
B
R

IC
S

R
S

-98-44
N

ielsen
&

A
gha:

Tow
ards

R
e-usable

R
eal-T

im
e

O
bjects

BRICS
Basic Research in Computer Science

Towards Re-usable Real-Time Objects

Brian Nielsen
Gul Agha

BRICS Report Series RS-98-44

ISSN 0909-0878 December 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/44/

Towards Reusable Real-Time Objects

Brian Nielsen
Aalborg University

Department of Computer Science

Fredrik Bajersvej 7E
DK-9220 Aalborg, Denmark

Email: bnielsen@cs.auc.dk

Gul Agha
Open Systems Laboratory

University of Illinois at Urbana-Champaign
Department of Computer Science

1304 W. Springfield Av.

Urbana, Illinois 61801, U.S.A
Email: agha@cs.uiuc.edu

http://osl.cs.uiuc.edu

December 1999

1

Abstract

Large and complex real-time systems can benefit significantly
from a component-based development approach where new sys-
tems are constructed by composing reusable, documented and
previously tested concurrent objects. However, reusing objects
which execute under real-time constraints is problematic because
application specific time and synchronization constraints are often
embedded in the internals of these objects. The tight coupling of
functionality and real-time constraints makes objects interdepen-
dent, and as a result difficult to reuse in another system.

We propose a model which facilitates separate and modular
specification of real-time constraints, and show how separation
of real-time constraints and functional behavior is possible. We
present our ideas using the Actor model to represent untimed ob-
jects, and the Real-time Synchronizers language to express real-
time and synchronization constraints. We discuss specific mech-
anisms by which Real-time Synchronizers can govern the interac-
tion and execution of untimed objects.

We treat our model formally, and succinctly define what effect
real-time constraints have on a set of concurrent objects. We
briefly discuss how a middleware scheduling and event-dispatching
service can use the synchronizers to execute the system.

2

1 Motivation

Real-time systems remain among the most challenging systems to build,
and often projects are late and products faulty. Developers are faced
with ever more stringent requirements for building larger, more complex
systems at a faster pace and without proportional resources. However,
because current tools and techniques to deal with complexity do not
scale linearly with size of programs, development problems worsen. We
believe that real-time systems can benefit significantly from a develop-
ment approach based on components where new systems are constructed
by composing reusable, documented and previously tested components.
Unfortunately, current software development methods and tools do not
properly support such construction.

Because real-time systems are safety critical and often unattended, they
must operate under strict end-to-end time constraints and be depend-
able. Dependability requirements entail both correctness and tolerance to
faults. Real-time systems can be loosely defined as systems where timely
response is equally important as correct response. Real-time systems
typically monitor and regulate physical equipment. Some well-known
examples include: manufacturing plant automatization, where the pro-
duction steps must be supervised and coordinated; chemical processes
which are automatically monitored and regulated through sensors and
actuators; safety systems aboard trains and cars; financial applications
where stock rates must be guaranteed up-to-date and where transactions
must be completed within specific time bounds.

Historically, real-time systems were built using low level programming
languages and executed on dedicated hardware and specialized operating
systems: efficiency, high resource utilization, and integration with hard-
ware were the primary concerns, software modularity and reuse were only
secondary. In the light of more stringent development requirements, we
believe the emphasis should now be on building modular and reusable
components, which can be used in many applications. Middleware ser-
vices (i.e. general purpose services located between platforms and appli-
cations [9]) can then be used to help integrate the components.

However, reusing real-time components is often problematic because ap-
plication specific time and synchronization constraints are embedded in
the internals of these components. This kind of tight coupling makes
components interdependent, and consequently unlikely to be reusable

3

in other systems. Properly supported component-based software devel-
opment will allow components to be developed individually and later
be composed with other individually developed or existing components,
making it possible to reuse components in different applications. Thus
component-based software has emerged as an active area of research. Our
work makes a contribution to this area.

2 Separation and Reuse

In what follows we use collections of concurrent objects to represent com-
ponents in a distributed real-time system. Typically these objects model
real-world entities or act as proxies for them. The objects execute con-
currently and communicate by exchanging messages containing compu-
tation results or information about their local states. Objects may be
larger entities than data structures such as lists or trees, they need not
be heavyweight processes.

Designing reusable objects is difficult and requires skilled engineers. Build-
ing reusable concurrent real-time objects is even more difficult, and ne-
cessitates particular restrictions:

1. Objects should not schedule themselves by setting their priorities
or by specifying deadlines and delays on method invocations, e.g.,
use expressions such as object.method(args) deadline 10, or
contain any other type of scheduling related information.

2. Objects should not manipulate timers for programming delays or
timeouts. Timer manipulation includes requesting, cancelling, and
handling timer signals.

3. Objects should not have hardwired synchronization constraints. In
a concurrent system, certain restrictions on order of events must
be enfored in order to ensure safety and liveness. This concerns
both the order of invocations of a single object, and the interaction
between invocations on a set of objects.

Priorities, real-time constraints, timer values, and synchronization con-
straints are all properties that are likely to differ between applications,
and therefore objects that embed such behavior cannot be readily reused.

4

In addition most of these properties are global properties, not properties
belonging internally to a single object. For example, a priority level only
makes sense when compared to the priorities of other objects. Similarly,
an object is usually part of a sequence of objects chained by method
calls which together must obey an end-to-end deadline. A deadline on a
method invocation only represents a single object’s time budget along the
call chain. New applications using the object will usually have different
end-to-end deadlines and different call sequences. Therefore the objects
would have to be modified, and consequently re-tested, to accommodate
a new time budget.

Parameterizing objects with timing and scheduling information would
solve these problems only to a very limited extent. This is partly because
it is difficult to know which attributes should be parameterized, and
partly because concurrency constraints among objects are difficult to
capture through parameters. We argue that it is better to handle the
composition by a composition software agent, and use design methods and
programming languages/environments that explicitly provide notations
and abstractions for this decoupling.

Another source of reuse is the constraints themselves. We expect that
many instances of the same constraints will recur in different applications.
It would therefore be advantageous to reuse them. However, a more im-
portant reason for reuse is that real-time and synchronization constraints
can be extremely tricky to specify correctly. Constraints that work as
desired should be reused rather than be replaced by new similar ones.
An effective and modular language should enable the programmer to fac-
tor out common constraint instances as constraint patterns and support
their composition.

We propose a model in which both real-time and synchronization con-
straints can be specified in an integrated manner, enabling a fairly general
set of constraints to be specified. For example, a time constraint could
specify that a controller object must receive sensor data from a sensor ob-
ject every 20 milliseconds. A synchronization constraint temporarily dis-
ables some actions until others have taken place, for example, to prevent
a producer from inserting in a full buffer. We refer to combined real-time
and synchronization constraints as interaction constraints. Both types
constrain dynamic interactions among objects.

Our interaction constraints are conceptually installed “above” ordinary
objects, and they actively enforce the developers’ constraints, see Fig-

5

ure 1. The enforcing agent is the scheduler (or schedulers) which bases
its decisions on the supplied constraints.

constraint-level

functional-level

object

unprocessed messages

interaction
constraints

communication
event

Figure 1: Separation of constraints and objects.

Interaction constraints are expressed in terms of enabling conditions on
communication events occurring on the interface of objects. These events
constitute the observable behavior of a system. What goes on inside
an object is encapsulated, and cannot be constrained. Specifically, a
collection of synchronizer entities constrain by delaying or accelerating
message invocations. Each synchronizer implements a constraint pattern.
We use the object-oriented Actor model to describe objects.

Section 3 introduces and exemplifies our model. Since we are interested in
providing a clean and sound model, it is accompanied by a description of
its semantics. Our goal is to succinctly define constraints and their effects
on the objects they constrain. Section 4 provides the formal definitions.
Finally, in Section 5 we discuss implementation.

3 Specification of interaction constraints

We use the object-oriented Actor model [1, 2, 5] to describe distributed
computing entities (hardware or software). An actor encapsulates a state,
provides a set of public methods, and potentially invokes public meth-
ods in other objects by means of message passing. Unlike many object-
oriented languages, message passing is non-blocking and buffered. This
means that when an actor sends a message, it continues its computation

6

without waiting for, or getting a reply from, the receiver. Further, mes-
sages sent but not yet processed by the receiver are conceptually buffered
in a mailbox at the receiver. The receiver receives and processes mes-
sages one at a time. In addition, actors execute concurrently with other
actors. An actor system is illustrated in Figure 2.

thread state:

A

B

methods:

interface

thread state:

A

B

methods:

interface

thread state:

A

B

methods:

(pending messages)

message

message

…
…

Figure 2: Illustration of an actor system.

Each actor is identified by a unique name, called its mail address. A
mail address can be bound to state variables of type actor reference. To
send a message an actor executes the send a.m(pv) primitive, where a
is an actor reference variable containing the mail address of the target
actor (possibly the actor itself), m is the method to be invoked, and
pv is the value(s) passed. It is possible to communicate mail-addresses
through messages thus allowing dynamic configuration of the communi-
cation topology.

The example actor program in Figure 3 describes part of a simple boiler
control system consisting of a pressure sensor, a controller, and a valve
actuator. These entities are modelled as actors. The goal is to maintain
a pre-specified pressure level in the boiler. The controller is the heart
of the system. It repeatedly executes a method which sends a request
to the pressure sensor for the current boiler pressure. The iteration is
implemented by having the controller send itself a loop message which
causes requests to be sent to the pressure sensor. The parameter of
this message specifies which actor the result must be sent to, in this

7

case the controller itself. Upon request, the pressure sensor sends a reply
containing its current pressure reading back to the initiator of the request
(i.e., the controller). Based on that value, the controller computes an
updated steam valve position, and sends a message to invoke the move
method on the valve.

actor pressureSensor () {
real value;
method read(actorRef customer) {

send customer.reading(value);
}
}
actor steamValve () { . . . } // unspecified
actor controller (actorRef sensor,valve) {

method loop() {
send self.loop();
send sensor.read(self);
}
method reading(real pressure) {

newValvePos=computeValvePos(pressure);
send valve.move(newValvePos);
}
}

Figure 3: Steam boiler.

The RT-Synchronizers− language that we define in this paper to express
constraints is purposely distilled: it does not include syntactic sugar for
convenient description of common constraint patterns. This allows us
to focus on the central ideas, and makes it easier to define a complete
semantics. A synchronizer is an object that enforces user specified con-
straints on messages sent by actors. Such constraints express real-time
or ordering constraints on pairs of message invocations. The messages
of interest are captured by means of patterns that represent predicates
over message contents and synchronizer state. The structure of an RT-
Synchronizers− declaration is given in Figure 4. It consists of 4 parts: A
set of instantiation parameters, declarations of local variables, a set of
constraints, and a set of triggers.

8

synchronizer (a1, . . . , an){
StateDeclaration

p11 ⇒ p21 ∼ y1
...
p1n ⇒ p2n ∼ yn

p1 : x := exp
...
pk : x := exp

}
Figure 4: Structure of RT-Synchronizers−. ∼∈ {�,≺}.

A constraint has one of the following forms:

p1 ⇒ p2 ≺ y: Here p1 and p2 are message patterns and y is a variable or
constant with positive real value. Let a1(cv1) and a2(cv2) be mes-
sage invocations matching p1 and p2 respectively. This constraint
then states that after an a1(cv1) has occurred, an a2(cv2) must fol-
low before y time units elapse. We say that event a1(cv1) fires the
constraint, and causes a demand for a2(cv2).

p1 ⇒ p2 � y: After a1(cv1) occurs, at least y time units must pass before
a2(cv2) is permitted.

In both cases there are no constraints on a2(cv2) until after a1(cv1) fires.
A pattern has the form x1(x2) when b, where b is a boolean predicate
(guard) over the message parameter x2 and the state of the synchronizer.
x1 is a state variable containing an actor address. Intuitively, a message
satisfies a pattern if it is targeted at x1 and the boolean predicate eval-
uates to true. If a message satisfies a pattern, the invocation is affected
by a constraint which must then be satisfied before the invocation can
take place. When a constraint forbids the invocation of a message, it is
buffered until a later time when the constraint enables it. A disabled
message may become enabled when a delay has expired, or when the
synchronizer changes state through a trigger operation.

A trigger command specifies how the synchronizer’s state variables change
when a message invocation satisfies a given pattern. Specifically, assign-

9

ment of the trigger p : x := exp is executed when a message satisfying p
is invoked. Synchronizers can thus adapt to the system’s current state.

To promote modularity of interaction constraints, the constraints can be
specified as a collection of synchronizer objects executing concurrently.

3.1 Example 1: Steam Boiler Constraints

The synchronizer in Figure 5 describes the real-time constraints for the
simple boiler control system from Figure 3. The controller should read
the pressure periodically (every 20 time units plus or minus some toler-
ance). The controller must receive sensor data from the pressure sensor
within 10 time units measured from the start of the period, and it must
update the steam valve position no later than 5 time units after receiving
sensor data. A message sequence chart illustrating the communication
among the boiler objects and the associated timing constraints is shown
in Figure 6.

actor pressureSensor () { . . . };
actor steamValve () { . . . };
actor controller (actorRef sensor,valve) { . . . };

synchronizer boilerConstraints (actorRef: controller,valve) {
// periodic loop:
controller.loop ⇒ controller.loop ≺ 20+ε
controller.loop ⇒ controller.loop � 20-ε
//deadline on reading:
controller.loop ⇒ controller.reading ≺ 10
//deadline on move:
controller.reading ⇒ valve.move ≺ 5
}

Figure 5: Steam boiler constraints.

This example shows how real-time constraints can be expressed and im-
posed separately from the functionality. It also shows how periodic con-
straints can be expressed by combining deadlines and delays. To make
the language easier to use, common constraint patterns such as those
enforcing periodicity can be specified as macros.

10

pressureSensor controller steamValve

read

reading

loop

move 5

20

10

loop

time

Figure 6: Message sequence chart with annotated timing constraints
for the steam boiler example.

3.2 Example 2: New Boiler

In a new boiler application, the pressure sensor must be polled approxi-
mately every 100 time units for pressure readings, and the pressure valve
must be moved accordingly no later than 20 time units after the appro-
priate reading. However, in situations where the pressure in the boiler
is high, the system must operate with a higher frequency. The pressure
sensor must then be polled every 50 time units. Two threshold values,
NormToHighThr and HighToNormThr, define which pressure values cause
mode change.

The functional part is reused from Example 1, i.e., the actors and their
respective behaviors are unmodified, but they are now composed by the
“newBoilerConstraints” synchronizer given in Figure 7. The synchro-
nizer maintains a mode state variable which tracks whether the system
operates in high or normal pressure mode. The example also illustrates
RT-Synchronizers−’s ability to capture the dynamic changes that are
common to many real-time systems through the use of a state variable,
and to change time constraints accordingly.

11

synchronizer newBoilerConstraints (actorRef: sensor, controller, valve){
enum Mode {Normal,High} mode = Normal;
//normal pressure periodic:
sensor.read when mode==Normal ⇒ sensor.read ≺ 100+ε
sensor.read when mode==Normal ⇒ sensor.read � 100-ε
//high pressure periodic:
sensor.read when mode==High ⇒ sensor.read ≺ 50+ε
sensor.read when mode==High ⇒ sensor.read � 50-ε
//deadline on move:
sensor.read ⇒ valve.move ≺ 20
//Trigger mode change
controller.reading(pressure) when pressure ≥ NormToHighThr:

mode=High;
controller.reading(pressure) when pressure ≤ HighToNormThr:

mode=Normal;
}

Figure 7: New Steam Boiler.

3.3 Example 3: Time Bounded Buffer

This and the next example show two common real-time constraint pat-
terns: a real-time producer-consumer relation, and rate control. These
examples also show how RT-Synchronizers− can express synchronization
(event ordering) constraints.

Figure 8 shows a time bounded buffer where each element must be re-
moved 20 time units after it has been inserted. In addition, the usual
restrictions of not putting on a full buffer and not getting from an empty
buffer are enforced. Note that the code uses a shorthand, disable p,
to temporarily prevent messages matching the pattern p from being in-
voked. disable p can be written as e0 ⇒ p � ∞, where e0 is a pattern
assumed to be fired at system startup time. This synchronizer could be
used, for example, in a multimedia system where the queue is an actor ca-
pable of decompressing a compressed video stream: the actor has a fixed
storage capacity for frames and until a frame is decompressed and con-
sumed, it occupies a buffer slot. The actor accepts messages containing a
compressed frame and messages removing an uncompressed frame. The
frames may only stay in the actor for a bounded amount of time. The

12

actor q {
method put(Item item) {// store item };
method get(actorRef customer) { send customer.processItem(item);}
}
actor consumer() { actor producer() {

method consume() { method produce () {
send q.get(self); send q.put(item);
send self.consume(); send self.produce();
} }
method processItem(Item item) { . . . } }
}
synchronizer bbConstraints (actorRef: producer, consumer, q) {

int n=0; // no of elements in queue
q.put ⇒ q.get ≺ 20; // time bound on get
disable consumer.consume when n ≤ 0; // buf empty?
disable producer.produce when n ≥ maxBufSz; // buf full?
producer.produce: n++;
consumer.consume: n−−;
}

Figure 8: Bounded buffer with time constraints.

buffer space must then be freed up for processing of new, fresh frames.

3.4 Example 4: Rate Control

The example shown in Figure 9 illustrates how rate control can be de-
scribed. At most 20 move operations can safely be performed on an
actuator in any time window of 30 time units.

We use an event generator actor to produce message invocations so that
the synchronizer changes state at certain time-points. An event generator
actor does not add any functionality per se, but is necessary for the proper
functioning of the synchronizer. This programming technique obviates
the need for a special internal event concept in RT-Synchronizers−.

13

actor actuator { method move() { . . . }}
actor eventGenerator {

method timeout() { send self.timeOut(); }
}
synchronizer rateControll (actorRef: actuator, eventGen) {

int credit=20; // max no of events in window
// timeout 30 tu’s after move:
actuator.move ⇒ eventGen.timeOut ≺ 30;
actuator.move ⇒ eventGen.timeOut � 30;
// event permitted?
disable actuator.move when credit ≤ 0;
// timeOut must be after move!
disable eventGen.timeOut when credit ≥ 20;
actuator.move: credit−−;
eventGen.timeOut: credit++;
}

Figure 9: Rate control.

4 Formal Definition

In this section we provide a formal definition of our model. The formal
model defines the permissible behavior of a constrained actor program,
which is crucial for determining which executions on a physical machine
will be considered correct.

The separation of functionality and constraints is maintained in the
formal definition, and this enables the semantics for Actors and RT-
Synchronizers− to be given as independent transition systems. The
meaning of a program composed of actors and synchronizers is then
given by putting the two transition systems in “parallel”. Figure 10
gives an overview of the the transition systems to be defined. A numer-
ator denominator-pair should be read as Premise

Conclusion
, where the premise is

the condition that must hold in order for the conclusion to hold. The κ
transitions define semantics for Actors, the γ transitions for individual
constraints, and the σ transitions for synchronizer objects. Finally, κσ
transitions define the behavior of a constrained actor-system.

14

Actors: −−−→κ

Single constraints: −−−→γ

Synchronizers: −−−→σ

Constrained System: −−−→κσ

Figure 10: Dependencies of the transition systems to be defined.

4.1 Semantics of Actors

We first define a transition system κ for an actor language. This defines
how the state of an actor system changes when a primitive operation
is performed, thus giving an abstract interpretation. The actor seman-
tics presented here is inspired by the work of Agha et. al. [5] where a
well-developed theory of actors can be found. However, note that we
present actor semantics in imperative style rather than the applicative
style used in previous work. Our semantic model abstracts away the no-
tion of methods. Instead, each actor has a single behavior—a sequence
of statements—which it applies to every incoming message.

When an actor has completed processing a message it executes the ready
command to indicate its readyness to accept a new message. As an
aside, readers familiar with the classic Actor literature will note that
the original become primitive has been replaced with ready. When an
actor executed a become it created a new anonymous actor to carry out
the rest of its computation, and prepared itself to receive a new message.
Thus, in the classic model, actors were multi-threaded, and tended to be
extremely fine-grained. In recent literature [3], the simpler ready has
replaced become, with essentially no loss of expressiveness. In addition
we have, due to brevity, omitted the semantic definition of dynamic actor
creation.

The state of an actor system is represented by a configuration which can
be thought of as an instantaneous snapshot of the system state made
by a conceptual observer. It is modeled as a pair 〈 α |µ 〉 where α
represents actor states, and µ is the set of pending messages. The α
mapping maintains the state of all actors in the system. An actor state
holds the execution state of an actor: the values of its state variables
and the commands that remain to be executed. An actor state is written
[E ` b]a where a is the actor’s address, E is an environment (mapping
from identifiers to their values) tracking the values of the state variables,
and b is the remainder of the actor’s behavior. In each computation step

15

the actor reduces the behavior until it reaches a ready(x) statement.
This juncture signifies that the actor a is waiting for an incoming message
whose contents should be bound to x. When a message arrives, the
actor continues its execution. A message is a pair 〈a⇐ cv〉 consisting of
a destination actor address a, and a value to be communicated cv. In
general cv encodes information about which method to invoke along with
the values of the method’s parameters.

〈fun : a〉
E ` b −→λ E′ ` b′

〈 α , [E ` b]a |µ 〉 −→κ 〈 α , [E′ ` b′]a |µ 〉
〈snd : a, 〈a′ ⇐ cv〉〉
〈 α , [E ` send(a′, cv); b]a |µ 〉 −→κ 〈 α , [E ` b]a |µ , 〈a′ ⇐ cv〉 〉

〈rcv : a, 〈a⇐ cv〉〉
〈 α , [E ` ready(x); b]a |µ , 〈a⇐ cv〉 〉−→κ〈 α , [E[x 7→ cv] ` b]a |µ 〉

Figure 11: Configuration transitions −→κ.

The semantics of actors is given in Figure 11. The fun transition defines
the effect on system state when an actor performs an internal computa-
tion step, i.e. a reduction of an expression. The transition system −→λ

defines the semantics of the sequential language used to express actor
behaviors. Since we do not rely on a specific language, we have omitted
its definition.

The interpretation of send is given by the snd-rule. The newly sent
message is added to µ. Message reception is described by the rcv tran-
sition. When an actor executes a ready(x) command, it becomes ready
to accept a new message in an environment with the updated state vari-
ables left by the previous processing. Also, the actual value carried by
the message is bound to the formal argument x. Finally, the message
is removed from µ. It is exactly these receive transitions that will be
constrained by RT-Synchronizers−. Other transitions are only affected
indirectly.

From this semantics one can make no assertions about the execution time
of an actor program; how, then, can we meet real-time requirements?
To make this point clear, we temporarily introduce time into the Actor
semantics.

Time can be added to transition systems by introducing a special set

16

of delay actions written as ε(d) where d is a finite positive real-valued
number representing the passage of d time units. The idea is that system
execution can be observed by alternatingly observing a set of instanta-
neous transitions and observing a delay. In [20] this idea was termed
the two-phase functioning principle: system state evolves alternatingly
by performing a sequence of instantaneous actions and by letting time
pass.

By adding the rule: 〈 α |µ 〉 ε(d)−−→κ 〈 α |µ 〉, we extend the −→κ

transition relation with the ability to let time pass. The rule states that
any actor configuration is always able to delay transitions for some (fi-
nite) amount of time. The consequence is that one cannot tell how long
a time an actor program takes to finish; indeed the interval between
any pair of actions is indeterminate. This is a reasonable model for un-
timed concurrent programs, where no assumptions on the relative order
or timing of events should be made. However, a language with this se-
mantics is unsuitable for real-time system: from the code one can only
make assertions about eventuality properties, not about bounded tim-
ing. A real-time programming language should make assertions about
time bounds possible, and its semantics should define when and by how
much can time advance.

4.2 RT-Synchronizers− Semantics

We start by defining semantics for single constraints (−→γ transition
system), and thereafter proceed to a synchronizer object (−→σ transition
system); the latter is essentially a state plus a collection of constraints
and triggers. The state variables of a synchronizer will be represented by
an environment V mapping identifiers to their values. Constraints and
patterns are evaluated in this environment.

Recall that a constraint has the form p1 ⇒ p2 ∼ y. Whenever an invo-
cation matches p1 the constraint fires thereby creating a new demand
instance for an invocation matching p2. Such a demand will semantically
be represented by the triple p2 ∼ d, where d is a real number denoting
the deadline or release time of p2, depending on ∼. d is initialized with
the value of state variable y, V (y), when fired. Since a constraint can fire
many times successively, a constraint may induce many outstanding de-
mand instances. The state of a single constraint is therefore represented
as a constraint configuration 〈| ξ∼ | χ |〉 where ξ∼ stands for the (static

17

description of a) constraint of the form p1 ⇒ p2 ∼ y, and χ is a multi-set
of demands instantiated from the static description ξ∼ . The semantic
rules are shown in Figure 12.

〈Sat≺ : a(cv)〉

cs =

{
∅ if a(cv) |= p2

p2 ≺ d′ otherwise
cf =

{
p2 ≺ V (y) if a(cv) |= p1)
∅ otherwise

〈| ξ≺ | χ] p2 ≺ d′ |〉 a(cv)−−−→γ 〈| ξ≺ | χ] cf] cs |〉
〈Sat� : a(cv)〉

cs =

{
∅ if a(cv) |= p2 ∧ d′ ≤ 0
p2 ≺ d′ otherwise

cf =

{
p2 � V (y) if a(cv) |= p1)
∅ otherwise

〈| ξ� | χ] p2 � d′ |〉 a(cv)−−−→γ 〈| ξ� | χ] cf] cs |〉
〈Sat∅ : a(cv)〉

cf =

{
p2 ∼ V (y) if a(cv) |= p1)
∅ otherwise

〈| ξ∼ | ∅ |〉 a(cv)−−−→γ 〈| ξ∼ | ∅] cf |〉
〈Delay∼ : e〉

∀p2 ≺ di ∈ (χ� e).di ≥ 0

〈| ξ∼ | χ |〉 ε(e)−−→γ 〈| ξ∼ | χ� e |〉
a(cv) |= x1(x2)when b =def a = V (x1) ∧ b(V [x2 7→ cv])

Figure 12: Semantics for single constraints −→γ where ∼∈ {�,≺}.

The function cs determines whether the pattern of a demand instance is
satisfied, and if so, removes it from the demand instance set. If the pat-
tern is not satisfied, the demand is maintained. Similarly, the function
cf determines whether or not the constraint fires and therefore whether
or not to add a new demand instance. Thus the Sat-rules ensure that
whenever a constraint fires, a demand (cf) is added to χ. Also, whenever
a demand (cs) is satisfied, it is removed from χ. Due to the possibility
of a single message matching both p1 and p2 the Sat-rules are prepared
to both satisfy and fire a demand. The demand instance to be removed
is chosen non-deterministically, giving the implementation maximal free-
dom to choose the demand it finds the most appropriate, e.g., the one
with the tightest deadline.

Passage of time is controlled by the Delay-rule such that the elapsed
amount of time (e) is subtracted from di in each demand pi ∼ di. This

18

is written χ� e. Thus for p � d, d is the amount of time that must pass
before p is enabled. In particular, p will be enabled when d is less than 0.
This requirement is enforced by the cs function of the 〈Sat� : a(cv)〉 rule.
For p ≺ d, d is the amount of time that may pass before p will be dis-
abled. p would be disabled if d is less than 0. However the 〈Delay≺ : e〉
rule prevents time from progressing that much. In effect, the delay rule
ensures that deadline constraints are always satisfied in the semantics.
This corresponds to the declarative meaning one would expect from a
constraint: something that must be enforced. Without this strict defini-
tion, our constraints would degenerate to mere assertions and not convey
their intended meaning. Note that an actual language implementation
may not always be able to give this guarantee — either statically or dy-
namically — for two reasons. First, because physical resources may not
exist to realize them, and second, because finding feasible schedules for
general constraints is computationally very complex.

Conflicting constraints that have no solutions should be detected as
part of the compiler’s static program check. Ren has shown how RT-
Synchronizers− constraints can be mapped to linear inequality systems
for which polynomial time algorithms exist for detecting solvability [23,
21].

The following transition sequence illustrates application of the transition
rules for a constraint:

〈| p1 ⇒ p2 ≺ 7 | ∅ |〉 a1(cv)−−−→γ

〈| p1 ⇒ p2 ≺ 7 | p2 ≺ 7 |〉 ε(3)−−→γ

〈| p1 ⇒ p2 ≺ 7 | p2 ≺ 4 |〉 a1(cv)−−−→γ

〈| p1 ⇒ p2 ≺ 7 | p2 ≺ 4, p2 ≺ 7 |〉 ε(4)−−→γ

〈| p1 ⇒ p2 ≺ 7 | p2 ≺ 0, p2 ≺ 3 |〉 a2(cv)−−−→γ

〈| p1 → p2 ≺ 7 | p2 ≺ 3 |〉 a2(cv)−−−→γ

〈| p1 → p2 ≺ 7 | ∅ |〉

Given that the behavior of each individual constraint is well defined, it is
easy to define the behavior of a collection of constraints as found within
a synchronizer. Essentially the individual constraints are conjoined, i.e.,
we require that all constraints agree on a given invocation. Similarly,
they must all agree on letting time pass.

19

A synchronizer is represented by a synchronizer configuration [γ̄|V] where
γ̄ is a set of constraint configurations (ranged over by γ). As previously
stated V represents the state variables of a synchronizer and is a mapping
from identifiers to their values. The necessary definition is shown in
Figure 13. A synchronizer can engage in message reception a(cv) or
delay ε(e) only when it is permitted by every constraint.

We have omitted the rather simple definition of the effect of triggers:
V ′ is V simultaneously updated with the specified assignments in the
matched triggers.

〈Action : `〉
∀i ∈ [1..n].γi

`−→γ γ
′
i

[γ1, . . . , γn|V]
`−→σ [γ′1, . . . , γ

′
n|V ′]

, ` ∈ {a(cv), ε(e)}

Figure 13: Semantics for a synchronizer −→σ.

4.3 Combining Actors and RT-Synchronizers−

The preceding sections defined Actor and RT-Synchronizers− languages
independently. The effect of constraining an actor program can now be
defined here as a special form of parallel composition (denoted by ‖)
that preserves the meaning of constraints. We call a collection of syn-
chronizers an interaction constraint system configuration which is written
(σ1, . . . , σn) where σ ranges over synchronizer configurations. The com-
position ‖ of an actor configuration and an interaction constraint system
configuration is defined in Figure 14.

Transitions unaffected by interaction constraints altogether are message
sends and local computations. These only have effect on the actor config-
uration. Message invocations 〈rcv : a,m〉 are the interesting events af-
fected by constraints. Note that the same invocation may be constrained
by several synchronizers, and all must certify the invocation, i.e., syn-
chronizers, like constraints, are composed conjunctively. The idea is that
adding more synchronizers should further restrict the behavior of objects.
A consequence of this idea is that the synchronizers also must agree on
letting time pass.

The combined semantics define all correct transition sequences (−→∗κσ).
A transition sequence corresponds to one possible schedule of the im-

20

Unaffected Actions

〈 α |µ 〉 `−→κ 〈 α′ |µ′ 〉 ` ∈ {〈fun : a〉, 〈snd : a,m〉, 〈ready : a〉}
〈 α |µ 〉 ‖ (σ1, . . . , σn)

`−→κσ 〈 α′ |µ′ 〉 ‖ (σ1, . . . , σn)

Receive

〈 α |µ 〉 `−→κ 〈 α′ |µ′ 〉 ∧
i∈[1..n]

σi
a(cv)−−−→σ σ

′
i ` = 〈rcv : a, 〈a⇐ cv〉〉

〈 α |µ 〉 ‖ (σ1, . . . , σn)
`−→κσ 〈 α′ |µ′ 〉 ‖ (σ′1, . . . , σ′n)

Delay ∧
i∈[1..n]

σi
ε(d)−−→σ σ

′
i

〈 α |µ 〉 ‖ (σ1, . . . , σn)
ε(d)−−→κσ 〈 α |µ 〉 ‖ (σ′1, . . . , σ′n)

Figure 14: Combined behavior −→κσ.

plemented system (consisting of actors, constraints, operating system,
runtime system, and hardware resources), and thus a primary task of the
language implementation is to schedule events in the system such that
the resulting schedule can be found in the program’s semantics. Thus, a
program consisting of actors and RT-Synchronizers− can be viewed as a
specification for the set of possible systems.

Observe that not all transition sequences defined by −→∗κσ are realizable
on a physical machine. The problem is related to the progress of time
and our intuition about causal ordering. Suppose event e1 is a method
invocation resulting in the sending of a message which eventually causes
a method invocation, event e2, then we surely would expect that time has
progressed between these events. That is, in terms of a fictitious global
clock C, it should hold that C(e1) < C(e2). However, in our semantics,
time is not required to pass between causally related events, but only
permitted to.

There are two related problems, time locks and cluster points. A time
lock occurs when no time progress is possible, i.e., the delay transition
is eternally disabled. In our model this occurs as consequence of an
unsatisfiable deadline constraint. A cluster point is a bounded interval
of time in which an infinite number of events occur. It is possible to
write such a specification in RT-Synchronizers−. However, it will not be
implementable on a (finitely fast) computer! Since our goal is to define
the permissible implementations, and since time locks and cluster points

21

are only required when explicitly specified, we have taken no measure
to prohibit such behavior. A compiler should, however, warn developers
about such unsatisfiable constraints.

5 Middleware Scheduling

The examples in Figures 5–9 illustrated how our language can be used
as a specification or modeling language that defines the structure and
permissible behavior of a computer system consisting of hardware and
system software executing an application.

An attractive approach to implementing a language that supports sep-
aration of objects and time constraints is to use a middleware schedul-
ing/event dispatching service. Such a service is depicted in Figure 15.
An application consists of two parts, objects and time constraints. A
set of potentially reusable objects are composed by middleware services
for communication and scheduling. Communication typically includes
request-reply communication, point-to-point real-time communication,
and group communication. The scheduler(s) are responsible for event
dispatching and resource (typically processor) allocation, based on infor-
mation that is specified by the application separately from the objects.
Thus, objects are being controlled by the middleware, rather than con-
trolling themselves or each other.

O1 O2 O3

middleware services

host OS + hardware

time
constraints

Figure 15: Middleware integrates pre-built objects.

Specifically, given a set of synchronizers as input, this service should,
preferably without further programmer involvement, schedule message
invocations in accordance with the specified real-time and synchroniza-
tion constraints. The remainder of this section is devoted to uncovering
what work such a service must do to execute the specification directly.

22

Implementing our full model is not an easy task, but the difficulty is
mostly related to the generality of the constraints that can be expressed,
rather than due to the separation of functionality and time constraints.
We have identified three main tasks a compiler and scheduling service
should address:

Scheduling: One challenge is to find a scheduling strategy that satisfies
the deadline constraints when the RT-Synchronizers− program is
executed on a physical machine with limited resources. In addition,
hard and firm real-time systems require an a priori guarantee (or
at least a solid argument) that timing constraints will be satisfied
on the chosen platform during runtime.

Constraint propagation: In RT-Synchronizers− the programmer need
only specify end-to-end timing relations, not intermediate constraints
on all events along the call chain. Assume that actor a receives a
message m1; a then responds with a message m2 to actor b which in
turn sends a message m3 to actor c. Let am1, bm2 and cm3 denote the
reception events of these messages. Then a typical interaction con-
straint would be am1 ⇒ cm3 ≺ 10. This scenario is depicted in Fig-
ure 16. Consequently, there is an implicit constraint on event bm2

which is to happen (well) before cm3. Ideally, the compiler/runtime
system should be able to perform constraint propagation along the
call chain, and derive the intermediate deadlines.

a b c

m1

m2

m3

end-to-end
deadline

Figure 16: End-to-end deadlines require computation of intermediate
deadlines along the call chain.

23

Synchronizer distribution: If the synchronizer entities are maintained
as runtime objects, how should their state be distributed? Here
there is a classic compromise between a centralized solution where
consistent updates are easy versus a distributed solution that po-
tentially reduces bottlenecks and increases fault tolerance, but by
increasing the cost of maintaining consistency.

Our implementation idea seems practical for soft real-time systems only:
we provide no procedure, whether automatic or manual, for establish-
ing the guarantees of satisfaction of time constraints as required by hard
real-time systems, and for the unrestricted type of real-time and syn-
chronization constraints that we permit in our language. Additionally,
a full verification of the implemented system is rarely practical. To
make schedulability analysis practical, one often restricts the types of
constraints to periodic constraints. Similar restrictions can be made to
RT-Synchronizers−. With simple dependencies between periodic tasks
generalized rate-monotonic analysis can be utilized [32].

unprocessed msgs

Scheduler ActorsSynchronizer
objects dispatch

 events

deadlines
release times

enable/disable info

new messages

msg. dispatch

Figure 17: Implementation architecture with constraint directed
scheduling.

Constraint directed scheduling is an implementation technique that dy-
namically uses the information of the fired constraints in the synchro-
nizers to assign deadlines and release times to messages (see Figure 17).
Synchronizer objects are thus maintained at run time as data objects,
whose state can be inspected by the scheduler.

Time-based scheduling such as Earliest-Deadline-First (EDF) can then
be used to dispatch messages based on their deadlines. We propose to
use EDF-scheduling because it is dynamic and optimal: if a feasible
schedule exists EDF will produce one. Obviously, EDF does not in itself

24

guarantee that a feasible schedule exists and constraint violations may
therefore occur. An advantage of our strategy is that it does more than
simply monitor the time constraints; it constructively applies information
from the synchronizers to its scheduling decisions.

We propose to let the compiler compute a conservative version of the call
graph annotated with worst case execution time and message propaga-
tion delays, and include a copy of it at runtime [21]. The runtime system
then has the information necessary to propagate constraints automati-
cally when this cannot be done statically by the compiler. Moreover, we
expect that in many cases the compiler would be able to compile away
synchronizers entirely. It can generate code (similar to remote-procedure-
call stubs) which can be linked with the objects. This code implements
the time constraints by manipulating timers, setting priorities and/or
instructing the scheduler about method call deadlines, etc.

It is interesting to note that the operational semantics can assist in the
implementation of a constraint directed scheduling system. An oper-
ational semantics can often be constructed such that it constitutes an
abstract algorithm for the language implementation. However, because
our semantics abstracts away any notion of resources and execution time,
in our case, this algorithm can only be partial. In particular, it does not
solve the constraint propagation problem mentioned earlier.

The following example demonstrates two potential benefits of the seman-
tics. First, it shows how the semantics manipulates the synchronizer data
structure by adding and removing constraints, and second it indicates
how release times and deadlines for messages can be deduced. Recall the
boiler example in Section 3.1. We show how the runtime system may
execute that specification. We maintain two important data structures,
the set of fired demands, and the pool of unprocessed messages. We
reuse the notation for demands from the semantics: 〈| ξ∼ | χ |〉 where
ξ∼ stands for the static description of a constraint, and χ is the multi-set
of instantiated demands. A message is written as o.m[R,D] where o is
the target object, m the method to be invoked, and R and D respectively
the release time and deadline of the message. In the following, we mea-
sure time relative to a global clock t, and not using individual timers as
was convenient in the semantics. Each row in Figure 18 shows the global
time at which a given event (i.e., message invocation) occurs, the result-
ing synchronizer state, and the set of unprocessed messages (including
those produced by the event).

25

t Event Synchronizer State Message Pool

0 (initial)

〈| c.loop⇒ c.loop ≺ 20 + ε | ∅ |〉
〈| c.loop⇒ c.loop � 20− ε | ∅ |〉
〈| c.loop⇒ c.reading ≺ 10 | ∅ |〉
〈| c.reading⇒ v.move ≺ 5 | ∅ |〉

c.loop[0,∞]

. .

1 c.loop

〈| c.loop⇒ c.loop ≺ 20 + ε | c.loop ≺ 1 + 20 + ε |〉
〈| c.loop⇒ c.loop � 20− ε | c.loop � 1 + 20− ε |〉
〈| c.loop⇒ c.reading ≺ 10 | c.reading ≺ 1 + 10 |〉
〈| c.reading⇒ v.move ≺ 5 | ∅ |〉

c.loop[21− ε, 21 + ε]
s.read[0, 6]‡

. .

4 s.read

〈| c.loop⇒ c.loop ≺ 20 + ε | c.loop ≺ 1 + 20 + ε |〉
〈| c.loop⇒ c.loop � 20− ε | c.loop � 1 + 20− ε |〉
〈| c.loop⇒ c.reading ≺ 10 | c.reading ≺ 1 + 10 |〉
〈| c.reading⇒ v.move ≺ 5 | ∅ |〉

c.loop[21− ε, 21 + ε]
c.reading[0, 11]

. .

9 c.reading

〈| c.loop⇒ c.loop ≺ 20 + ε | c.loop ≺ 1 + 20 + ε |〉
〈| c.loop⇒ c.loop � 20− ε | c.loop � 1 + 20− ε |〉
〈| c.loop⇒ c.reading ≺ 10 | ∅ |〉
〈| c.reading⇒ v.move ≺ 5 | v.move ≺ 9 + 5 |〉

c.loop[21− ε, 21 + ε]
c.move[0, 14]

. .

13v.move

〈| c.loop⇒ c.loop ≺ 20 + ε | c.loop ≺ 1 + 20 + ε |〉
〈| c.loop⇒ c.loop � 20− ε | c.loop � 1 + 20− ε |〉
〈| c.loop⇒ c.reading ≺ 10 | ∅ |〉
〈| c.reading⇒ v.move ≺ 5 | ∅ |〉

c.loop[21− ε, 21 + ε]

. .

21c.loop

〈| c.loop⇒ c.loop ≺ 20 + ε | c.loop ≺ 21 + 20 + ε |〉
〈| c.loop⇒ c.loop � 20− ε | c.loop � 21 + 20− ε |〉
〈| c.loop⇒ c.reading ≺ 10 | c.reading ≺ 21 + 10 |〉
〈| c.reading⇒ v.move ≺ 5 | ∅ |〉

c.loop[41− ε, 41 + ε]
s.read[0, 26]

. .

Figure 18: Sample execution of the boiler specification.

26

At time 0, the system is shown in the initial state in which the message
pool contains an initialization message (controller.loop) and in which no
synchronizer demands have been fired. Suppose the scheduler invokes
the controller.loop message at time 1. This invocation matches three
constraints and consequently causes the synchronizer to issue three new
demands. The two first constitute the periodic constraint on a future
loop message and the last one determines the deadline on the sensor
reading. During processing of the loop message the controller sends out
two new messages, the loop message to itself, and a read request to the
pressure sensor.

The new loop message matches two demands, and according to the se-
mantics these are applied conjunctively. The runtime system can there-
fore deduce the release time and the deadline (an ε interval around time
21) for the loop message from the demands. Deducing a deadline for
sensor.read constitutes a more difficult case (labeled with a ‡ symbol in
Figure 18). There is no immediate matching demand on which to base
the deadline. But it can be noted that there is a demand for which
no matching message exists in the message pool. It is therefore likely
that invocation of the unmatched sensor.read message will cause send-
ing of the demanded message (as it indeed turns out to be the case in
this example). Therefore the sensor.read message should be assigned a
deadline before the demanded deadline (at time 11). The specific choice
of deadline is in general a heuristic function of slack time and method
computation time. Here time 6 is chosen.

The approach of assigning unmatched messages deadlines based on the
most urgent unmatched demand will generally constrain the system un-
necessarily, but selecting precisely the right message to constrain is gen-
erally impossible without extra information about potential causal rela-
tions between messages. This information is exactly what needs to be
generated by the compiler. Less ideally, the missing constraints could
be resolved explicitly by the programmer by providing additional syn-
chronizers. In a less expressive real-time programming languages where
end-to-end constraints cannot be expressed, the programmer would al-
ways be forced to do this.

Resuming the example at time 4 where sensor.read is invoked, the sen-
sor responds with a controller.reading. Since this message matches a
demand, it inherits the deadline from that (time 11). The result of in-
voking the reading message (at time 9) is the firing of a new demand on

27

the valve movement and the sending of a valve.move message. Again,
the runtime system is able to deduce the deadline on the move message
from the move demand. Finally, at time 21, the loop message is invoked.
This satisfies the remaining two demands, but at the same fires two new
demands, which starts the next period.

6 Related Work

Real-time CORBA (Common Object Request Broker Architecture) [16]
is a highly visible research effort where practitioners are shifting towards
component-based real-time systems. An object request broker can be
viewed as middleware facilitating transparent client-server communica-
tion in a heterogeneous distributed system. It also contains other com-
munication services to facilitate building distributed applications. How-
ever, according to [27], current ORBs are ill-suited for real-time systems
for at least four reasons. They lack interfaces for specifying quality of
service, quality of service enforcement, real-time programming facilities,
and performance optimizations.

Current proposals for real-time CORBA [27, 10, 11, 17] use a quality
of service metaphor for specifying real-time constraints. Typically, the
interface definition language is extended with QoS-datatypes. In TAO
ORB [27], these parameters, which are necessary for guaranteeing schedu-
lability according to rate monotonic scheduling, include worst case exe-
cution time, period, and importance. In NRad/URI’s proposal [10] for a
dynamic CORBA, time constraints are specified in a structure contain-
ing importance, deadline and period, and the constraints specify time
bounds on a client’s method invocations on a server. The proposed run-
time system uses this information to compute dynamic scheduling and
queuing priorities. The Realize proposal [17] associates deadline, relia-
bility, and importance attributes to application tasks, where a task is
defined as a sequence of method invocations between an external input
and the generation of an external result. That is, deadlines in Realize
are true end-to-end deadlines.

We see a clear trend in specifying real-time requirements through inter-
face definitions and letting middleware enforce them. Clients and servers
are largely unaware of the imposed real-time requirements. However, we
think that these approaches—although an improvement—are imperfect:

28

• The quality of service attributes seem to be derived from what cur-
rent run-time systems can manage rather than forming a coherent
set. We have opted for a clean language instead of a more or less
arbitrary collection of attributes.

• The types of constraints that can be specified are restrictive, e.g.,
only periods or deadlines between request and reply events. In
addition, the constraints are static; once assigned they cannot be
modified to respond to dynamic changes in the system’s state of
affairs. We allow for a fairly general set of constraints to be speci-
fied.

• Synchronization constraints are not considered. In our proposal,
synchronization constraints are specified using the same mechanism
as time constraints.

The concept of separating functional behavior and interaction policies
for Actors was first proposed by Frølund and Agha in [13] and a detailed
description, operational semantics and implementation can be found in
[12]. That work only considered constraints on the order of operations.
Our work is a continuation of this line of research where we have extended
it to apply to real-time systems and provided a formal treatment of the
extended model. However, to what extent real-time and synchronization
constraints can always be cleanly separated from functionality remains
an open issue, and one which we think can be best resolved through
larger case studies.

Another approach which permits separate specification of real-time and
synchronization constraints for an object-oriented language is the com-
position filter model [6, 8]. Real-time input and output filters declared in
an extended interface enable the specification of time bounds on method
executions. Among the differences between composition filters and RT-
Synchronizers− is that RT-Synchronizers− takes a global view of a collec-
tion of objects whereas the composition filter model takes a single object
view. No formal treatment of composition filters appears to be available
in the literature.

The Real-time Object-Oriented Modeling method (ROOM) [31], which
has many notions in common with the Actor model, has recently been
extended with notions for specifying real-time properties [25]: message se-
quence charts with annotated timing information can now be used to ex-
press activation periods of methods or end-to-end deadlines on sequences

29

of message invocations. With these two kinds of constraints and a few
design guidelines, the authors show how scheduling theory can be applied
to ROOM-models.

Our approach to defining the semantics is inspired by recent research
in formal specification languages for real-time systems, and the use of
timed transition systems is borrowed from these languages. These lan-
guages often take the form of extended automata (Timed automata [7],
Timed Graphs [7, 20]), or process algebras such as Timed CSP [30].
A different approach is to include a model of the underlying execution
resources. This approach is taken in [26] and [33]. The resulting seman-
tics includes an abstract model of the execution environment (number of
CPU’s, scheduler, execution time of assignments etc.). The process alge-
bra Communicating Shared Resources (CSR) has been designed with the
explicit purpose of modeling resources [14, 15]. A process always runs
on some, possibly shared, resource. A set of processes can be mapped
to different sets of resources, hence describing different implementations.
Thus, these approaches model relatively concrete systems, rather than
being specifications for a set of possible systems, as was our goal.

A recent implementation result is [19] where certain aspects of RT-
Synchronizers− are implemented in their DART framework where con-
straints are used to dynamically instruct the scheduler about delays and
deadlines of messages. However the paper gives no systematic (auto-
matic) translation of constraints to scheduling information. We expect
that our semantics can help in filling up this gap.

7 Discussion

Developers of modern real-time systems are required to construct increas-
ingly large and complex systems, preferably at no extra cost. To satisfy
this requirement, it is essential that developers can build real-time sys-
tems from existing components, and that newly developed components
can be reused in several applications. We argued that in order to facilitate
reuse of real-time objects, the real-time and synchronization constraints
governing the object’s interaction should be specified separately from
the objects themselves. However, current development methods do not
adequately support such separation.

We formulated our ideas in the context of Actors, and an associated

30

specification language, RT-Synchronizers−. Combined, they enable sep-
arate and modular specification of real-time systems: computing objects
are glued together by synchronizer entities that express real-time and
synchronization constraints. However, we believe that these ideas are
applicable beyond these specific languages.

Our model is explained both conceptually and formally. Through a series
of examples we indicated how separate specification is possible. Our
operational semantics defines exactly what constraints are and what their
effect on a given set of objects should be.

Our work on semantic modeling has clarified our understanding of the
behavior of our model, and provides a succinct and detailed definition
of synchronizers and constrained actor programs. In particular, we have
gained new insight in three areas, which made the effort worthwhile:

• We defined the semantics in a modular fashion by composing a
transition system for the untimed object-model with a transition
system which interprets the time constraints. This composition ex-
plicitly points out which, object transitions are affected and how:
reception of messages and time-progress may only occur when per-
mitted by the constraints. Other object transitions are only indi-
rectly affected.

The modularity opens the possibility of plugging in a different con-
straint specification language, i.e., the −→σ transition could be
replaced with the semantics for the new language. The composi-
tion will work when affected transitions remain as above, and when
the semantics of the new language can be given as a timed tran-
sition system. Thus, our constraining concept is captured by the
composition.

• Our semantics helped uncover some of the semantic subtleties of
our constraint language, such as what happens when patterns and
constraints overlap. For example, the same message may both fire
a new demand as well as satisfy an existing one. Moreover, we de-
cided that overlapping constraints should be interpreted conjunc-
tively, i.e., both must be satisfied. Finally, we decided that adding
more synchronizers should further restrict the behavior of objects;
i.e., synchronizers must be satisfied conjunctively.

It should also be noted that the rules defining the semantics of
individual constraints appear complicated. This should give food

31

for thought when revising the language or the semantics.

• The last major benefit is that our semantics suggests an implemen-
tation strategy suitable for soft real-time systems. The synchro-
nizer entities can be maintained at runtime and can be used to
extract information about release times and deadlines of messages.
The semantics gives an abstract interpretation of the synchronizer
objects and specifies how demands should be added or removed.

Building real-time components and architectures for integrating them
is an area of active research. We believe that with additional research,
component-based development will allow more complex real-time systems
to be developed on schedule. However, additional work is needed, both
on the models used for separate specification and on the middleware
services necessary to implement them.

Acknowledgments

This work was made possible in part by support from the US National
Science Foundation under contracts NSF CCR-9523253 and NSF CCR-
9619522; by support from the US Air Force Office of Scientific Research,
under contract AF DC 5-36128. The authors would like to thank other
members of the Open Systems Laboratory for their comments and critical
insights into the work related in this paper. In particular, we would
like to thank Shangping Ren for her contribution to the definition of
RTSynchronizers, and to Nadeem Jamali for his comments on a draft of
this paper. A part of this research was done while the first author was
a visitor to the University of Illinois Open Systems Laboratory under
a fellowship from The Danish Technical Research Foundation and the
Danish Research Academy.

32

References

[1] Gul Agha. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Los Alamitos, California, 1986. ISBN
0-262-01092-5.

[2] Gul Agha. Concurrent Object-Oriented Programming. Communi-
cations of the ACM, 33(9):125–141, September 1990.

[3] Gul Agha. Modeling Concurrent Systems: Actors, Nets, and the
Problem of Abstraction and Composition. In 17th International
Conference on Application and Theory of Petri Nets, Osaka, Japan,
June 1996.

[4] Gul Agha, Svend Frølund, Rejendra Panwar, and Daniel Sturman.
A Linguistic Framework for Dynamic Composition of Dependability
Protocols. In Proceedings of the Conference on Dependable Comput-
ing for Critical Applications, Sicily, IFIP 1992, 1992.

[5] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott.
A Foundation for Actor Computation. Journal of Functional Pro-
gramming, 7:1–72, 1997.

[6] Mehmet Akşit, Jan Bosch, William van der Sterren, and Lodewijk
Bergmans. Real-Time Specification Inheritance Anomalies and
Real-Time Filters. In Proceedings ECOOP, pages 386–407, 1994.

[7] Rajeev Alur, Costas Courcoubetis, and David Dill. Model–checking
for real–time systems. In Proceedings of the Fifth IEEE Symposium
on Logic in Computer Science, pages 414–425, 1990.

[8] Lodewijk Bergmans and Mehmet Akşit. Composing Synchronization
and Real-Time Constraints. In Proceedings of The Object Oriented
Real-Time Systems (OORTS) Workshop, October 1995. San Anto-
nio, TX, USA. In conjunction with 7th IEEE Symposium on Parallel
and Distributed Computing Systems.

[9] Philip A. Bernstein. Middleware — A Model for Distributed System
Services. Communications of the ACM, 39(2):86–98, February 1996.

[10] Gregory Cooper, Lisa Cingiser DiPippo, Levon Esibov, Roman Gi-
nis, Russel Johnston, Peter Kortman, Peter Krupp, John Mauer,

33

Michael Squadrito, Bhavani Thuraisingham, Steven Wohlever, and
Victor Fay Wolfe. Real-Time CORBA Development at MITRE,
NRaD, Tri-Pacific and URI. In Proceedings of IEEE Workshop on
Middleware for Distributed Real-time Systems and Services, pages
69–74. IEEE, December 1997. San Francisco, CA, USA.

[11] W. Feng, U. Syyid, and J. W.-S. Liu. Providing for an Open, Real-
Time CORBA. In Proceedings of IEEE Workshop on Middleware
for Distributed Real-time Systems and Services, pages 75–80. IEEE,
December 1997. San Francisco, CA, USA.

[12] Svend Frølund. Coordinating Distributed Objects: An Actor-Based
Approach to Synchronization. MIT Press, 1996.

[13] Svend Frølund and Gul Agha. A Language Framework for Multi-
Object Coordination. In O. Nierstrasz, editor, Proceedings of the
European Conference on Object Oriented Programming (ECOOP)
’93, LNCS 707, pages 346–360, Kaiserslautern, Germany, July 1993.
Springer-Verlag.

[14] Richard Gerber and Insup Lee. Communicating Shared Resources:
A Model for Distributed Real-Time Systems. In Proc. Real-Time
Systems Symposium, pages 68–78, Santa Monica, CA, USA, 1989.
IEEE.

[15] Richard Gerber and Insup Lee. A Layered Approach to Automat-
ing the Verification of Real-Time Systems. IEEE Transactions on
Software Engineering, 18(9):768–784, September 1992.

[16] Object Management Group. Realtime CORBA - A White Paper -
Issue 1.0. Technical Report ORBOS/96-09-01, Object Management
Group, December 1996.

[17] V. Kalogeraki, P.M. Melliar-Smith, and L.E. Moser. Soft Real-Time
Resource Management in CORBA Distributed Systems. In Proceed-
ings of IEEE Workshop on Middleware for Distributed Real-time
Systems and Services, pages 46–51. IEEE, December 1997. San
Francisco, CA, USA.

[18] Don Kiely. Are Components the Future of Software. IEEE Com-
puter, 32(2):10–11, February 1998.

34

[19] Brian Kirk, Lebero Nigro, and Francesco Pupo. Using Real Time
Constraints for Modularisation. In Joint Modular Language Confer-
ence, March 1997. Linz.

[20] Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Compiling Real-
Time Specifications into Extended Automata. IEEE Transactions
on Software Engineering, 18(9):805–816, September 1992.

[21] Shangping Ren. An Actor-Based Framework for Real-Time Coor-
dination. PhD thesis, Department Computer Science. University of
Illinois at Urbana-Champaign, 1997. PhD. Thesis.

[22] Shangping Ren and Gul Agha. RT-Synchronizer: Language Sup-
port for Real-Time Specifications in Distributed Systems. ACM
Sigplan Notices, 30(11), November 1995. Also in Proceedings of the
ACM Sigplan 1995 Workshop on Languages, Compilers, and Tools
for Real-Time Systems.

[23] Shangping Ren and Gul Agha. A Modular Approach for Program-
ming Embedded System. In Frits Vaandrager and Grzegorz Rozen-
berg, editors, Lectures on Embedded Systems. Lecture Notes in Com-
puter Science, LNCS 1494, pages 170–207. Springer-Verlag, 1998.

[24] Shangping Ren, Gul Agha, and Masahiko Saito. A Modular Ap-
proach for Programming Distributed Real-Time Systems. Journal
of Parallel and Distributed Computing, 36(1):4–42, 1996.

[25] M. Saksena, P. Freedman, and P. Rodziewicz. Guidelines for Au-
tomated Implementation of Executable Object Oriented Models for
Real-Time Embedded Control Software. In 18th IEEE Real-Time
Systems Symposium, pages 240–251. IEEE, December 1997.

[26] Ichiro Satoh and Mario Tokoro. Semantics for a Real-Time Object-
Oriented Programming Language. In Int. Conf. on Computer Lan-
guages, pages 159–170, Toulouse, France, 1994. IEEE.

[27] Douglas C. Schmidt, Rajeev Bector, and David L. Levine. An ORB
Endsystem Architecture for Statically Scheduled Real-time Appli-
cations. In Proceedings of IEEE Workshop on Middleware for Dis-
tributed Real-time Systems and Services, pages 52–60. IEEE, De-
cember 1997. San Francisco, CA, USA.

35

[28] Douglas C. Schmidt and Mohamed E. Fayad. Lessons Learned Build-
ing Reusable OO Frameworks for Distributed Software. Communi-
cations of the ACM, 40(10):85–87, October 1997.

[29] Douglas C. Schmidt and Mohamed E. Fayad. Object-Oriented Ap-
plication Frameworks. Communications of the ACM, 40(10):32–38,
October 1997.

[30] Steve Schneider. An Operational Semantics for Timed CSP. Infor-
mation and Computation, 116:193–213, 1995.

[31] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-time Object-
oriented Modeling. Wiley Professional Computing. John Wiley &
Sons, Inc., New York, 1994. ISBN 0-471-59917-4.

[32] Lui Sha, Ragunathan Rajkumar, and Shirish S. Sathaye. General-
ized Rate-Monotonic Scheduling Theory: A Framework for Devel-
oping Real-Time Systems. Proceedings of the IEEE, 82(1):68–82,
January 1994.

[33] P. Zhou and J. Hooman. A Proof Theory for Asynchronously Com-
municating Real-Time Systems. In Proc. Real-Time Systems Sym-
posium, pages 177–186, Phoenix, AZ, USA, 1992. IEEE.

36

Recent BRICS Report Series Publications

RS-98-44 Brian Nielsen and Gul Agha.Towards Re-usable Real-Time Ob-
jects. December 1998. 36 pp. To appear inThe Annals of Soft-
ware Engineering, IEEE, 7, 1999.

RS-98-43 Peter D. Mosses.CASL: A Guided Tour of its Design. December
1998. 31 pp. To appear in Fiadeiro, editor,Recent Trends in
Algebraic Development Techniques: 13th Workshop, WADT ’98
Selected Papers, LNCS, 1999.

RS-98-42 Peter D. Mosses.Semantics, Modularity, and Rewriting Logic.
December 1998. 20 pp. Appears in Kirchner and Kirchner,
editors, International Workshop on Rewriting Logic and its Ap-
plications, WRLA ’98 Proceedings, ENTCS 15, 1998.

RS-98-41 Ulrich Kohlenbach.The Computational Strength of Extensions
of Weak K̈onig’s Lemma. December 1998. 23 pp.

RS-98-40 Henrik Reif Andersen, Colin Stirling, and Glynn Winskel. A
Compositional Proof System for the Modalµ-Calculus. Decem-
ber 1998. 29 pp.

RS-98-39 Daniel Fridlender. An Interpretation of the Fan Theorem in
Type Theory. December 1998. 15 pp. To appear inInternational
Workshop on Types for Proofs and Programs 1998, TYPES ’98
Selected Papers, LNCS, 1999.

RS-98-38 Daniel Fridlender and Mia Indrika. An n-ary zipWith in
Haskell. December 1998. 12 pp.

RS-98-37 Ivan B. Damg̊ard, Joe Kilian, and Louis Salvail. On the
(Im)possibility of Basing Oblivious Transfer and Bit Commit-
ment on Weakened Security Assumptions. December 1998.
22 pp. To appear inAdvances in Cryptology: International Con-
ference on the Theory and Application of Cryptographic Tech-
niques, EUROCRYPT ’99 Proceedings, LNCS, 1999.

RS-98-36 Ronald Cramer, Ivan B. Damg̊ard, Stefan Dziembowski, Mar-
tin Hirt, and Tal Rabin. Efficient Multiparty Computations
with Dishonest Minority. December 1998. 19 pp. To appear
in Advances in Cryptology: International Conference on the
Theory and Application of Cryptographic Techniques, EURO-
CRYPT ’99 Proceedings, LNCS, 1999.

