next generation, in Proc.

of the 16th Real-time Systems Symposium, RTSS'95, IEEE Computer Society press, 1995.

6. F. Laroussinie and K. G. Larsen, Compositional model checking of real time systems,

in Proc. of the 6th. International Conference on Concurrency Theory, CONCUR'95, I. Lee

and S. Smolka, eds., vol. 962 of Lecture Notes in Computer Science, Philadelphia, PA,

USA, August 21 - 24 1995, Springer-Verlag.

7. F. Laroussinie, K. G. Larsen, and C. Weise, From timed automata to logic - and back,

in Proc. of the 20th. International Symposium on Mathematical Foundations of Computer

Science, MFCS'95, J. Wiedermann and P. Hájek, eds., vol. 969 of Lecture Notes in Com-

puter Science, Prague, Czech Republic, August 28 - September 1 1995, Springer-Verlag,

pp. 529�539.

8. K. G. Larsen, P. Pettersson, and Y. Wang, Uppaal in a nutshell, Software Tools

for Technology Transfer, 1 (1997), pp. 134�152.

9. Y. Wang, Real-time behaviour of asynchronous agents, in Proc. of the Conference on

Theories of Concurrency: Uni�cation and Extension, CONCUR'90, J. Baeten and J. Klop,

eds., vol. 458 of Lecture Notes in Computer Science, Amsterdam, The Netherlands, August

27�30 1990, Springer-Verlag, pp. 502�520.

12

Recent BRICS Report Series Publications

RS-98-48 Luca Aceto, Patricia Bouyer, Augusto Burguẽno, and Kim G.
Larsen. The Power of Reachability Testing for Timed Automata.
December 1998. 12 pp. Appears in Arvind and Ramanujam,
editors, Foundations of Software Technology and Theoretical
Computer Science: 18th Conference, FST&TCS ’98 Proceed-
ings, LNCS 1530, 1998, pages 245–256.

RS-98-47 Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten
Weise, and Yi Wang. Efficient Timed Reachability Analysis us-
ing Clock Difference Diagrams. December 1998. 13 pp.

RS-98-46 Kim G. Larsen, Carsten Weise, Yi Wang, and Justin Pearson.
Clock Difference Diagrams. December 1998. 18 pp.

RS-98-45 Morten Vadskær Jensen and Brian Nielsen.Real-Time Lay-
ered Video Compression using SIMD Computation. December
1998. 37 pp. Appears in Zinterhof, Vajtersic and Uhl, editors,
Parallel Computing: Fourth International ACPC Conference,
ACPC ’99 Proceedings, LNCS 1557, 1999.

RS-98-44 Brian Nielsen and Gul Agha.Towards Re-usable Real-Time Ob-
jects. December 1998. 36 pp. To appear inThe Annals of Soft-
ware Engineering, IEEE, 7, 1999.

RS-98-43 Peter D. Mosses.CASL: A Guided Tour of its Design. December
1998. 31 pp. To appear in Fiadeiro, editor,Recent Trends in
Algebraic Development Techniques: 13th Workshop, WADT ’98
Selected Papers, LNCS, 1999.

RS-98-42 Peter D. Mosses.Semantics, Modularity, and Rewriting Logic.
December 1998. 20 pp. Appears in Kirchner and Kirchner,
editors, International Workshop on Rewriting Logic and its Ap-
plications, WRLA ’98 Proceedings, ENTCS 15, 1998.

RS-98-41 Ulrich Kohlenbach.The Computational Strength of Extensions
of Weak K̈onig’s Lemma. December 1998. 23 pp.

RS-98-40 Henrik Reif Andersen, Colin Stirling, and Glynn Winskel. A
Compositional Proof System for the Modalµ-Calculus. Decem-
ber 1998. 30 pp.

