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Aalborg University
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Abstract

We present the design and implementation of a high perfor-
mance layered video codec, designed for deployment in bandwidth
heterogeneous networks. The codec combines wavelet based sub-
band decomposition and discrete cosine transforms to facilitate
layered spatial and SNR (signal-to-noise ratio) coding for bit-rate
adaption to a wide range of receiver capabilities. We show how
a test video stream can be partitioned into several distinct layers
of increasing visual quality and bandwidth requirements, with the
difference between highest and lowest requirement being 47 : 1.

Through the use of the Visual Instruction Set on SUN’s Ultra-
SPARC platform we demonstrate how SIMD parallel image pro-
cessing enables real-time layered encoding and decoding in soft-
ware. Our 384× 320× 24-bit test video stream is partitioned into
21 layers at a speed of 39 frames per second and reconstructed
at 28 frames per second. Our VIS accelerated encoder stages are
about 3-4 times as fast as an optimized C version. We find that
this speedup is well worth the extra implementation effort.

∗Author for contact
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1 Introduction

Distribution of live digital video on wide area computer networks is be-
coming increasingly important for future applications like video confer-
encing, distance learning, and tele-commuting. The Internet Multicast
Backbone (MBone) [1] is already popular and allows people from any-
where on the planet to exchange modest quality video and audio signals.
However, a fundamental problem with nearly all large computer networks
is that network capacity (bandwidth) varies extremely from one network
segment to another. Not all receivers, organizations, or service providers
posses or afford the same amount of bandwidth. Also, the user’s access
technology varies. Typically users connect through 128 kbps ISDN lines,
via 500 kpbs cable modems, or 10-100 Mbits local area networks. These
variations are the source of a serious video multicast problem: All users
wish to participate in the video conference with the highest quality video
their connection capacity, host computational resources, and finances al-
low. Conventional video compression techniques code the video signal
to a fixed target bit rate, and is then multicasted to all receivers. Good
quality video bit-rates of 4Mbps or more are within the high-bandwidth
receivers’ capability, but this outperforms the low capacity receivers by
more than an order of magnitude. The target bit rate is therefore typi-
cally chosen quite low to enable as many receivers as possible to partici-
pate. However, this yields an unacceptable quality for the high capacity
receivers.

We examine layered coding coupled with multi-casting, where the video
stream is coded and compressed into several distinct layers of significance
as shown in Figure 1. All layers are transmitted on different multi-cast
channels which receivers may join according to their capabilities and
preferences. The more layers received, the higher video quality, but also
higher bandwidth and processing requirements. The most significant
layer constitutes the base layer and the following layers enhancement
layers.

Live video requires that video frames can be encoded and decoded in
real-time. This is even more challenging for layered coding than for
conventional coding because layer construction and reassembly requires
use of additional image filter functions and repeated processing of im-
age data, and hence requires more CPU-processing. We believe that it
is important that this coding is possible in real-time on modern general
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Figure 1 Conventional single bit-rate video coding (a) vs. layered cod-
ing (b).

purpose processors without dedicated external codec hardware—partly
because no current hardware unit has the functionality we advertise for,
but more importantly, because applications in the near future will inte-
grate video as a normal data type and manipulate it in application de-
pendent manner. This requires significant flexibility. Fortunately, most
modern CPU-architectures have been extended with Single Instruction
Multiple Data (SIMD) instructions to speed up digital signal process-
ing. Examples include VIS in Sun’s UltraSPARC [17], MMX in Intel’s
Pentium(II) [12], MAX-2 in Hewlett-Packards PA-RISC, MDMX in Sil-
icon Graphics’ MIPS, MVI in Digital’s Alpha, and, recently, Altivec in
Motorola’s PowerPC CPUs.

In this paper we show a high performance implementation of a layered
codec capable of constructing a large set of layers from a reasonably sized
test-video in real-time. We demonstrate how SIMD parallelism and care-
ful considerations of super scalar processing can speedup image process-
ing significantly. Our encoder implementation exists in both an optimized
C-version and a version almost exclusively using SUN microsystem’s Vi-
sual Instruction Set (VIS) available on the SUN UltraSPARC platform.
The decoder only exists in a VIS-accelerated version.

Our codec combines spatial and SNR layering, using a hybrid wavelet/DCT
coding scheme. Spatial layering is performed using quadratic spline
wavelets, and SNR layering is performed through repeated quantization.
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Furthermore, the lowest resolution wavelet layer is DCT coded before
quantization for enhanced psycho-visual compression.

The remainder of the paper is structured as follows. Section 2 presents
our layered coding scheme and our codec model which incorporates it.
Section 3 presents the implementation of an instance of our codec model
along with our performance optimization efforts. Section 4 evaluates
the coding scheme through a series of measurements. Finally, section 5
discusses related work, and section 6 concludes.

2 Codec Design

Three parameters influence the quality of a video stream and thus the bit-
rate. The frame rate designates the number of frame updates per second.
A higher frame rate results in smoother video display but also increases
the amount of data (bits) needed to represent the video stream. The
resolution, measured in (x × y) pixels, defines image resolution. Higher
resolutions provide greater image detail and thus better quality but also
require more bits. The last parameter is bits-per-pixel, which defines
pixel precision. 8 bits correspond to 28 = 256 levels of detail. The more
levels, the higher image quality, and again more bits needed to represent
the video stream.

Fixing these parameters essentially implies choosing visual video quality.
Higher resolution means better image quality, thus increasing the spatial
resolution of the image. Likewise, the bits-per-pixel parameter affects
the pixel resolution, or SNR (signal-to-noise ratio) characteristics of an
image, and frame rate decides the temporal resolution of the image. To
each quality parameter we can associate a layering strategy:

Spatial layering splits the input into a number of layers of lower res-
olution. The base layer has the lowest resolution, and the resolution
increases with additional layers.

SNR layering splits the incoming pixel values into several levels of sig-
nificance. The result is a coarse version of the image (hence the name
SNR) with few bits-per-pixel as the base layer, which is then progressively
refined as more layers are added.

Temporal layering splits the video stream into layers of differing frame
rates. The most significant layer has the lowest frame rate, which is then
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increased as the number of layers increases.

The primary goal of a layered codec is high bandwidth diversity, i.e., allow
a wide range of receiver capabilities, both with respect to bandwidth
and computational resources. Secondly, it should avoid data redundancy
between layers in order to efficiently utilize available bandwidth, and
thirdly, it should be computationally fast to permit real-time software
solutions for both encoding and decoding. To decide whether these goals
can be met, we design and implement a layered codec, and evaluate it
through a series of performance measurements. To achieve these goals,
our codec combines spatial and SNR layering.

Spatial layering SNR layering

...

Figure 2 Spatial and SNR layering. Spatial layering splits the input
frame by resolution, and SNR layering divides the spatial layers by in-
formation contents (bits-per-pixel).

Figure 2 shows the effects of spatial and SNR layering on an image.
Spatial layering decomposes a frame into several smaller units of lower
resolution, which is then divided into several “bit-planes” of decreasing
information significance by SNR layering. Below we further describe spa-
tial, SNR, and temporal layering, as well as our methods for their imple-
mentation using wavelets, DCT, and quantization. Finally, we develop
a detailed codec model which describes the interaction and functionality
of the chosen codec components.

2.1 Spatial Layering

Spatial layering decomposes the input into a number of layers of lower
resolution. Assuming that decomposition is performed by reducing by a
factor of 2 in each dimension, spatial layering immediately reduces re-
quired bit-rate at the base-layer to one quarter before further processing.
This promising bit-rate reduction, as well as the option of transmitting
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and viewing the video stream at different spatial resolutions, inspired us
to include spatial layering in the codec.

A simple spatial layering strategy would be to select only every nth scan
line horizontally and vertically. While this certainly is efficient, it pro-
vides poor picture quality because details in the input image are easily
lost, if they happen to lie outside the base layer scan lines. A filtering
technique which uses information from a neighborhood of pixels in the
input image is preferable because details are preserved better. There-
fore we have chosen the wavelet transform for spatial layering, because
it provides exactly this subsampling and filtering while still being com-
putationally efficient (O(n) [14, p. xiv]). It decomposes the input image
into subbands of low and high frequencies and filters the output.

Typically, the transformation subsamples the image by a factor of 2 in
each dimension, thus decomposing it into one low (L) and one high fre-
quency (H) subband per dimension. Figure 3 shows the effect of subband
decomposition of the image Lena.

−→

LL HL

LH HH

Figure 3 Wavelet transformation of the Lena image into LL, HL, LH,
HH layers. The LL layer is a downsampled version of the original image
and the HL, LH, and HH layers contain the information required to
restore horizontal, vertical, and diagonal resolution, respectively.

The result is an LL subband which is a subsampled and filtered version of
the original image, and three subbands, HL, LH, and HH, which contain
the high frequency information necessary to reconstruct the horizontal,
vertical, and diagonal resolution, respectively. Therefore, the HL, LH,
and HH layers act as refinement (or enhancement) layers for the LL layer.

There is no redundancy between subbands so they make perfect layers.
Further, since the LL subband is essentially a subsampled version of

6



the original image, it is possible to apply the familiar block-based DCT
coding scheme known from other codecs on it for further compression,
e.g., by using MPEG-II. The subband decomposition dictates an ordering
between the wavelet layers; The LL layer is most significant since it
contains the base image, and the HH layer is the least significant as
typically it contains the least information.

2.1.1 The Wavelet Transform

The wavelet filter transforms a set of samples to the frequency domain.
Unlike the Fourier transform, which is based on periodic, trigonometric
functions, the wavelets are usually based on polynomials. The wavelets
work on small, overlapping blocks, which in practice means that the
blocking artifacts known from for example the discrete cosine transform
are not present in images transformed using wavelets. It also means that
the wavelets can be applied repeatedly for several levels of decomposition;
This process is commonly referred to as octave-band decomposition. Both
wavelet functions and wavelet transforms are fairly recent mathematical
discoveries, but have quickly grown to become an entire mathematical
discipline. Therefore it is out of the scope of this article to cover these
in detail. For text book coverage, readers are encouraged to turn to [19],
[14], or [7].

For the actual wavelet filter functions, we have chosen a 4-tap 1-3-3-
1 spline wavelet [19, p. 136], because it has several advantages: It has
good pixel value approximation because it is based on splines. Splines,
which are piecewise polynomials with a smooth fit between the pieces,
are excellent for interpolation. Also, it is invertible (biorthogonal) so it
provides perfect reconstruction. Finally, it is simple and efficient because
it is short and symmetric, meaning small pixel overlaps, hence requiring
few operations per output pixel. As a side effect, it also simplifies border
handling.

This wavelet tends to slightly emphasize high frequency data when con-
structing the LL layer, thereby producing a sharper downsampled image.

For analysis (subband decomposition), the 1-3-3-1 wavelet has the fol-
lowing form in the common z-transform notation:

HL = −1z2 + 3z1 + 3− z−1

HH = −1z2 + 3z1 − 3 + z−1
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where HL is the low frequency and HH is the high frequency filter. It is
a centered wavelet, meaning that it is centered around the z0-term.

For synthesis (reconstruction), the wavelet has the following formulas:

GL = 1z2 + 3z1 + 3 + z−1

GH = −1z2 − 3z1 + 3 + z−1

where GL is low and GH the high frequency part. Instead of using the
z-transform notation, we represent the filters more compactly by using
only their coefficients (represented by vectors, e.g. HL = [-1 3 3 -1]) in
the remainder of this paper.

2.1.2 The 2D Wavelet Filter

The above definitions apply to one dimension. The filter therefore needs
to be applied twice to an image to produce the 4 desired subbands.
Because this filter is (bi)orthogonal, there is no correlation between the
horizontal and vertical dimension, so the horizontal and vertical filters
can be applied in arbitrary order, or both dimensions simultaneously.
The last form is potentially more efficient as it requires only one traversal
of the input image instead of two.

This requires that the subband decomposition (and reconstruction) al-
gorithm is capable of processing 2D data, as well as a set of 2D filters
derived from the 1-3-3-1 wavelet above. By the convolution rule [14, p. 5],
2D filters, or 2-channel filters, are constructed as products of the HL and
HH (or GL and GH) filters above. Let Hn

L denote the nth coefficient of
HL’s coefficient vector [-1 3 3 -1], then the LL filter coefficient matrix,
henceforth named HLL, would be of the form
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L ·H0
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L ·H1

L H
1
L ·H1
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L ·H1
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3
L ·H1
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H0
L ·H2

L H
1
L ·H2

L H
2
L ·H2

L H
3
L ·H2

L

H0
L ·H3

L H
1
L ·H3

L H
2
L ·H3

L H
3
L ·H3

L



=


−1 · −1 3 · −1 3 · −1 −1 · −1
−1 · 3 3 · 3 3 · 3 −1 · 3
−1 · 3 3 · 3 3 · 3 −1 · 3
−1 · −1 3 · −1 3 · −1 −1 · −1



=


1 −3 −3 1
−3 9 9 −3
−3 9 9 −3

1 −3 −3 1



(1)

Using coefficient matrices, the resulting HLL as well as the three enhance-
ment layer filters, HHL, HLH , and HHH , are stated below.

HLL =


1 −3 −3 1
−3 9 9 −3
−3 9 9 −3

1 −3 −3 1

 HHL =


1 −3 3 −1
−3 9 −9 3
−3 9 −9 3

1 −3 3 −1



HLH =


1 −3 −3 1
−3 9 9 −3

3 −9 −9 3
−1 3 3 −1

 HHH =


1 −3 3 −1
−3 9 −9 3

3 −9 9 −3
−1 3 −3 1


(2)

The reconstruction matrices GLL, GHL, GLH , and GHH , are constructed
similarly:

GLL =


1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

 GHL =


1 3 −3 −1
3 9 −9 −3
3 9 −9 −3
1 3 −3 −1



GLH =


1 3 3 1
3 9 9 3
−3 −9 −9 −3
−1 −3 −3 −1

 GHH =


1 3 −3 −1
3 9 −9 −3
−3 −9 9 3
−1 −3 3 1


(3)
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It is clear from these coefficient matrices that the filters are extremely
symmetric. This calls for several optimizations, but we postpone the
details until the implementation section.

There is one problem with this filter: It always needs data 2 pixels back
from the current position, but these points do not exist at the image
borders. The best method for solving this border problem is to mirror
input data points [14, p. 263]. Suppose x[n] is the input data, and you are
filtering the first data points. Then, using the filters above, you would
need x[−2], x[−1], x[0], and x[1] for filtering the first pixels in each scan
line, where x[−2] and x[−1] are undefined. Mirroring input points solves
this problem by defining x[−(n + 1)] = x[n]. Then x[−2] = x[1] and
x[−1] = x[0] and the filter can behave as normal.

2.2 SNR Layering

In SNR layering the goal is to divide the incoming coefficients into sev-
eral levels of significance, such that the lower levels include the most
significant information, resulting in a coarse image representation. This
is then progressively refined with the number of layers. SNR layering is
a flexible and computationally efficient way of reducing the video stream
bit-rate, and allows fine-grain control of image quality at different layers.
The layering explicitly defines the ordering between SNR layers after sig-
nificance; decoding only low significance layers makes no sense without
the most significant layers. Therefore, SNR layers are always decoded in
order of significance.

The task of splitting input coefficients into SNR layers is performed by a
quantizer. A quantizer reduces the number of symbols in a data stream
by dividing the dynamic range of the coefficients into a number of decision
levels, and outputting the decision level in which each input coefficient
belongs. For example, with a step size of 8, a byte is divided into 256/8 =
32 decision levels: Input coefficients values from 0 to 7 belong to level 0,
values from 8 to 15 to level 1 and so forth. A quantizer as the above, with
a constant step size across the dynamic range it covers, is called a uniform
quantizer. A uniform quantizer is easy to implement: It corresponds to
integer division followed by a rounding step. Therefore we use uniform
quantizers in the codec.
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

175 173 177 180 171 168 165 147
182 180 177 174 174 173 160 148
181 179 181 182 177 169 155 159
187 185 189 191 184 176 160 163
190 192 200 201 182 165 164 160
200 210 211 197 173 159 160 151
201 198 185 172 153 146 142 133
178 163 146 139 132 116 98 107


−→



1358 119 −23 −4 3 4 1 −3
45 −54 −18 9 −4 3 2 1
−84 14 14 16 −2 −1 −1 0

55 5 −6 −13 −12 12 −8 3
−27 −9 −5 2 10 1 1 0

15 −1 3 0 −3 2 0 −1
−7 1 −3 −7 3 −1 0 1
−2 −3 0 −2 3 3 −2 0


−→



169 7 −1 0 0 0 0 0
2 −3 0 0 0 0 0 0
−4 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Figure 4 Discrete Cosine Transformation of an 8x8 pixel block, fol-
lowed by quantization with the MPEG quantization matrix, equation (4).

2.2.1 Enhancement Layer Quantization

For the coefficients in the spatial enhancement layers, the HL, LH, and
HH layers, we use a uniform scalar quantizer. The LL layer is treated
differently as described below. The scalar refers to a single number, and
hence that all coefficients are processed independently with the same
decision levels. This is opposed to the matrix quantizer presented below
which processes a block of coefficients at a time, each with potentially
different coefficients.

The scalar quantizer traverses the layer from top-left to bottom-right by
scan line. But a single traversal is insufficient. Input coefficients must be
quantized repeatedly, in such a way that the remainder from one layer of
quantization is used in the next layer for refinement. Naturally, it is not
efficient to traverse data repeatedly. Rather, we read input data once,
thus needing only one traversal of input data, and quantize repeatedly,
outputting several layers one coefficient at a time. In fact, it is possible to
quantize several coefficients at once using SIMD, but these optimization
issues are again postponed until the implementation section.
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2.2.2 Spatial Base Layer Quantization

The LL spatial layer is a downsampled version of the original, so we can
apply the well-known Discrete Cosine Transform (DCT) on the image.
The DCT has proven very effective in reducing spatial redundancy in
images thus adding to the compression potential. The DCT operates on
a block of pixels by transforming them from the spatial to frequency do-
main. It allows ordering information contents in image blocks by psycho-
visual significance, which in turn allows layering by coefficient selection.

The upper left corner of the DCT matrix holds the lower frequency co-
efficients with higher frequencies distributed along the right and down
directions. The frequency content of natural images is primarily of low
frequency, thus the DCT compacts the image information towards the
upper left corner. An example is given in Figure 4 which shows a block
of pixel values on the left, and the same block after DCT in the middle.
The compaction of data in the upper left corner is clearly visible in this
example.

The right block in Figure 4 is the DCT block after quantization with
the MPEG quantization matrix in equation (4), which is employed by
the uniform matrix quantizer used in our codec. The uniform matrix
quantizer takes a block of coefficients as input and quantizes them by
dividing each element in the block by the corresponding scalar in the
quantization matrix.

The advantage of using a matrix quantizer is that when it is applied
to a block of DCT coefficients, it can be adjusted so that it minimizes
error according to the human visual system. It does so by quantizing
high frequency coefficients with a larger step size because, to the human
eye, an error in a high frequency coefficient is less visible than an error
of the same magnitude in a low frequency coefficient. This weighing in
frequency is apparent in the quantization matrix used in MPEG, which
is depicted in equation (4). The lowest frequency in the upper left corner
has a small step size, and as the frequency grows along the down and
right axes, so does the quantization step.
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T (x, y) =



8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83


(4)

Using DCT prior to quantization allows two different types of psycho-
visually enhanced SNR layering types: The matrix quantization de-
scribed above, which works on all coefficients, and simple coefficient
selection, which we call band-pass layering [6, pp. 32-34]. Band-pass
layering implies selecting a range of adjacent coefficients which together
constitute a layer. A few, significant coefficients may constitute a base
layer, while larger groups of less significant coefficients may constitute
enhancement layers. These two layering types may be combined to hy-
brid layering [6, p. 34] which provides more fine-grain control of quality
and bit-rate. Details of these layering types and their implications on
bandwidth reduction and image quality are also found in [6].

As the DCT coded layers belong to the LL wavelet layer, the ordering
between spatial and SNR layers is implicitly defined. The DCT coded
SNR layers must be decoded as the first before the spatial (wavelet) SNR
enhancement layers.

2.3 Temporal Layering

The purpose of temporal layering is to enable receivers to view the same
video stream at different frame rates such that frame updates increases
with the receiver’s bandwidth and processing capability. We here outline
some possible design options.

Frame dropping provides layering by selectively transmitting frames:
Fewer frames need less bandwidth. The temporal base layer has a low
frame rate, and frame rate is increased by adding temporal layers, as
shown in Figure 5. Each frame is treated as a separate unit.

Conditional block replenishment transmits only blocks with changes
larger than certain thresholds from one frame to the next. Layering re-
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Figure 5 A temporal layering example: Selecting frames from a video
stream for transmission. Layer 0 has the lowest frame rate and, for each
added layer, the frame rate doubles.
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DCT

Transformer

Inverse
Wavelet

DCTLL
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DCT
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Figure 6 Our codec model. In the encoding stages, the wavelet trans-
former sends the LL layer to the DCT stage before all layers go through
the quantizer and on to transmission. The quantizer reuses coefficient
remainders, depicted by the arrow reentering the quantizer carrying the
frame remainder. The decoding stages perform the inverse functions.
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sults by setting several thresholds, resulting in higher change sensitivity
at higher layers. Transmitting fewer blocks reduces bandwidth require-
ments, but may produce image artifacts in case a block’s changes remain
below the specified threshold while the surrounding ones are changed.

Predictive coding does not in it self provide temporal layering. It
does however reduce bandwidth requirements considerably by utilizing
and removing redundancies between frames: Only blocks that change are
coded, and the codec tries to predict whether the change is due to mo-
tion, and if so only transmit motion vectors instead of updating a whole
block as above. This has a side effect on temporal layering, though: Sep-
arating frames for layered transmission becomes more difficult due to the
possible dependencies introduced between the predictively coded frames.
Temporal layering using predictive coding would need to consider this
problem by minimizing this dependency between updates, or minimize
the motion error introduced if predicted frames are dropped.

Our design does not offer temporal layering besides simply dropping
frames. The most effective temporal compression schemes use predic-
tive coding to compensate for motion, but this does not in it self add
any layering, only a lower bit rate. Our goal is to provide high band-
width versatility. Moreover, it is untrivial to obtain scalability from a
motion compensated stream, because frames are interdependent. That
is, both the desired frame and the frames it depends on must be received.
Temporal layering and predictive coding are both active research areas,
and interested readers are referred to [22], [18], [5], and [8]. Due to the
amount research needed to produce an efficient temporal layering using
predictive coding we postpone this to future research. Our codec does
thus not include temporal layering besides the possibility of selectively
sending frames.

2.4 The Codec Model

Our overall codec model is shown in Figure 6. The upper half of the
figure shows the encoding stages, and the lower half the decoding stages
of the codec. The sender and receiver stages are modules outside the
actual codec which handle connection setup and data transmission. Also,
before the encoding stages there is a colour space conversion from RGB
to YUV (luminance/chrominance format) which enhances the psycho-
visual compression potential of using DCT coding. Likewise, there is a
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reconversion after the decoding stages, but these stages are of less interest
to the design.

Encoding is performed by the following components: The Wavelet trans-
former transforms YUV images into LL, HL, LH, and HH layers corre-
sponding to four spatial layers. The enhancement layers HL, LH, HH
are sent directly to the Quantizer, while the LL layer is passed on to the
DCT stage. The DCT transformer performs Discrete Cosine Transform
on the input blocks in the LL image from above. The resulting coefficient
blocks are passed on to the quantization stage. The Quantizer performs
SNR layering by splitting incoming coefficients into several layers of sig-
nificance. The Coder takes the quantized coefficients from each separate
layer and Huffman compresses them to produce a single bit-stream for
each layer.

The decoding stages perform the inverse of the above using the follow-
ing components: The Decoder uncompresses the Huffman codes in the
received layers. The Dequantizer reconstructs coefficients based on the
decoded layers; the Dequantizer works both as coefficient reconstructor
and layer merger. As in the encoder, there are two different dequantizers,
one for DCT coefficients, which are passed on to the IDCT stage, and
one for wavelet coefficients which are passed directly on to the wavelet
reconstruction stage. The Inverse DCT transformer performs IDCT on
incoming DCT coefficient blocks and thus reconstructs the lowest resolu-
tion spatial layer, LL. The LL layer is used in the Inverse wavelet trans-
former, which performs wavelet reconstruction using the reconstructed
LL layers from the IDCT stage and reconstructed enhancement layer
coefficients, if any.

The Sender and Receiver modules must support multi-casting for efficient
bandwidth utilization. The layers are transmitted to different multi-cast
groups, so receivers can adjust their reception rate by joining and leaving
multi-cast groups.

3 Implementation

The purpose of the implementation is to allow functional testing and
performance measurements. Our focus is onan efficient implementation,
and since the elements of digital signal processing in our codec design
are well suited for SIMD processing, we have chosen to implement a
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prototype using VIS (visual instruction set) [17] on SUN UltraSPARC
CPUs.

3.1 The Wavelet Transform

The presentation of our implementation of the 1-3-3-1 wavelet transform
has two parts: First, we explore the optimizations possible by utilizing
the symmetries in the filter matrices. Second, we describe the actual
implementation of the filtering and reconstruction functions using VIS.

3.1.1 Utilizing the Filter Symmetries

The filters are highly symmetric. Therefore, the algorithms for both
decomposition and reconstruction can be optimized accordingly so as
to avoid redundant processing. The important observation is that the
matrices are identical except for their signs. Extracting only the signs
for clarity, results in the sign-matrices in (5) for decomposition and (6)
for reconstruction.

HLL =


+ − − +
− + + −
− + + −
+ − − +

 HLH =


+ − − +
− + + −
+ − − +
− + + −



HHL =


+ − + −
− + − +
− + − +
+ − + −

 HHH =


+ − + −
− + − +
+ − + −
− + − +


(5)

GLL =


+ + + +
+ + + +
+ + + +
+ + + +

 GLH =


+ + + +
+ + + +
− − − −
− − − −



GHL =


+ + − −
+ + − −
+ + − −
+ + − −

 GHH =


+ + − −
+ + − −
− − + +
− − + +


(6)
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The vertical high-resolution matrices HLH and HHH (or GLH and GHH)
are exact copies of their low vertical resolution counterparts, only with
the two lower rows negated. The same applies horizontally, where the
high-resolution matrices are copies of the low-resolution ones with the
two rightmost columns negated. As we use SIMD, which operates across
data columns, it is most convenient to utilize the vertical symmetries.

These symmetries enable the processing required for the decomposition
matrices to be halved for each block by only filtering with the verti-
cal low-resolution matrices and computing the high-resolution matrices
here-from. This involves filtering with HLL and HHL, and copying the
upper two rows of the unchanged result and the lower two rows of the
result negated, to HLH and HHH . In practice, however, this task is per-
formed without copying matrices. Instead, after computing the LL and
HL result matrices, the two upper rows of each matrix are summed to
the intermediate results, rupperL and rupperH for LL and HL, respectively.
Likewise, the lower two rows are summed into rlowerL and rlowerH . Then, all
four results matrices, named RLL, RHL, RLH , and RHH , are constructed
as either a sum or a difference between two of these intermediate results,
as shown in (7).

RLL =rupperL + rlowerL

RLH =rupperL − rlowerL

RHL =rupperL + rlowerL

RHH =rupperL − rlowerL

(7)

A similar processing reduction is done for reconstruction. Here each input
coefficient is multiplied with the reconstruction matrix for the layer from
which is originates, resulting in a 4 × 4 matrix result for each layer. As
shown in (3) the 2 upper and 2 lower rows are equal, mirrored around the
center, except for sign for vertical high-frequency as seen in (6). As all
matrix elements are multiplied by the same source, only the upper 2 rows
of each matrix need to be computed; the remaining are constructed by
mirrored, possibly sign inverted, versions hereof. This effectively reduces
computations by 50%.

This procedure is only possible because the low and high-frequency filters
in the 1-3-3-1 wavelet differ only in their signs. Other filters, such as the
1-2-6-2-1/1-2-1 spline filter [19, p. 136] do not have this property.
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 group 1
group 2

group 3

HLL-filter coefficients

1 -3 -3 1

-3 9 9 -3

-3 9 9 -3

1 -3 -3 1

Figure 7 Utilizing SIMD and super scalar processing. SIMD instruc-
tions allow 4 elements in the same row to be multiplied with the corre-
sponding filter coefficients row in parallel. Super scalar processing en-
ables two rows in the same group to be computed in parallel. Thus all 8
pixels in the enclosed area are processed in parallel.

3.1.2 Visual Instruction Set Implementation

Both decomposition and reconstruction functions are written entirely
using VIS. The visual instruction set found on SUN’s UltraSPARC CPU’s
is capable of processing 8 × 8 bit, 4 × 16 bit, or 2 × 32 bit partitioned
data elements in parallel. In addition to the usual multiplication and
addition instructions VIS contains various special instructions dedicated
to video compression and manipulation of 2- and 3-dimensional data.
Furthermore, it has two pipelines and is therefore able to execute pairs
of VIS instructions in parallel [9].

The processor dependent optimizations fall in three categories: 1) using
the Visual Instruction Set to achieve SIMD parallel computation of 4 data
elements per instruction, 2) using super scalar processing to execute two
(independent) instructions in parallel per clock cycle, and 3) reducing
memory access by keeping constants and input data in registers, and by
using the 64-bit load/store capabilities. These optimizations principles
are applied in all stages of the codec. Below we exemplify these on the
layer decomposition stage.

The principle behind applying the decomposition filter is to multiply each
pixel in a 4× 4 input block with the corresponding element in the filter
coefficient matrix. The 16 results are then summed into a single value
and divided by 16 to produce an “average”, which is the final output.
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// value 1

m1 = vis_fpadd16(vis_fmul8x16(vis_read_hi(src0), matrix1L), // 1: Calc r^upper_L

vis_fmul8x16(vis_read_hi(src1), matrix2L));

m2 = vis_fpadd16(vis_fmul8x16(vis_read_hi(src2), matrix2L), // 2: Calc r^lower_L

vis_fmul8x16(vis_read_hi(src3), matrix1L));

m3 = vis_fpadd16(vis_fmul8x16(vis_read_hi(src0), matrix1H), // 3: Calc r^upper_H

vis_fmul8x16(vis_read_hi(src1), matrix2H));

m4 = vis_fpadd16(vis_fmul8x16(vis_read_hi(src2), matrix2H), // 4: Calc r^lower_H

vis_fmul8x16(vis_read_hi(src3), matrix1H));

a1 = vis_fpadd16(m1, m2); // 5: a1 = R_LL

a2 = vis_fpsub16(m1, m2); // 6: a2 = R_LH

a3 = vis_fpadd16(m3, m4); // 7: a3 = R_HL

a4 = vis_fpsub16(m3, m4); // 8: a4 = R_HH

ll1 = vis_fpadd16s(vis_read_hi(a1), vis_read_lo(a1)); // 9: Sum 2x2 LL columns

hl1 = vis_fpadd16s(signoffs, // 10: Add sign offset

vis_fpadd16s(vis_read_hi(a3), vis_read_lo(a3))); // to sum of 2x2 HL columns

dest0 = vis_fpack32(dest0, // 11: Pack LL, HL result bytes

vis_fpadd16(vis_freg_pair(ll1, hl1), // after merging to 64-bit and

vis_faligndata(vis_freg_pair(ll1, hl1), zero))); // adding result shifted 16-bits

lh1 = vis_fpadd16s(signoffs, // 12: Add sign offset

vis_fpadd16s(vis_read_hi(a2), vis_read_lo(a2))); // to sum of 2x2 LH columns

hh1 = vis_fpadd16s(signoffs, // 13: Add sign offset

vis_fpadd16s(vis_read_hi(a4), vis_read_lo(a4))); // to sum of 2x2 HH columns

dest1 = vis_fpack32(dest1, // 14: Pack LH, HH result bytes

vis_fpadd16(vis_freg_pair(lh1, hh1), // after merging to 64-bit and

vis_faligndata(vis_freg_pair(lh1, hh1), zero))); // adding result shifted 16-bits

Figure 8 Wavelet filter kernel implementation using VIS. This section
is a simplified version of the actual kernel, which repeats this filtering
section four times with different sources and includes loads/stores, as
well as spilling and border handling.

This is done for each layer type. The filter dictates a two-pixel overlap
between the current and the next input block, which therefore becomes
the image data starting two pixels to the right relative to the current
block.

The implementation of the decomposition routine operates on 8×4 pixel
blocks at a time, see Figure 7, producing 4 32-bit outputs; one for each
of the LL, HL, LH, HH layers. It uses 64-bit loads to load input data,
and since all data fits in registers, it requires only 4 64-bit loads and 4
32-bit stores pr. pixel block. The routine spills overlapping pixels from
one 8× 4 block to the next, so horizontal traversal causes no redundant
memory accesses. Vertically there is a 2 pixel overlap, dictated by the
filter, so each pair of vertical lines is read twice.
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By utilizing the VIS fmul8x16 instruction, which multiplies four 16-bit
values with four 8 bit values producing four 16 bit results, the four pixels
in row 1 in group 1 can be multiplied with row 1 of the filter coefficients
in parallel. Similarly, row 2 in group 1 can be SIMD-multiplied with
row 2 of the filter coefficients. Moreover, both of these multiplications
can execute in parallel: The super scalar processing in the UltraSPARC
CPU allows execution of two independent VIS instructions in parallel
per clock cycle. Two instructions are independent if the destination of
one instruction is different from the source of the next instruction, as is
indeed the case here.

The UltraSPARC CPU is incapable of out-of-order execution, so instruc-
tions must be carefully scheduled, either manually or by the compiler,
to fully exploit instruction independence. However, we found that the
compiler supplied with the platform did not do a satisfactory job on this
point and we have therefore manually organized the VIS-code to pair
independent instructions, and thereby maximize the benefit from super
scalar processing. Thus, SIMD parallelism reduces the number of com-
putations by three quarters, and super scalar parallelism further reduces
this number by half.

The VIS instructions are available to the application programmer through
a set of macros which can be used from C-programs with reasonable ef-
fort, although it must be realized that even with these C-macros, pro-
gramming VIS is essentially at the assembly level. The programmer is,
however, alleviated from certain aspects of register allocation and in-
struction scheduling. To illustrate the use of VIS instructions in the
implementation, part of the wavelet filtering kernel is depicted in Fig-
ure 8.

Following the design, lines 1-4 compute the temporary results rupperL ,
rlowerL , rupperL , and rlowerL from (7). Lines 5-8 compute LL, HL, LH, and
HH as sums and differences of these Rs results by adding 64-bit values.
In lines 9-10 and 12-13 the 64-bit results are summed across columns
into 32-bit results by adding the high 32-bit with the lower 32-bit in each
register. Lines 10, 12, and 13 also add a sign offset because VIS uses
unsigned 8-bit values. All negative values would be clamped to zero in
the enhancement layers if this offset was not added. This is compensated
for in the reconstruction algorithm. Finally, in lines 11 and 14, the
final pixel values are constructed. First, the results still span two 16-bit
columns in each of the 32-bit ll1, hl1, lh1, and hh1 registers. Therefore
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the registers are shifted 16 bits left by the vis faligndata instruction
and added to the non-shifted registers. To optimize, the registers are first
gathered in pairs into 64-bit registers, and then shifted and added. The
final result resides in the upper part of each 32-bit half in the 64-bit result
registers, and the vis fpack32 packs the result into bytes by clamping
each of the 32-bit values in the 64-bit source to 2 unsigned 8-bit values.

The implementation of the reconstruction filters follows the same opti-
mizations principles as the decomposition filters. A significant difference
is that there are 4 different reconstruction functions, one for each layer.
The image data is thus traversed each time a layer is added. This is
not the fastest option but it is the most flexible: It allows the receivers
to select and decode any layer. We impose just one restriction: As the
enhancement layers make little sense by themselves, we require that the
LL layer be decoded as the first.

With these optimizations, the implementation uses only 0.505 memory
accesses per pixel for creating all 4 wavelet layers, and a maximum of
0.344 memory accesses per pixel per reconstructed layer.

3.2 DCT/IDCT Coding the LL Layer

We use the DCT-functions present in SUN’s mediaLib [15] for DCT cod-
ing the lowest resolution spatial layer. mediaLib is a publicly available
library, and exist both in C and VIS-accelerated versions. The DCT func-
tion in mediaLib takes an 8 × 8 block of 8-bit coefficients as input and
outputs an 8 × 8 block of 11-bit DCT coefficients. The IDCT function
does the inverse.

The output coefficients from the DCT function are not ordered by fre-
quency which is preferable for psycho-visually enhanced compression.
The extra compression potential comes from utilizing the fact that in
natural images, the DCT compacts information towards the lower fre-
quencies and many high-frequency coefficients are likely to be zero after
quantization. Therefore, if the coefficients are ordered by frequency, one
can stop coding each block earlier, meaning shorter blocks in the com-
pressed bit-stream and subsequently better compression.

The resulting DCT coefficients are therefore reorganized using a tech-
nique referred to as zigzagging. In zigzagging, the DCT coefficients are
reordered by selecting them according to a predefined pattern. The
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zigzagging pattern used in our codec is depicted in Figure 9. It is derived
from the matrix used in MPEG, changed to obtain better visual quality
with just 4 coefficients.

We have also taken advantage of the VIS 64-bit load/store capabilities
for the zigzagging routine in our prototype. We do so by loading 4 16-bit
values and packing them into one 64-bit register and storing. This saves
16.7% of the memory accesses required by a non-VIS implementation
using 32-bit stores.

3.3 Quantization

Both the scalar quantization for wavelet coefficients and the uniform
matrix quantization used for DCT coefficients are equivalent to integer
division. But since division is an expensive operation measured in pro-
cessor cycles, we prefer to compute the reciprocal of the quantization
values at compile time and use multiplication for quantization instead.
This comes with a cost however: rounding errors are bound to occur
unless all quantization values are powers of two. These rounding error
are small though (one half LSB), and in our implementation the errors
do not propagate through iteration.

(7,7)

(0,0)

(0,7)

(7,0)

Figure 9 The zigzag pattern used in our codec. Compared to the
MPEG-matrix, it improves approximation to Euclidean distance and
hence visual quality when using the first four coefficients.

Another advantage is that it is possible to use VIS for quantization. Since
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the output from the DCT function is 16-bit integers (with 11 bits actually
used), it is possible to quantize four coefficients simultaneously, reducing
required multiplication operations to 1/4. Also, the number of memory
accesses is halved due to 64-bit loads/stores.

Implementation details of the matrix quantization kernel can be found
in [6, pp. 41-43].

3.4 Huffman Coding

A table based Huffman compressor encodes/decodes the quantized coef-
ficients. A table based algorithm is considerably faster than sequentially
processing each Huffman code using a state machine-like algorithm. But
it also means that the Huffman codes cannot be fully expanded because
the required decision tables would grow too large. For each bit added,
the table would grow to twice the size. We therefore limit the maxi-
mum Huffman code length to 10 bits (corresponding to a table length of
1,024 bytes). While this representation is usually not optimal in terms
of bandwidth, we have found it to be good in most cases.

In order to counteract the negative impact on bandwidth utilization by
using static Huffman trees, the codec uses 4 different Huffman trees,
optimized for different coefficient contents (different bit-per-pixel resolu-
tions). For each layer, we can then choose Huffman tree most optimal for
the information contents in that layer. For details of the implementation,
see [6, pp. 43-45]

3.5 Current Status

The results of our implementation efforts are two applications: An en-
coder application and a decoder application. The encoder application
takes raw video frames as input, encodes them, and transmits them to a
specified set of receivers. The decoder application receives data, decodes
it, and displays it in real-time on a connected X-windows compatible
display device. For communication, the applications have modules that
support ATM multicasting.

Both applications implement the layered codec with support for spatial
and SNR layering for DCT layers. The applications have simple com-
mand line interfaces that provide control of vital behavior and settings,
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such as the number of layers used.

The final implementation takes up approximately 26,000 lines of code for
the prototype in the form of C++ source code.

4 Performance Measurements

This section presents our performance measurements of bit-rates and
CPU-usage. These measurements are essential for determining the use-
fulness of our layering concepts and chosen design. We required that the
resulting bit-rates must be diverse and low for the lowest quality layers,
while maintaining acceptable visual quality, and very good for high band-
width streams. Also the codec must have low computational overhead,
or it will be useless for real-time applications without hardware support.

4.1 Test Platform

The input for the measurements was a test video stream with 174 frames
of 384× 320 pixels at 24-bit colour, digitized at 18fps. The video stream
is a typical “talking head” sequence, with one person talking and two
persons entering and leaving the image as background movement.

CPU-usage was measured on a Sun Ultra-1 workstation with one 167MHz
UltraSPARC CPU and 128MB RAM. The test video stream is stored
in YUV format, so the colour space conversion stage is not included
in the encoding CPU-usage measurements. Likewise the colour space
conversion and display times for the decoder are not included as they
combined take a nearly constant 13ms.

Unless stated otherwise, our test codec uses one level of subband decom-
position, and has a total of 21 layers as seen in Figure 10. The layers are
depicted in their significance order; layer 0 is the most significant, down
to layer 21 as the least significant. The first 12 layers, DCT0 - DCT11,
are DCT coded hybrid layers constructed from the wavelet LL layer. The
remaining 9 layers, HL0 - HL2, LH0 - LH2, HH0 - HH2, are constructed
from the corresponding wavelet enhancement layers, distributed with 3
SNR layers from each. The 3 most significant SNR layers, level 0 in
Figure 10, consists of the upper 4 bits of each coefficient from each of
the wavelet layers. Layers from levels 1 and 2 consist of 2 additional

25



SNR layers
from DCT

coded LL layer

SNR layers from wavelet
enhancement layers

DCT0 DCT1 DCT11 HL 0 LH HH 00 HL 1 LH 1 HH 1 HL 2 LH 2 HH 2....
Level 0 Level 1 Level 2

Huffman coded layers

Figure 10 The layer definitions used for testing along with their sig-
nificance ordering. DCT0-DCT11 are layers constructed from the DCT
coded LL layer. HL0, LH0, and HH0 contain the most significant bits
from the corresponding wavelet enhancement layers. Levels 1 and 2 are
refinement layers to these.

bits per coefficient per layer. All three levels thus add 4 + 2 + 2 = 8
bits of precision. The most significant layers, i.e. those on level 0, are
Huffman coded. The layers on levels 1 and 2 are sent verbatim because
their distributions are very random and Huffman coding would add very
little, if any, compression.

This layer distribution does not provide 100% reconstruction: The DCT
coded layers reconstruct up to MPEG quality video (+1 bit for the DC
coefficient) using all 12 DCT layers. The wavelet layer coefficients are
rounded from 12-bit to 8-bit quantities to fit bytes, which is a necessity
before DCT coding the LL layer, which needs bytes as input. There-
fore, perfect reconstruction is also not possible from wavelet layers, but
the error is small; Less than ±1.5 in reconstructed pixel value using all
wavelet enhancement layers from one level of decomposition. Note that
the lack of perfect reconstruction is a prototype limitation, not a princi-
pal problem; our design allows perfect reconstruction except for possible
rounding errors.

A number of sample images can be found on the World Wide Web:
http://www.cs.auc.dk/~bnielsen/codec/

4.2 Bit-rate measurements

Figure 11(a) shows the average frame sizes per layer produced by our
codec. The first 12 layers, which comprise the DCT coded LL layer,
are the smallest, ranging from 3.5 to 11.6kbits. Then follow the three
Huffman coded wavelet enhancement layers with sizes from 47kbits to
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Figure 11 Bandwidth distribution on layers on the 21-layer codec. (a)
Average size of the individual layers. (b) Accumulated frame size versus
number of added layers. The frame sizes are evenly distributed across
the scale of bit-rates. The rate of change shifts at layer 12 where the
wavelet enhancement layers are added.
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56.4kbits, and finally the 6 uncoded enhancement layers with fixed size
90kbits. Figure 11(b) shows the resulting accumulated average frame
size obtained from gradually adding all 21 layers. The bit-rate scales
nearly linearly with the number of layers, with a rate change at layer 12.
Thus there are no sudden big gaps in the receiver capacities which can
be supported. The lowest average frame size is 3.5kbits for one layer and
the highest 777.3kbits with all 21 layers, yielding a difference factor of
222:1. We found the lowest useful layer count to be 3, which corresponds
to an average frame size of 16.4kbits. This reduces the factor to 47.4:1,
which is still, however, a large span. In consequence a receiver on a
128kbps ISDN line can receive 3 layers at 7.8fps which is just enough
to be useful. A receiver with plenty of bandwidth can receive the entire
video stream with 21 layers at 18fps, corresponding to 13.7Mbps. From
the even distribution and the large span of accumulated bit-rates, we
conclude that our codec provides good bandwidth versatility.

To determine the effect on the layer bandwidth distribution with more
than on downsampling, we have performed the same layer size measure-
ments on our codec configured to downsample the test stream twice. As
Figure 12 shows, the the layers now falls in three sizes; the smallest layers
(1-12) are the DCT-coded LLL layers. The next largest (13-21) is the
enhancements layers of the second downsampling, and the largest (21-31)
layers are the enhancement layers of the first downsampling. Again this
produces a smooth, but accelerating, accumulated layer size distribution.

If the user is content with a very small version of the image (96×80 pixels)
reconstructed from the 3 least significant DCT the bandwidth require-
ment falls to 5kbits per frame, corresponding to 25 fps on a 128 kbps
ISDN connection. This experiment shows that repeated downsampling
is an effective strategy for handling very large input images (e.g., high
definition TV), or providing images to users on low-speed links.

Comparison with a non-downsampling codec

The bit-rates obtained with the spatially layering codec above are com-
pared to an identical non-spatially layered one with the goal of checking
the degree of orthogonality between spatial and SNR layering. Ideally,
the bit-rate reduction for the DCT coded layers should be 4:1 per level of
decomposition, but due to the information compaction resulting from im-
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Figure 12 Bandwidth distribution on layers for a two-times downsam-
pling codec. (a) Average layer size. (b) Accumulated layer size.
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age downsampling, the information contents per pixel block rises, and the
relative compression rate declines. How much this declination amounts
to the test video stream is the object of this section.

The non-spatially layered codec used for comparison has identical layer
definitions apart from the absent wavelet layers, and therefore has 12
DCT coded hybrid layers. The difference between average frame sizes
and their ratio in the two codecs is depicted in Figure 13.

The difference in compression ratio lies approximately between 2:1 and
4:1, except for layers 5 and 12 where it is approximately 1.2:1. Gener-
ally the ratio between the two codecs’ compression rates decreases with
higher layer numbers. This ratio difference stems from the spatial infor-
mation compaction when downsampling, causing the image textures to
vary more rapidly. This shows up as more high frequency data in the
DCT coded blocks, which results in larger coefficients and longer blocks
after quantization. The layers that carry high-frequency contents, layers
5 and 12 in particular, grow in size. These carry the highest frequency
34 coefficients in each block with layer 5 having the most significant in-
formation.

The difference in compression ratio decreases with the level of downsam-
pling, due to increasing information compaction and the resulting rise of
high-frequency information in the DCT blocks. Therefore, the smaller
the image, the less gain in compression rate from downsampling. But
as low bandwidth receivers are interested in the low frequency contents,
where the difference ratio is still large, repeated downsampling is still
meaningful. Very low bit-rate frames are also useful in video conferences
with many participants. Here, the focus is typically on one or two per-
sons at a time, and the remaining persons could be viewed at a very low
resolution. This not only saves bandwidth but also visible screen area.

4.3 CPU usage measurements

The CPU-usage measurements show average encoding times (for both
the C- and VIS-version), average decoding time (for the VIS-version),
and identifies the cost distribution between all codec-stages. The results
are summarized in Table 1. On average, the encoder uses 25.4ms to con-
struct and compress all 21 layers. This enables the encoder to process 39
frames per second, which is more than fast enough for real-time software
encoding. Similarly, the total average decoding time is 34.81ms or 28fps.
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Figure 13 Difference in frame size between spatially and non-spatially
layered codec.

Table 1 Average encoding and decoding CPU-usage measurements. The
Wavelet Transform stage produces all 4 wavelet layers, the DCT trans-
forms the LL layer, and the Quant & Huff (DCT/wavelet) stages quan-
tize and code the 9 output layers from the wavelet enhancement layers,
and the 12 SNR layers from DCT, respectively. The DeQuant & Un-
Huff (DCT) stage decodes all 12 SNR layers for the IDCT stage. The
DeQuant & UnHuff(wavelet) decodes the 9 wavelet enhancement layers.
Wavelet reconstruction upscales the LL image, and adds resolution by re-
constructing the HL, LH, and HH layers. (†) The C and VIS versions of
DCT and IDCT functions are from SUN’s MediaLib graphics library[15].
(‡) Currently, only the C version exists of the (de)quantization and huff-
man (de)coding stages.

Encoding time (ms) Decoding time (ms)
VIS C VIS

Wavelet Transform 7.89 28.15 DeQnt&UnHuff(DCT)‡ 4.58
Quant & Huff (wavelet)‡ 7.62 9.11 IDCT† 2.13
DCT† 2.51 8.51 DeQnt&UnHuff(wavelet)‡ 14.94
Quant & Huff (DCT) 7.38 22.01 Wavelet reconstruction 13.36
Total 25.40 67.78 35.01
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An additional 13ms is required for color space conversion and display
drawing, but this still allows real-time decoding and display of the test
video stream. Further, in most real-life applications, one would rarely
reconstruct all 21 layers, meaning even faster decoding times. Decoding
is more expensive than encoding, because decoder is designed to permit
separate decoding of each layer. This increased flexibility costs a sepa-
rate iteration across the image per layer. Also two of the stages are not
VIS-accelerated.

The SIMD implementation provides a significant performance improve-
ment. For comparison, an otherwise identical, efficient and compiler op-
timized non-VIS accelerated C-implementation of the encoder is capable
of encoding only 14.8 fps. A more detailed inspection of the individ-
ual stages reveals that VIS provides speedups in the range 3-4 for these
particular types of algorithms: The C-version of wavelet transformation
takes 28.15ms on average as opposed to the 7.89ms needed by the VIS-
version. This yields a speedup factor of 3.6. The speed of quantization
and Huffman coding of the DCT coefficients is increased by a factor 3.
Also, we measure a speedup of similar magnitude, factor 3.4, for SUN’s
MediaLib [15] implementation of DCT. The overall effect of VIS acceler-
ation is that real-time coding becomes possible—with time to spare for
network communication, display updates and other application process-
ing.

5 Related Work

Layered coding is preferable to other methods such as the lowest com-
mon denominator -method, which transmits only one signal, tuned to the
lowest bit-rate of any receiver. Of course, this is not acceptable for re-
ceivers with plenty of bandwidth to spare. Another method is multi-rate
coding which repeatedly codes the video signal to several bit-rates. This
is expensive, however. Firstly, it involves extra computational overhead
from compressing the same frame repeatedly. Secondly, it introduces
bandwidth redundancy as each high bit-rate video stream contains all
the information also included in the lower bit-rate ones. This translates
to inefficient bandwidth utilization from the root of the the multi-cast
tree. Recently, another method, router filtering [21], does away with the
bandwidth redundancy by coding to only one high bit-rate, and letting
network routers perform the necessary bandwidth reductions underway.
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But this requires computationally powerful routers with semantic knowl-
edge of the packets they process. Routers able to act on the semantic
contents of packages are not likely to become common until the wide-
spreading of active networks [16], [2].

Layered video coding and related network design issues are active and
recent research areas. Related work on layered video codecs exist [4],
[8], but we have focussed on practical and efficient implementation, with
comprehensive and empirical tests to evaluate our codec’s performance.

MPEG-2 was the first standard to incorporate a form of layering, called
scalability, as part of the standard [3]. But MPEG-2 is intended for higher
bit-rate video streams, and therefore only allows for three enhancements
to the base layer; one from each of spatial, SNR, and temporal scal-
abilities. While it provides better bit-rate adaption than the MPEG-1
standard, it is still inadequate for most networks with receivers on dial-up
lines. Also, no MPEG-2 implementation exists that includes the scala-
bilities.

A combination of MPEG and wavelet based spatial layering for very high
bandwidth video is proposed in [20]. The video is repeatedly downsam-
pled until the resolution reaches the resolution of the common interme-
diate format (cif). The cif-sized LL(n)-layer is then further processed
by an MPEG based codec. Their proposal also offer hierarchical motion
compensation of the high frequency subbands, but not temporal scala-
bility.

The work in [4] includes spatial and SNR layering, with strong focus on
the spatial layering. It presents the design of a coding algorithm based
on Laplacian pyramid image decomposition using centered cubic spline
wavelets. This coding algorithm is incorporated into a codec which, in
addition to image decomposition, uses predictive coding for temporal
compression and conditional arithmetic coding for coding wavelet co-
efficients. This results in a codec with spatial and SNR layering, but
no temporal layering. Both this codec and ours use wavelets for spa-
tial layering, although of different degree (cubic vs. quadratic), and we
use them differently. In our codec, they are used for subband coding,
which is different from the pyramid approach used in their coding al-
gorithm. The paper provides extensive descriptions of visual quality
through PSNR (peak signal-to-noise ratio) graphs, and also provides in-
formation on bandwidth utilization. There is, however, no information
on computational complexity or CPU-usage.
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Compression performance of our codec may be improved by using other
methods than Huffman compression. One of the most efficient methods
is the embedded zero tree wavelet coding [13], but it is most effective
when using several levels of decomposition. Another recent method is
conditional arithmetic coding [10]. [4] above also relies on conditional
arithmetic coding for extra compression performance. We have put more
effort into codec versatility at these less significant layers than compres-
sion performance, because we assume that the receivers wanting many
layers typically have enough band-width to spare.

In [8], a codec is developed which resembles our codec in that they use
wavelets for subband decomposition and DCT coding for the LL wavelet
layer. Their design does not like ours, however, allow for several levels of
subband decomposition. They include temporal layering in the codec us-
ing conditional block replenishment. In the paper, the authors stress the
need for error resilient coding mechanisms for error prone networks such
as the Internet. Their receiver-driven layered multicast (RLM) scheme,
where receivers receivers adjust their reception rate by joining and leav-
ing multi-cast groups, was developed to work in environments such as
the MBone [1] using IP multi-casting. Their conditional block replen-
ishment provides good error resilience, but lacks some compression per-
formance compared to some of good predictive coding techniques. We
have stressed the need for a fast software implementation, and empirical
tests. Although suggestions for implementation optimizations are pre-
sented in the paper, they present very little information about run-time
performance. Evaluation of quality is presented through PSNR graphs,
but there are no indications of bit-rate distributions.

New predictive temporal coding techniques [11], [18] provide excellent
compression rates, but typically target a fixed low bit-rate [22], [5] and
discard the remaining image information. This is useful only for fixed,
low bit-rate video distribution, and is therefore inadequate to satisfy the
high-bandwidth receivers’ quality requirements. Moreover, the predictive
coding techniques are usually computationally complex, and generally
do not run in real-time. New predictive coding schemes are required
that allow temporal layering, and which can be implemented to run in
real-time, if they are to be incorporated in interactive video applications.
Here, a SIMD architecture helps considerably to achieve this performance
goal.

34



6 Conclusions

This paper addresses the problem of efficiently distributing a video stream
to a number of receivers on bandwidth heterogeneous networks. We pro-
pose layered coding and multi-cast distribution of the video. We design
a proprietary video codec incorporating wavelet filtering for spatial lay-
ering and repeated quantization for SNR layering. We propose a high
performance implementation using the SIMD capabilities of the run-time
platform for speeding up coding and decoding.

Bit-rate tests show that the codec is capable of delivering frame sizes
evenly distributed across a large spectrum. The lowest recognizable vi-
sual quality is at 16.4kbits, meaning that the useful range of bit-rates
is as versatile as 16.4kbits to 777kbits per frame, a difference factor of
47.4:1 from the lowest to the highest bandwidth requirement. These bit-
rates were obtained without temporal compression, which could improve
versatility even further.

Image quality ranges from recognizable to very good as the number of
layers decoded, and thereby the bit-rate, increases. The codec allows
viewing at two spatial resolutions by selecting an appropriate number of
DCT and wavelet enhancement layers. This allows a tradeoff between
resolution and sharpness.

Our CPU-usage measurements show that the codec is capable of real-
time encoding a test movie at 39fps and decoding at 28fps. This level of
efficiency is achieved by using SIMD computations. We found that the
VIS accelerated stages in the codec was 3-4 times as fast as an other-
wise identical, efficient C-implementation; we have therefore found SIMD
acceleration to be worth the extra implementation effort.

As this work was carried out as part of a master’s thesis, our experience
suggest that the new media instructions can be successfully applied by
application programmers without years of image signal processing expe-
rience. Indeed, in several cases, the implementation was in fact simplified
by using SIMD, although it requires a different line of thought.

Since SIMD has found its way into virtually all modern CPU-architectures,
we think that developers should consider using it, given the speed-ups
possible. Unfortunately, the SIMD engines are not compatible between
CPU-architectures, but most of them implement the same features, which
can be mapped to a distinct set of instructions.

35



References

[1] Hans Eriksson. MBONE: The Multicast Backbone. Communications
of the ACM, 37(8), 1994.

[2] Heine Frifeld, Peter Lindstrøm, and Simon Nybroe. Minimizing
the Static - Building an Active Node. Technical report, Aalborg
University, January 1998.

[3] Barry G. Haskel, Atul Puri, and Arun N. Netravali. Digital Video:
An Introduction to MPEG-2. Chapman and Hall, 1997.

[4] Klaus Illgner and Frank Müller. Spatially Scalable Video Compres-
sion Employing Resolution Pyramids. IEEE Journal on Selected
Areas in Communications, 15(9):1688–1703, December 1997.

[5] Faouzi Kossentini et al. Predictive RD Optimized Motion Estima-
tion for Very Low Bit-Rate Video Coding. IEEE Journal on Selected
Areas in Communications, 15(9):1752–1763, December 1997.

[6] Martin H. Kristiansen and Morten V. Jensen. Scaling Video for Het-
erogeneous Networks. Technical report, Aalborg University, January
1998.

[7] A. K. Louis, P. Maaß, and A. Rieder. Wavelets - Theory and Appli-
cations. Wiley-Interscience, 1997.

[8] Steven McCanne, Martin Vetterli, and Van Jacobson. Low-
Complexity Video Coding for Receiver-Driven Multicast. IEEE
Journal on Selected Areas in Communications, 15(6):983–1001, Au-
gust 1997.

[9] Sun Microsystems. UltraSPARC and New-Media Support, 1995.

[10] F. Müller, K. Illgner, and B. Menser. Embedded Laplacian Pyra-
mid Image Coding Using Conditional Arithmetic Coding. In Proc.
IEEE Int. Conf. Image Processing, ICIP’96, volume I, pages 221–
224, Lausanne, Switzerland, September 1996.

[11] Mutsumi Ohta and Satoshi Nogaki. Hybrid Picture Coding with
Wavelet Transform and Overlapped Motion-Compensated Inter-
frame Prediction Coding. IEEE Transactions on Signal Processing,
41(12):3416–3424, December 1993.

36



[12] Peter Peleg, Sam Wilkie, and Uri Weiser. Intel MMX for Multimedia
PC’s. Communications of the ACM, 40(1):25–38, January 1997.

[13] Jerome M. Shapiro. Embedded Image Coding Using Zerotrees
of Wavelet Coefficients. IEEE Transactions on Signal Processing,
41(12):3445–3462, December 1993.

[14] Gilbert Strang and Truong Nguyen. Wavelets and Filter Banks.
Wellesley-Cambridge Press, 1996.

[15] Sun Microsystems. mediaLib Users Guide, June 1997.
WWW: http://www.sun.com/microelectronics/vis/

mlib guide.pdf.

[16] David L. Tennenhouse et al. A Survey of Active Network Research.
IEEE Communications Magazine, 35(1):80–86, January 1997.

[17] Marc Tremblay, J. Michael O’Connor, V. Narayanan, and Liang
He. VIS Speeds New Media Processing. IEEE Micro, 16(4):10–20,
August 1996.

[18] Dimitios Tzovaras, Stavros Vachtsevanos, and Michael G.
Strintzis. Optimization of Quadtree Segmentation and Hybrid Two-
Dimentional and Three-Dimensional Motion Estimation in a Rate-
Distortion Framework. IEEE Journal on Selected Areas in Commu-
nications, 15(9):1726–1738, December 1997.

[19] Martin Vetterli and Jelena Kovačević. Wavelets and Subband Cod-
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