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Semantics, Modularity, and Rewriting Logic

Peter D. Mosses∗

BRICS,†Dept. of Computer Science, University of Aarhus
Ny Munkegade bldg. 540, DK-8000 Aarhus C, Denmark

Abstract

A complete formal semantic description of a practical programming
language (such as Java) is likely to be a lengthy document, regardless
of which semantic framework is being used. Good modularity of the
description is important to the person(s) developing it, to facilitate
reuse, change, and extension. Unfortunately, the conventional versions
of the major semantic frameworks have rather poor modularity.

In this paper, we first recall some approaches that improve the
modularity of denotational semantics, namely action semantics, mod-
ular monadic semantics, and a hybrid framework that combines these:
modular monadic action semantics. We then address the issue of mod-
ularity in operational semantics, which appears to have received com-
paratively little attention so far, and report on some preliminary in-
vestigations of how one might achieve the same kind of modularity
in structural operational semantics as the use of monad transformers
can provide in denotational semantics—this is the main technical con-
tribution of the paper. Finally, we briefly consider the representation
of structural operational semantics in rewriting logic, and speculate
on the possibility of using it to interpret programs in the described
language. Providing powerful meta-tools for such semantics-based in-
terpretation is an interesting potential application of rewriting logic;
good modularity of the semantic descriptions may be crucial for the
practicality of using the tools.

Much of the paper consists of (very) simple examples of semantic
descriptions in the various frameworks, illustrating the degree of re-
formulation needed when extending the described language—a strong
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indicator of modularity. Throughout, it is assumed that the reader has
some familiarity with the concepts and notation of denotational and
structural operational semantics. Familiarity with the basic notions
of monads and monad transformers is not a prerequisite.

1 Modularity in Denotational Semantics

It is well-known [5, 12, 13, 22] that the cause of poor modularity in conven-
tional denotational semantic descriptions is the unrestricted use of (typed)
λ-notation to specify semantic entities. When the described language is ex-
tended with unanticipated new constructs, the domains of denotations may
need to be changed, and then the description of the old constructs may have
to be completely reformulated to adapt it to the new domains. A small-scale
illustration of the poor extensibility in denotational semantics is provided in
Appendix A.

Action semantics [15, 16, 18, 23] improves the modularity of denota-
tional semantics by taking denotations to be so-called actions, which are
expressed using a fixed action notation consisting of various primitives and
combinators—a few of them are listed in Appendix B. The primary inter-
pretation of action notation is, in contrast to that of λ-notation, operational,
and it is defined [15] using structural operational semantics (and a derived
testing equivalence). Action notation provides direct support for specifying
control flow, data flow, scopes of bindings, side-effects, procedural abstrac-
tion, and (asynchronous) communication between concurrent processes. The
high degree of extensibility obtained in action semantics is illustrated in Ap-
pendix C; larger-scale illustrations have been given elsewhere [15, 17].

Also the use of monads in denotational semantic descriptions can improve
their modularity [12]. Briefly, a monad distinguishes between values and
computations, and provides a (polymorphic) operator, here written as infix
>>=, for composing computations, as well as one, written return, that turns
a value into a computation which simply computes that value. The use of this
composition operator is independent of how computations are represented—
in marked contrast to ordinary function composition.

Complex monads can generally be built systematically by composing
a series of monad transformers, each of which may provide various oper-
ators (apart from composition and returning a value). A systematic ap-
proach to lifting operators through monad transformers has been developed
in the framework called modular monadic semantics [5]; its implementation
in the higher-order functional programming language Gofer provides modu-
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lar semantics-based interpreters. The high degree of extensibility obtained
in modular monadic semantics is illustrated in Appendix D. This framework
appears to be simpler to use than other approaches to lifting monad trans-
formers [3, 20], even though (or perhaps because?) the latter are based more
directly on sophisticated category-theoretical foundations.

The framework of modular monadic action semantics [21, 22] combines
the two approaches of modular monadic semantics and action semantics
by using the former to give a modular denotational definition of action
notation—replacing its original structural operational semantics, which has
rather poor modularity (see the next section). This approach facilitates the
extension of action notation to support constructs that it currently lacks, such
as first-class continuations. (A disciplined—but not explicitly monadic—use
of action combinators in denotational descriptions has also been proposed
by the present author [14].) However, the part of action notation concerned
with communication and concurrency has been omitted, and may be dif-
ficult to incorporate: a proper semantic treatment would seem to require
non-(ω-)continuous functions on power domains to model fairness. Another
drawback is that the operational consequences of the monadic semantics for
action notation may be excessively difficult to grasp for those not already
well-versed in the usual techniques for encoding computations as higher-order
functions.

Modular monadic action semantics was motivated by the lack of modular-
ity of the original structural operational semantics of action notation. Is that
description is inherently non-modular? or could it perhaps be reformulated
so as to have an acceptable degree of modularity and extensibility? Could
one achieve good modularity, comparable to that obtained by the use of ac-
tion notation or monads in denotational semantics, generally in structural
operational semantics?

2 Modularity in Structural Operational

Semantics

In his Aarhus lecture notes [19], where he first proposed structural opera-
tional semantics (SOS) as a general framework for describing programming
languages, Gordon Plotkin wrote:

As regards modularity we just hope that if we get the other things
in a reasonable shape, the current ideas for imposing modularity
on specifications will prove useful.
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Unfortunately, that hope appears to have been in vain: conventional SOS
descriptions have just as poor modularity as conventional denotational de-
scriptions, since the semantic components of the transition relation (environ-
ments, stores, etc.) are made explicit in every rule, and a complete reformu-
lation is needed when adding further components. A simple illustration of
the problem is provided in Appendix E.

The problem of poor modularity seems not to arise when using SOS to
give descriptions of process algebras—the huge success of this application of
SOS may explain why modularity has not been as much as concern here as
in denotational semantics. Incidentally, so-called natural semantics [4] seems
to suffer just as much from poor modularity as SOS does.

In denotational semantics, good modularity has been obtained simply by
adopting a more disciplined notation, avoiding any reference to irrelevant
semantic components when defining the semantics of each construct. The
author has recently tried to do something similar for structural operational
semantics; the approach is illustrated below.

Its main features are as follows:

• Whereas the values computed by program constructs are added directly
to the abstract syntax of the language being described (and regarded as
terminal configurations, following Plotkin [19]), all the other semantic
arguments of the transition relation (e.g., environments, current and
subsequent stores) are hidden in abstract transitions.

By this means, the transition relation is always ternary, taking as ar-
guments: (i) the current syntax; (ii) the semantic “action” of the tran-
sition being made; and (iii) the subsequent syntax or computed value.

A special case of the “actions” here could be simply input and output
labels on transitions, as needed when using SOS for process algebra;
but in general, the algebra of actions includes sequencing:

• Sequencing of semantic actions a1 ; a2 is associative, and silent actions
τ are units.

Sequencing of actions is usually partial, since a1 may be followed by
a2 only if the information left by a1 is consistent with that from which
a2 starts. Thus a; τ = a only when a; τ is defined, and similarly for
τ ; a = a. N.B. τ is regarded as a variable, not a constant: there is a
whole family of silent actions (one for each semantic state).

The introduction of fixed notation for sequencing actions corresponds
roughly to the introduction of monads in denotational semantics; the
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silent actions distinguish transitions that are inherently unobservable,
not affecting the semantic components of the current state but allowing
gradual propagation of the flow of control.

• The transitive and reflexive-transitive closures of the transition relation
are always available.

These closures correspond closely to the notion of an entire computa-
tion in a monad; they are easily definable in terms of single transitions.
Plotkin used them for letting a (terminating) sequence of transitions
for expression evaluation give rise to a single transition for an enclosing
statement, and for giving particularly simple descriptions of iterative
constructs.

Natural semantics [4] may be obtained when the only relation for which
rules are given is the reflexive-transitive closure (the second “syntactic”
argument of which is always a computed value). By using different
notation for the single transition relation and its closure, it should be
possible to integrate natural and structural operational semantics (see
also [1]).

Adoption of the above discipline for SOS appears to provide the desired
degree of modularity—at least for the kind of examples given in Plotkin’s
notes. It remains to be seen whether this approach can be applied to provide a
modular operational semantics of the full action notation, and whether it can
also be used to describe further constructs, such as first-class continuations.
It should also be compared to other approaches [2, 8] which obtain some
degree of modularity in a rather different way to that explored here, using
so-called evaluation contexts.

Let us now illustrate the extensibility obtained, taking the same example
language extension as for the other approaches considered above.

2.1 Initial Description

The abstract syntax of the initial language is given in Appendix A.1.1. By
adding computed values to each syntactic category we obtain the configura-
tions, exactly as in Appendix E.1.2.
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For our transition relations, let us take, for each configuration set X
whose elements evaluate to semantic values in V ⊆ X, a ternary (single-
step) transition relation involving semantic action arguments from AX:

→ : X×AX ×X
and its reflexive-transitive closure:

→∗ : X× AX ×V
the latter being specified in terms of the former by:

X
a→ X ′ X ′

a′

→∗ v a; a ′ = a ′′

X
a′′

→∗ v v
τ

→∗ v

Our example language includes declarations (of constants), so we shall
have to include the current environment somehow. For expressions, the com-
puted values do not include environments, and the discipline of our restriction
to ternary transition relations forces us to take the current environment as
a component of the second argument of the relation; here, it turns out to be
the only component needed.

For declarations, the computed values are themselves environments—but
just small ones, reflecting the bindings produced by the declarations, and not
including the current environment; so again we let the current environment
be the only component of the second argument of the transition relation.

Thus we take sets AExp = ADcl = Env of semantic actions. We have now
to define sequencing on them. The appropriate definition appears to be to
let a; a ′ = ρ when a = a ′ = ρ, otherwise undefined. In this simple example,
all the actions are essentially silent—changes to the current environment are
not directly observable.

We shall need two further bits of notation, associated with environments
and not depending on the language being defined. The first is an extra con-
figuration lookup(I ) for requesting the value currently bound to a particular
identifier; its only transition is specified by:

ρ(I ) = v

lookup(I )
ρ→ v

The second overlays an environment ρ′ on top of the current environment
component ρ of an action a, which is here simply a itself:

overlay(a, ρ′) = a[ρ′],
using the same notation for combining environments as in the other ap-
proaches illustrated in the appendices.

This completes our preparations—now for specifying the the transition
rules. Note that “side-conditions” on rules are here written as premisses, for
notational convenience, as in Appendix E.
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E1
a→ E ′1

E1 O E2
a→ E ′1 O E2

E2
a→ E ′2

e1 O E2
a→ e1 O E ′2

e1 O e2 = e

e1 O e2
τ→ e

lookup(I )
τ→ e

I
τ→ e

D
a→ D ′

let D in E
a→ let D ′ in E

overlay(a, ρ) = a ′ E
a′→ E ′

let ρ in E
a→ let ρ in E ′

let ρ′ in e
τ→ e

E
a→ E ′

const I = E
a→ const I = E ′ const I = e

τ→ (I 7→ e)

D1
a→ D ′1

D1 and D2
a→ D ′1 and D2

D2
a→ D ′2

ρ1 and D2
a→ ρ1 and D ′2

dom(ρ1 ) ∩ dom(ρ2 ) = ∅
ρ1 and ρ2

τ→ ρ1 ∪ ρ2

2.2 A Simple Extension

The abstract syntax of the extended language is given in Appendix A.2.1.
By adding computed values to each syntactic category we obtain the config-
urations, exactly as in Appendix E.2.2.

To cater for variable declarations and assignment commands, we need to
add components to our semantic actions for holding both the current store
and the subsequent store. For simplicity of notation, let us take uniform sets
AExp = ADcl = ACmd = Env×S×S of semantic actions (in fact the second
store component for expressions could just as well be eliminated).

We have now to define sequencing on them. The appropriate definition
is now to let a1 ; a2 = (ρ, σ, σ′′) when a1 = (ρ, σ, σ′) and a2 = (ρ, σ′, σ′′),
otherwise undefined. The silent actions are those of the form (ρ, σ, σ).

We shall need to redefine the two bits of notation associated with envi-
ronments:

ρ(I ) = v

lookup(I )
(ρ,σ,σ)→ v

overlay((ρ, σ, σ′), ρ′) = (ρ[ρ′], σ, σ′)

These changes correspond roughly to the lifting of operators through monad
transformers that is provided in modular monadic semantics.

Finally, we introduce three new configurations, concerned entirely with
stores: new , for allocating a new location; update(l , s), for overwriting the
contents of the store at location l with value s ; and contents(l), for inspecting
the value stored at location l . Their transitions are specified as follows:
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(l 6∈ dom(σ) σ[l 7→ ⊥] = σ′

new
(ρ,σ,σ′)→ l

l ∈ dom(σ) σ[l 7→ s ] = σ′

update(l , s)
(ρ,σ,σ′)→ ()

contents(l)
(ρ,σ,σ′)→ s

σ(l) = s σ = σ′

Now, no changes to the original rules are needed at all—one simply adds
the following new rules:

new
a→ l

var I
a→ (I 7→ l)

lookup(I )
τ→ l

I := E
τ→ l := E

E
a→ E ′

l := E
a→ l := E ′

update(l , s)
a→ ()

l := s
a→ ()

lookup(I )
τ→ l contents(l)

τ→ s

I
τ→ s

C1
a→ C ′1

C1 ; C2
a→ C ′1 ; C2 ();C2

τ→ C2

3 Prototyping Semantics using Rewriting Logic

Since SOS can be represented straightforwardly in rewriting logic [7], one
may in principle use systems such as Maude and ELAN (see the other pa-
pers in this volume for current references) for interpreting programs according
to their specified semantics. Perhaps also Maude’s object-oriented modules
could be exploited to express the intended operational semantics more con-
cisely, following the specification style for concurrent object-oriented systems
illustrated in [6, 9, 10]. But an SOS description of a practical programming
language is likely to be rather large—regardless of its degree of modularity—
and this might provoke problems with the efficiency of the interpretation.

An alternative approach would be to exploit action semantics as an in-
termediate step. The action semantics of a practical programming language
may itself be quite large; but the map that it specifies from programs to
actions is purely functional, and can be implemented efficiently, e.g. by term
rewriting. It remains to interpret actions according to the SOS of action
notation, using the representation of SOS in rewriting logic. The primary
advantage of this two-stage approach is that the SOS of action notation may
be (at least) an order of magnitude smaller than the SOS of the programming
language. The size of the actions would be somewhat larger (by a constant
factor) than the corresponding programs, but at least for prototyping pur-
poses, this expansion of the term to be interpreted should not be a source of
undue inefficiency.

These proposals are currently still quite speculative, and need much
further investigation and experimentation. Potentially, they could lead to
a significant application of rewriting logic, providing useful meta-tools for
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semantics-based interpretation of programs. Comments and suggestions con-
cerning the approach outlined above are especially welcome at this early stage
of the work.

4 Conclusion

We have considered some aspects of the connections between semantics, mod-
ularity, and rewriting logic. We have found that it seems possible to make a
considerable improvement to the modularity of structural operational seman-
tics by insisting on a disciplined use of notation for transitions, making the
transition rules independent of the presence or absence of particular semantic
components of the transition relations. The development of such a modular
form of operational semantics is a contribution to a recently-started project
at SRI International and Stanford University, which aims to exploit rewriting
logic in providing useful meta-tools for logics and programming languages.
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Appendices

For the sake of brevity, some tedious notational details are omitted below.
Moreover, the possibility of program errors is ignored.

A Conventional Denotational Semantics

A.1 Initial Description

A.1.1 Abstract Syntax

(Exp) E ::= N | E1 O E2 | I | let D in E
(Nml) N ::= . . .
(Opr) O ::= + | − | ∗ | = | <
(Dcl) D ::= const I = E | D1 and D2

(Ide) I ::= . . .

A.1.2 Domains

e ∈ EV = N + B (expressible values)
n ∈ N = . . . (natural numbers)
b ∈ B = . . . (Boolean truth-values)
ρ ∈ Env = Ide→ DV (environments)
d ∈ DV = N (denotable values)

A.1.3 Semantic Functions

E : Exp→ (Env→ EV)
N : Nml→ N
O : Opr→ (EV× EV→ EV)
D : Dcl→ (Env→ Env)
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E [[N ]] = λρ.N [[N ]]
E [[E1 O E2 ]] = λρ.O[[O ]](E [[E1 ]]ρ, E [[E2 ]]ρ)
E [[I ]] = λρ.ρ(I )
E [[let D in E ]] = λρ.E [E ]](ρ[D[[D ]]ρ])

D[[const I = E ]] = λρ.(I 7→ E [[E ]]ρ)
D[[D1 and D2 ]] = λρ.D[[D1 ]]ρ ∪ D[[D2 ]]ρ

. . . (definitions of N ,O omitted)

A.2 A Simple Extension

A.2.1 Abstract Syntax

(Dcl) D ::= . . . | var I
(Cmd) C ::= I := E | C1 ; C2

A.2.2 Domains

d ∈ DV = . . .+ Loc (denotable values)
σ ∈ S = Loc→ SV (stores)
s ∈ SV = N (storable values)
l ∈ Loc = N (locations)

A.2.3 Auxiliary Functions

new : S→ Loc× S (allocation)

A.2.4 Semantic Functions

The previous definitions of E ,D are no longer well-formed—the changes that
have to be made in them are underlined below.

E : Exp→ (Env→ (S→ EV))

D: Dcl→ (Env→ (S→ Env× S))

C : Cmd→ (Env→ (S→ S))

13



E [[N ]] = λρ.λσ.N [[N ]]

E [[E1 O E2 ]] = λρ.λσ.O[[O ]](E [[E1 ]]ρσ, E [[E2 ]]ρσ)

E [[I ]] = λρ.λσ.[λe.e, λl .σ(l)](ρ(I ))

E [[let D in E ]] = λρ.λσ.(λ(ρ′, σ′).E [E ]](ρ[ρ′])σ′)(D[[D ]]ρσ)

D[[const I = E ]] = λρ.λσ.((I 7→ E [[E ]]ρσ), σ)

D[[D1 and D2 ]] = λρ.λσ.(λ(ρ1 , σ1 ).(λ(ρ2 , σ2 ).(ρ1 ∪ ρ2 , σ2 ))(D[[D2 ]]ρσ1 ))

(D[[D1 ]]ρσ)

D[[var I ]] = λρ.λσ.(λ(l , σ′).(I 7→ l , σ′))(new(σ))

C[[I := E ]] = λρ.λσ.σ[ρ(I ) 7→ E [[E ]]ρσ]
C[[C1 ; C2 ]] = λρ.λσ.C[[C2 ]]ρ(C[[C1 ]]ρσ)

B Action Notation

Here, the symbols of action notation that are used in Appendix C are merely
listed. Explanations of their intended operational interpretation may be
found in [15, 16] (although the reader may well be able to guess it from
the words used, and from the examples in Appendix C, which are for the
same language constructs as in Appendix A.)

Action combinators: (arguments and results of sort action)
and , then , and then , or , furthermore , hence , . . .

Action primitives: (arguments of sort yielder , results of sort action)
give , bind to , store in , allocate , . . .

Yielders: (arguments of sort yielder)
given , given # , it , the bound to , the stored in , . . .

Data sorts: (subsorts of yielder)
datum, bindable, storable, cell , truth, . . .
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C Action Semantics

C.1 Initial Description

C.1.1 Abstract Syntax

See Appendix A.1.1.

C.1.2 Semantic Entities

includes: Action Notation [15].
introduces: value, number .

value = number | truth.
bindable = number .
datum ≥ value | bindable.

C.1.3 Semantic Functions

includes: Abstract Syntax , Semantic Entities.
introduces: evaluate , value of , result of , elaborate .

evaluate : Exp→ action[giving a value].
value of : Nml→ number .
result of : Opr→ yielder [of a value].
elaborate : Dcl→ action[binding ].

evaluate[[N ]] = give value of N
evaluate[[E1 O E2 ]] = (evaluate E1 and then evaluate E2 )

then give result of O
evaluate[[I ]] = give the value bound to I
evaluate[[let D in E ]] = (furthermore elaborate D) hence evaluate E

elaborate[[const I = E ]] = evaluate E then bind I to the given value
elaborate[[D1 and D2 ]] = elaborate D1 and elaborate D2

. . . (definitions of valueof , resultof omitted)

C.2 A Simple Extension

Only minor changes, underlined below, are needed to the initial description,
to take account of the extension of the language with imperative features.
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C.2.1 Abstract Syntax

See Appendix A.2.1.

C.2.2 Semantic Entities

bindable = number | cell .
storable = number .
datum ≥ value | bindable | storable | cell .

C.2.3 Semantic Functions

introduces: execute .
elaborate : Dcl→ action[binding | storing ]

execute : Cmd→ action[storing ]

evaluate[[I ]] = give the value bound to I
or give the value stored in the cell bound to I

elaborate[[var I ]] = allocate a cell then bind I to it

execute[[I := E ]] = (give the cell bound to I and evaluate E )
then store the given value#2 in the given cell#1

execute[[C1 ; C2 ]] = execute C1 and then execute C2

D Modular Monadic Semantics

D.1 Initial Description

D.1.1 Abstract Syntax

See Appendix A.1.1.

D.1.2 Monad

See Appendix A.1.2 for the domains used below.

return : a → M a
>>= : M a × (a → M b)→ M b

type M a = EnvT Env Id a (i.e., M a = Env → a for any type a)

rdEnv : M Env (returns the current environment)
inEnv : Env→ (M a → M a) (computes in the argument environment)

16



D.1.3 Semantic Functions

E : Exp→ M EV
N : Nml→ N
O : Opr→ (EV× EV→ EV)
D : Dcl→ M Env

E [[N ]] = return(N [[N ]])
E [[E1 O E2 ]] = E [[E1 ]] >>= λe1 . E [[E2 ]] >>= λe2 . return(O[[O ]](e1 , e2 ))
E [[I ]] = rdEnv >>= λρ. return(ρ(I ))
E [[let D in E ]] = rdEnv >>= λρ. D[[D ]] >>= λρ′. inEnv(ρ[ρ′])(E [[E ]])

D[[const I = E ]] = E [[E ]] >>= λe. return(I 7→ e)
D[[D1 and D2 ]] = D[[D1 ]] >>= λρ1 . D[[D2 ]] >>= λρ2 . return(ρ1 ∪ ρ2 )

. . . (definitions of N ,O omitted)

D.2 A Simple Extension

Only minor changes, underlined below, are needed to the initial description,
to take account of the extension of the language with imperative features.

D.2.1 Abstract Syntax

See Appendix A.2.1.

D.2.2 Monad

See Appendix A.2.2 for the domains used below.

type M a = EnvT Env (StateT S Id) a

(i.e., M a = Env → (S→ a × S) for any type a)

alloc : M Loc (allocating storage)
read : Loc→ M SV (updating storage)
write : Loc× SV→ M () (inspecting storage)

D.2.3 Semantic Functions

C: Cmd→ M ()
E [[I ]] = rdEnv >>= λρ. [λe. return(e), λl . read(l)](ρ(I ))

D[[var I ]] = alloc >>= λl . return(I 7→ l)

C[[I := E ]] = rdEnv >>= λρ. E [[E ]] >>= λe. write(ρ(I ), e)
C[[C1 ; C2 ]] = C[[C1 ]] >>= λ(). C[[C2 ]]

17



E Structural Operational Semantics

E.1 Initial Description

E.1.1 Abstract Syntax

See Appendix A.1.1.

E.1.2 Configurations

The following productions extend the abstract syntax so that constructs may
be replaced by their values (which will be terminal configurations for the
corresponding transition relations below):

(Exp) E ::= . . . | e
(Nml) N ::= . . . | n
(Dcl) D ::= . . . | ρ
For brevity and uniformity, let e ∈ EV, n ∈ N, ρ ∈ Env, etc., range over
the domains specified in Appendix A.1.2 (although here, the domains should
really be regarded as ordinary sets). Note that our example language does
not already contain literal constants for all expressible values: truth-values
need to be added.

E.1.3 Transition Relations

` → : Env×Exp×Exp
` → : Env×Dcl×Dcl

E.1.4 Transition Rules

“Side-conditions” on rules are here written as premisses, for notational con-
venience.

ρ ` E1 → E ′1
ρ ` E1 O E2 → E ′1 O E2

ρ ` E2 → E ′2
ρ ` e1 O E2 → e1 O E ′2

e1 O e2 = e

ρ ` e1 O e2 → e

ρ(I ) = e

ρ ` I → e

ρ ` D → D ′

ρ ` let D in E → let D ′ in E

ρ[ρ′] ` E → E ′

ρ ` let ρ′ in E → let ρ′ in E ′

ρ ` let ρ′ in e → e

ρ ` E → E ′

ρ ` const I = E → const I = E ′

ρ ` const I = d → (I 7→ d)

ρ ` D1 → D ′1
ρ ` D1 and D2 → D ′1 and D2

18



ρ ` D2 → D ′2
ρ ` ρ1 and D2 → ρ1 and D ′2

dom(ρ1 ) ∩ dom(ρ2 ) = ∅
ρ ` ρ1 and ρ2 → ρ1 ∪ ρ2

E.2 A Simple Extension

E.2.1 Abstract Syntax

See Appendix A.2.1.

E.2.2 Configurations

(Cmd) C ::= . . . | ()
The single value () represents merely the termination of a command. Note
that our example language does not already contain a null or skip command,
which might have been used instead of ().

E.2.3 Transition Relations

` → : Env× (Exp× S)× (Exp× S)

` → : Env× (Dcl× S)× (Dcl× S)

` → : Cmd× (Cmd× S)× (Cmd× S)

The set S of stores is as specified in Appendix A.2.2.

E.2.4 Transition Rules

The previously-given rules are no longer well-formed—the changes that have
to be made in them are underlined below.

ρ ` 〈E1 , σ〉 → 〈E ′1 , σ′〉
ρ ` 〈E1 O E2 , σ〉 → 〈E ′1 O E2 , σ

′〉
ρ ` 〈E2 , σ〉 → 〈E ′2 , σ′〉

ρ ` 〈e1 O E2 , σ〉 → 〈e1 O E ′2 , σ
′〉

e1 O e2 = e

ρ ` 〈e1 O e2 , σ〉 → 〈e, σ〉
ρ(I ) = e

ρ ` 〈I , σ〉 → 〈e, σ〉
ρ(I ) = l σ(l) = s

ρ ` 〈I , σ〉 → 〈s , σ〉
ρ ` 〈D , σ〉 → 〈D ′, σ′〉

ρ ` 〈let D in E , σ〉 → 〈let D ′ in E , σ′〉
ρ[ρ′] ` 〈E , σ〉 → 〈E ′, σ′〉

ρ ` 〈let ρ′ in E , σ〉 → 〈let ρ′ in E ′, σ′〉 ρ ` 〈let ρ′ in e, σ〉 → 〈e, σ〉
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ρ ` 〈E , σ〉 → 〈E ′, σ′〉
ρ ` 〈const I = E , σ〉 → 〈const I = E ′, σ′〉

ρ ` 〈const I = d , σ〉 → 〈(I 7→ d), σ〉
ρ ` 〈D1 , σ〉 → 〈D ′1 , σ′〉

ρ ` 〈D1 and D2 , σ〉 → 〈D ′1 and D2 , σ
′〉

ρ ` 〈D2 , σ〉 → 〈D ′2 , σ′〉
ρ ` 〈ρ1 and D2 , σ〉 → 〈ρ1 and D ′2 , σ

′〉
dom(ρ1 ) ∩ dom(ρ2 ) = ∅

ρ ` 〈ρ1 and ρ2 , σ〉 → 〈ρ1 ∪ ρ2 , σ〉
l 6∈ dom(σ))

ρ ` 〈var I , σ〉 → 〈(I 7→ l), σ[l 7→ ⊥]〉
ρ ` 〈E , σ〉 → 〈E ′, σ′〉

ρ ` 〈I := E , σ〉 → 〈I := E ′, σ′〉
ρ(I ) = l

ρ ` 〈I := s , σ〉 → σ[I 7→ s ]

ρ ` 〈C1 , σ〉 → 〈C ′1 , σ′〉
ρ ` 〈C1 ; C2 , σ〉 → 〈C ′1 ; C2 , σ

′〉

ρ ` 〈();C2 , σ〉 → 〈C2 , σ〉
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