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Verifiable Encryption and Applications to
Group Signatures and Signature Sharing

Jan Camenisch Ivan Damgård

December, 1998

Abstract

We generalise and improve the security and efficiency of the verifiable encryp-
tion scheme of Asokan et al., such that it can rely on more general assumptions,
and can be proven secure without relying on random oracles. We show a new
application of verifiable encryption to group signatures with separability, these
schemes do not need special purpose keys but can work with a wide range of
signature and encryption schemes already in use. Finally, we extend our basic
primitive to verifiable threshold and group encryption. By encrypting digital
signatures this way, one gets new solutions to the verifiable signature sharing
problem.

1 Introduction

A verifiable encryption scheme is in its basic form a two-party protocol between a
prover P and a verifier V . Their common input are a public encryption key E, pub-
lic value x, and a binary relation R. As a result of the protocol, V either rejects, or
obtains the encryption of some value w under E such that (x, w) ∈ R holds. For
example, R could defined such that (x, w) ∈ R if and only if w is a signature on
message x w.r.t. to some fixed public key. In other words, P claims to have given V

the encryption of a valid signature on x.
The protocol should ensure that V accepts an encryption of an invalid w with

only negligible probability. Moreover, V should learns nothing except the encryption
of w and the fact that w is valid w.r.t. x. In particular, if the encryption scheme is
semantically secure, the protocol should be zero-knowledge.

The encryption key E can belong to P, but typically belongs to a third party – and
even in this case the third party should not need to take part in the protocol, in other
words P does not need to know the secret key corresponding to E.

Verifiable encryption schemes are employed in many cryptographic protocols (al-
though the term verifiable encryption is not always used). Examples are digital pay-
mentsystems with revokable anonymity (e.g., [3, 18]), verifiable signature sharing
(e.g., [19]), (publicly) verifiable secret sharing (e.g., [26]), or fair exchange of sig-
nature [1]. Apart from the ones presented in [1, 28], all these schemes are ad-hoc
constructions using an encryption scheme that suits the particular application.
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The concept of verifiable encryption was introduced in [27] in the context of pub-
licly verifable secret sharing schemes, and in a more general form in [1], for the pur-
pose of fair exchange of signatures. The idea here is that if A and B wish to exchange
their signatures on some message, they will first exchange verifiable encryptions of
them, using as E the public key of some trusted third party. If this was successful, it
will be safe for A to just reveal his signature to B. Even if B never answers, A can get
B’s signature by having the trusted party decrypt it. (some care needs to be taken
here to avoid that one party falsely accuses the other of cheating, see [1] for details).
Micali [23] also proposes the use of provable encryption of data for third parties to
solve several variants of the fair exchange problem.

The verifiable encryption scheme from [1] can be based on any secure public key
encryption scheme. But it has only been proven secure in the random oracle model,
and only works for relationsR containing pairs of form (x, f−1(x)), where f is a one-
way group homomorphism. In this paper, we show how to modify and generalize
that scheme to achieve the following:

• Our scheme can be proved secure without relying on random oracles

• It retains the property that it can be based on any public-key encryption scheme.

• The relation R can be any relation with a 3-move proof of knowledge which
is an Arthur-Merlin game, i.e., as the second message, the verifier sends a ran-
dom challenge. This proof should be honest verifier zero-knowledge, and a
cheating prover should be unable to answer more than one challenge correctly.
We call this a Σ-protocol in the following. This includes the earlier case of
group homomorphisms as a special case. We show that this generalization en-
ables new applications of verifiable encryption.

• The efficiency is improved: the verifiable encryption obtained by V actually
consists of several encryptions in the underlying encryption scheme, this is
true both of our scheme and of [1]. In [1], the number of encryptions to be
stored by V is linear in the security parameter k, while our scheme needs only
O(log k) encryptions.

Our results are targeted against a situation where a public-key infrastructure al-
ready exists, i.e., users already have (certified) public-key pairs for encryption and
signatures. However, we assume that these keys are not necessarily designed with
other and more advanced primitives in mind, such as group signatures, identity
escrow, fair contract signing, and blind signatures with revocable anonymity. We
believe this is a very realistic scenario.

We show that our verifiable encryption scheme can be applied to build all of these
primitives, where the security can be proved based only on security of the existing in-
frastructure: no special assumptions are needed on the existing encryption scheme,
and the signature scheme only needs to satisfy that one can prove knowledge of a
signature on a given message by a Σ-protocol. All standard signature schemes (RSA,
El-Gamal, DSS) satisfy this. In particular, our group signature scheme is the first of its
kind with these properties. The efficiency is reasonable, we typically need resources
corresponding to a linear number of encryptions/signatures in the existing schemes.
Of course, solutions with provable security could always be obtained using general
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P(x, w) V(x)↓ ↓
(t, r) := σt(x, w)

(
= (f(r), r)with r ∈R {0, 1}∗

)
-

t

c ∈R {0, 1}
�

c

s := σs(x, w, r, c)
(
= r+ cw

)
-

s

o :=

{
(t, c, s) 1 = σv(x, t, c, s)

⊥ otherwise ↓
(o)

Figure 1: An example of a Σ-protocol: a proof of knowledge of a pre-image un-
der a (one-way) group homomorphism f(·), i.e., R = {(x, f−1(x))}. The predicate
σv(x, t, c, s) equals 1 if and only if txc = f(s) holds.

zero-knowledge techniques, but only at a prohibitive loss of efficiency. Also, much
more efficient schemes can sometimes be obtained by ad-hoc constructions, but this
requires relying on particular properties of the encryption and/or signature scheme
involved, and sometimes means that no proofs of security can be given.

We extend our basic primitive to verifiable group encryption involving n > 1 third
parties (called proxies) where only certain subsets of them can jointly decrypt the
secret. That is we are given n public encryption keys E1, . . . , En. The prover and
the verifier further agree any monotone access-structure over {1, . . . , n}. Then, if V

accepts, he is convinced that he has obtained an encryption of a valid secret, that a
subset of the proxies can decrypt if and only if that subset is contained in the access-
structure1. For example, one can decide that for some t < n, any subset of at least
t players can decrypt, whereas less than t players cannot. Verifiable group encryp-
tion can be used to implement verifiable signature sharing, yielding more general
solutions for this problem than what was previously known.

2 Preliminaries

2.1 Σ-Protocols

A Σ-protocol [9, 11] for a boolean relationR ⊆ {0, 1}∗× {0, 1}∗ is a three move honest-
verifier zero-knowledge proof of knowledge for R. That is, a string x is common
input to prover P and verifier V , and P demonstrates knowledge of a w such that
(x, w) ∈ R. We call w a witness for x, and the set of x’s that have witnesses is called
LR.

A Σ-protocol can be defined by three (probabilistic) procedures σt, σs, and σv as
follows. Let (x, w) ∈ R. Then on input x and w, P uses σt to compute a so-called

1This notion of group encryption should not be confused with the notion of threshold encryption [13].
In the latter case, a number of parties publishes a single public key and the access structure is determined
by these parties during the setup of the system

3



commitment t that the prover sends the verifier as the first message. Also, some side-
information r for the prover is produced. Then the verifier sends a random bit string
c, called a challenge. The prover uses x, w, r, and c as input to σs to compute the
response s. Finally, σv is a predicate taking x, t, c, and s as input that V uses to check
whether s is a valid response, i.e., V accepts if σv(x, t, c, s) = 1 holds. A triple (t, c, s)
such that σv(x, t, c, s) = 1 is called an accepting triple for x.

We require that if P and V follow the protocol, V always accepts, whereas a cheat-
ing prover can answer at most one challenge correctly per commitment. More pre-
cisely, there is is some procedure ρ that, given two accepting triples (t, c1, s1) and
(t, c2, s2)where c1 6= c2, computes w such that (x, w) ∈ R.

We also require that a Σ-protocol is honest verifier perfect zero-knowledge in
the particular sense that there is a simulator which, given input x and challenge c,
computes a t and an s such that (t, c, s) is accepting w.r.t. x, and has a distribution
equal to that of real converations with the honest verifier where c occurs as challenge.
Figure 1 shows an example of a Σ-protocol2.

Cramer et al. [11] show that different Σ-protocols can be composed to obtain Σ-
protocols for statements such as “I know a witness to x1 ∈ LR1 or a witness to x2 ∈
LR2” while retaining efficiency. Note that the zero-knowledge property in particular
implies that V does not learn whether P knows a witness to x1 or to x2. The idea is
to run the two Σ-protocols in parallel. The prover gets to decide which challenges
he answers in the two instances, however, they must sum to a value chosen by the
verifier.

Lemma 1 (Composition of Σ-protocols [11]). Given Σ-protocols for relations R1, . . . ,

Rn, there exists a Σ-protocol for the relation containing pairs ((x1, . . . , xn), w), where there
exists i such that (xi, w) ∈ Ri. When also given a secret sharing scheme for a monotone
access-structure Γ over {1, . . . , n}, there exists a Σ-protocol for the relation containing pairs
((x1, . . . , xn), (w1, . . . , wn)), where the set of indices i such that (xi, wi) ∈ Ri is in
Γ . That is, P demonstrates knowledge of witnesses to a qualified subset of the instances
x1, . . . , xn without revealing which subset is involved.

The probably best known special case of relationsRwith Σ-protocols are public-
key identification schemes such as the ones by Feige, Fiat, and Shamir [16], by Guil-
lou and Quisquater [21], or by Schnorr [25].

In general, a case that is of interest in the context of this paper is a proofs of knowl-
edge of a pre-image under a group homomorphism (see Figure 1). It turns out that
this protocol is very useful in practice because demonstrating (in zero-knowledge)
that you know a signature on given message reduces to demonstrating that you
know a pre-image under a group homomorphism. This is true for any of the stan-
dard signature schemes in use today (RSA, DSA, etc.) (see [1, 19]).

2.2 Probabilistic Encryption Schemes

A triple (G, E, D) of probabilistic polynomial-time algorithms is a polynomial secure
public key encryption system if we have the following:

1. For every output (E, D) ∈ G(1k) and all messages m ∈ {0, 1}k we have D(E(m)) =

2We require perfect zero-knowledge only for simplicity. Computational zero-knowledge could be han-
dled too, however, known examples of Σ-protocols are typically perfect zero-knowledge
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m.

2. For all probabilistic algorithms T and M, all polynomial p(·), and all sufficiently
large k we have

Pr[T(1k, E, m0, m1, α) = m : (E, D) := G(1k); (m0, m1) :=M(E, 1k);

m ∈R {m0, m1};α := E(m)] <
1

2
+

1

p(k)
.

That is, the adversary gets to see the public key, selects messages m0 and m1 in any
way he wants, and gets an encryption of either m0 or m1. The system is secure if he
cannot guess which is the case with probability essentially better than 1/2.

For convenience, E denotes the public key as well as the actual encryption algo-
rithm, and D the secret key as well as the decryption algorithm. Furthermore, as we
often need to make the random choices in the encryption algorithm explicit, we will
write sometimes E(r, m) rather than E(m), where r contains all coin-flips to be made
for encryption; hence E will in these cases denote a “deterministic” algorithm.

3 Verifiable Encryption

3.1 Definition of Verifiable Encryption

We give a definition of a secure verifiable encryption scheme for a relationR follow-
ing [1].

Definition 1 (Secure Verifiable Encryption). Let R be a relation and let LR = {x| ∃w :
(x, w) ∈ R}. A secure verifiable encryption scheme for a relation R consists of a two
party protocol (P, V) and a recovery algorithm R. We let VP(E, x, k) denote the output of V

when interacting with P on input E, x, k, where k is a security parameter. We require that
the following three properties hold:

Completeness: If P and V are honest then VP(E, x, k) 6= ⊥ for all (E, D) and for all
x ∈ LR.

Validity: For all polynomial time P̃, for all (E, D) ∈ G(1k), for every positive polynomials
p(·), and all sufficiently large k we have

Pr
[(

x, R(D, α)
)
6∈ R and α 6= ⊥ : α := VP̃(E, x, k)] <

1

p(k)
.

Computational Zero-Knowledge: For every Ṽ there exists a expected polynomial-time
simulator SṼ with black-box access to Ṽ such that for all distinguishers A, all polyno-
mials p, all x ∈ LR, and all sufficiently large k, we have

Pr
[
A(E, x, αi) = i : (E, D) := G(1k);α0 := SṼ (E, x, k);α1 := ṼP(E, x, k); i ∈R {0, 1}

]
<

1

2
+

1

p(k)
.
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P(x, w, E) V(x, E)↓ ↓
r0, r1 ∈R {0, 1}`, (t, rt) := σt(x, w)

s0 := σs(x, w, rt, 1), s1 := σs(x, w, rt, 0)

e0 := E(r0, s0), e1 := E(r1, s1)
-

t, e0, e1

c ∈R {0, 1}
�

c

s := sc, r := rc
-

s, r

o :=

{
(c, ec̄, s, t) 1 = σv(x, t, c, s), ec = E(r, s)

⊥ otherwise ↓
(o)

Figure 2: One round of the basic verifiable encryption scheme. Recovery takes place
by decrypting ec̄ and using soundness of the Σ-protocol to compute a valid w.

The completeness property should need no discussion. Validity ensures that it
almost never happens that an honest verifier accepts simultaneously with recovery
failing to compute a witness for x ∈ LR. A consequence of this is that a verifiable
encryption scheme is necessarily also a proof of knowledge of such a witness. Finally,
the zero-knowledge condition assures the prover that no verifier can learn anything
beyond the fact that x ∈ LR and that a witness for x can be recovered from the output.

Our definition of zero-knowledge differs conceptually from the one given in [1].
In particular, our definition requires that a verifiable encryption scheme is zero-
knowledge for every instances in LR whereas the definition given in [1] only requires
that the protocol is zero-knowledge for instances that the adversary generates, or is
able to generate.

The verifiable encryption scheme for group-homomorphisms described in [1] can
be seen as a special case of our definition with respect to the relations R that are
considered. In particular, the relation defined by {(x, w)|x = Φ(w)}, where Φ is a
group homomorphism, is a subclass of the relations having a Σ-protocol.

We note that computationally zero-knowledge is the best we can achieve due to
the requirement that a witness is (and should be) recoverable from the conversation.
Also note that the encryption scheme must be semantically secure in order for the
zero-knowledge property to be satisfied.

Our zero-knowledge definition allows the simulator to rewind the verifier. In
some applications it may be desirable to require that simulation can be done without
rewinding, since this implies that the protocol is concurrent zero-knowledge [14], i.e.,
even an arbitrary interleaving of different instances of the protocol is simulatable.
We note that one variant of our protocol in fact has this stronger property.

3.2 A Verifiable Encryption Scheme

We first present a very simple but not very efficient scheme, and then move on with
improvements.
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Let (G, E, D) be a semantically secure cryptosystem. Let (E, D) := G(1k) be the
public and secret key of a third party. Also we are given a relation with a Σ-protocol
defined by procedures σt, σs, and σv. Assume for simplicity that the verifier can
choose between only 0 and 1 as challenges. The idea is now simply that given x, the
prover will start a conversation in the Σ-protocol. Using his knowledge of a witness
w he can compute answers to both c = 0 and c = 1, and he supplies encryptions
under E of both of these. The verifier can now ask P to open one of these encryptions
to check if it contains a valid answer. If this is true for both encryptions, decrypting
the other one allows to recover w (due to the properties to the Σ-protocol), whereas
if at least one of them contains garbage, the prover will be caught with probability
1/2. Concretely, we have:

Theorem 2. LetR be a relation that has a Σ-protocol. The protocol depicted in Figure 2 is a
secure verifiable encryption scheme forR when sequentially repeated k times.

Proof. Completeness: This can easily be verified.
Validity: The algorithm R will fail, only if in every iteration at least one of e0, e1

contain invalid protocol responses. This means that V will accept with probability
at most 1/2 in each iteration, and so it accepts all iterations with probability at most
2−k.

Computational Zero-Knowledge: We can build a simulator for one iteration using
standard resetting techniques: we first choose a random bit c ′, our guess at what
V ’s challenge will be. Then we simulate a conversation (t, c ′, s) in the Σ-protocol.
We encrypt s to get ec ′ , and encrypt something random to get e1−c ′ . Then we send
t, e0, e1 to Ṽ , and get c back. If c ′ = c, we open ec as the honest prover would
do. Otherwise, we rewind and try again. By honest verifier zero-knowledge of the
Σ-protocol and semantic security of the encryption, the probability that c ′ 6= c is at
most 1/2 + 1/p(k) for some polynomial p and the output is computationally indis-
tinguishable from a real conversation. It also follows that the expected run-time of
the simulator is O(kT(k)), where T(k) is the time needed for one attempt to simulate
one iteration.

The main drawback of our basic scheme is that the verifier must store an encryp-
tion and a conversation in the the Σ-protocol for each repetition and that it needs to be
repeated Θ(k) times sequentially. In Figure 3 an improved scheme is depicted, that
allows to store much less encryptions and triples. The idea is that in the basic step,
the prover will supply a valid triple where the challenge is 0, but where the prover’s
response is encrypted. The verifier can then ask the prover either to open the en-
cryption or to supply a valid answer to challenge 1. The point is that the verifier
only needs to remember the unopened encryptions and related triples.

Furthermore, the protocol is made constant round by relying on a commitment
scheme, i.e., a function Commit that takes as input the string α to commit to and an
additional input string β. Then a player can commit by sending T := Commit(α, β) ,
where β is randomly chosen (we write just Commit(α) in the following). We require
that the distributions of commitments to different α’s are computationally indistin-
guishable.

On the other hand it should be computationally hard to open a commitment
in two different ways, i.e., to find α 6= α ′ and β, β ′ such that Commit(α, β) =

Commit(α ′, β ′). There are numerous efficient constructions known of such schemes

7



P(x, w, E) V(x, E)↓ ↓
for i = 1, . . . , k :

(ti, r̃i) := σt(x, w), s̃i := σs(x, w, ti, 0, r̃i)

ri ∈R {0, 1}|x|, ei := E(ri, s̃i)

T := Commit((t1, e1), . . . , (tk, ek))
-

T

C ∈R 2{1,... ,k} ; |C| = u
�

C

-

open T

si :=

{
σs(x, w, r̃i, 1) i ∈ C

s̃i i 6∈ C
-

s1, . . . , sk, {ri|i 6∈ C}

o :=

{ei, si, ti|i ∈ C}

{
1 = σv(x, ti, 1, si) i ∈ C

1 = σv(x, ti, 0, si), ei = E(ri, si) i 6∈ C

⊥ otherwise ↓
(o)

Figure 3: An improved verifiable encryption scheme using a commitment scheme.
Reconstruction is straightforward by decrypting the ei’s in the output. The integers
k and u are security parameters.

(see for instance [10]), but in fact our assumptions in this scenario are already suffi-
cient to ensure their existence: note that ifRmust be a hard relation, in order for our
scenario to make sense – there would be no point in P encrypting w while trying to
keep it secret from V , if V can easily find w from the public x. And it is known that a
Σ-protocol for a hard relation implies existence of a secure commitment scheme [12].

Commitment schemes generally require a once-and-for-all set-up phase where
the function for computing commitments is chosen and verified. For simplicity,
we do not include this explicitly in the protocol description, nevertheless the set-up
phase does need to be considered in the proof of security.

We will require our commitment scheme to be trapdoor, that is, there is a piece
of trapdoor information, knowledge of which allows opening a commitment in an
arbitrary way. The set-up phase will then have the form that the verifier generates
the Commit-function together with the trapdoor information, sends the function to
the prover, and proves knowledge of the trapdoor. The commitments implied by
Σ-protocols allow all this to be done efficiently.

Theorem 3. Let R be a relation that has a Σ-protocol. The protocol depicted in Figure 3,
when using a secure commitment scheme, is a secure verifiable encryption scheme for R for
any u such that log k < u < k/2.

Proof. Completeness: This can easily be verified.
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Validity: Consider an arbitrary prover P∗. Assume P∗ convinces V about an in-
correct encryption with probability larger than a polynomial fraction 1/p(k) for in-
finitely many k (and some x). We then show that P∗ can be used to break the com-
mitment scheme with non-negligible probability, contradicting the assumption.

Fix a k and x such that P∗ cheats V with probability larger than 1/p(k) . Fix a
random set of coin-flips R for P∗. Say R is good if when using R as random input, P∗

cheats V with probability at least 1/2p(k). Then the probability that R is good is also
at least 1/2p(k). So assume in the following that we have a good R. Since all inputs
to P∗ are now fixed, any conversation starts with a fixed commitment T .

The number of different subsets I that can be chosen by V is
(
k

u

)
. Using Sterlings

bounds on k!,u!, and (k− u)!, we have(
k

u

)
=

k!

u!(k− u)!
>

1

q(k)
(β − 1)k/β

( β

β − 1

)k
,

where q(k) is some polynomial and we have set u = k/β. For log k < u < k/2 this
is clearly super-polynomial. It follows that we can by rewinding P∗ and sending it
random values of C efficiently find conversations (T, C, v), (T, C ′, v ′), where C 6= C ′,
and where P∗ has cheated V . If v and v ′ involve the same opening of T , then the
same set of triples from the underlying Σ-protocol are involved in both cases. Then
since C 6= C ′ there is an index i such that v contains ti, ei, si, where (ti, 1, si) is an
accepting triple, and where v ′ contains s ′i, the decryption of ei, where (ti, 0, s ′i) is
also accepting. But by soundness of the Σ-protocol this implies that the recovery
algorithm does manage to find a correct w, contradicting the fact that P∗ cheats V .
Thus it must be the case that opening of T contained in v is different from the one
occurring in v ′, and we have broken the commitment scheme.

Computational Zero-Knowledge: Note that if we know the subset C that Ṽ will
choose, it is easy to simulate: for all i 6∈ C, that is, where we have to open the en-
cryption ei, we prepare an accepting triple (ti, 0, si) and encrypt si to get ei. For the
other i’s, we prepare an accepting triple (ti, 1, si) and encrypt something random in
ei. This will clearly allow us to satisfy the verifier’s requests, and the only difference
between this and a real conversation is in the contents of the unopened encryptions.

Hence the strategy of a simulator is to use the proof of knowledge of the trapdoor
that V∗ gives in the set-up phase of the commitment scheme. The simulator attempts
to extract the trapdoor by rewinding V∗ in this phase, and in parallel (for technical
reasons) runs an exhaustive search for the trapdoor. This ensures that the simulator
will in expected polynomial time extract the trapdoor. Then any commitment can be
opened to reveal any value desired, and the rest of the simulation is trivial, by the
above.

Remark. There is another variant of our protocol which requires 4 messages, but has
the advantage of being secure against an unbounded prover. Here, V commits to his
choice of C in advance, P sends (s1, r1), ..., (sk, rk), V opens the commitment, and
P responds to the I revealed. This can be proven zero-knowledge using techniques
from [20].

Remark. Given a collision intractable hash function h, one can sometimes make the
protocol more efficient by committing to the (shorter) value h((s1, r1), ..., (sk, rk)) in
the first step.
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Remark. Note that our simulator in the proof of zero-knowledge uses rewinding,
but only in the set-up phase for the commitment scheme. Since this phase can be
done once and for all in a preprocessing, it is feasible to ensure that this one phase
is not interleaved with other protocols. This will imply that the entire protocol is
concurrent zero-knowledge. (see also [15]).

Remark. In practice one is often interested in a particular error-probability ε. There
will then be many values k, u with 1/

(
k

u

)
≤ ε, and one should then of course choose

whatever particular k and u that fit the application best.

It is easy to make a non-interactive variant of this using the Fiat-Shamir heuris-
tic: the prover computes (t1, e1), . . . , (tk, ek) and determines the challenge C from
h((t1, e1), . . . , (tk, ek))where h is some suitable (hash) function. Finally, he appends
valid responses (s1, r1), . . . , (sk, rk). All this can be verified as before by V . It is
straightforward to show that this is secure in the random oracle model, replacing
calls to h by calls to the oracle.

4 Verifiable Group Encryption

In our basic primitive, the prover and the verifier have to trust the third party to
behave as expected. This is, the prover must trust him/her only to recover the en-
crypted witness when appropriate while the verifier relies on the third party to de-
crypt the witness when required. To achieve higher security against fraudulent third
parties, we extend our basic primitive to verifiable group encryption, which on its
own is a useful concept in many cases. Here, the witness gets encrypted for n third
parties, called proxies, such that only designated subsets of them can jointly recover
the witness. Although it superficially looks more complicated, it turns out to be
trivial to implement using our basic verifiable encryption, as we shall see.

Informally, verifiable group encryption takes place in a similar model as ordinary
verifiable encryption, that is P and V interact on common input x, where P knows w

such that (x, w) ∈ R. As before, it is instructive to think of w as being a signature on
x w.r.t. some fixed public key. Now, however, n public encryption keys E1, . . . , En
are involved, and a monotone access structure Γ on {1, . . . , n} is agreed by P and
V . Then an honest V obtains from P encryptions E1(w1), . . . , En(wn) such that a
valid w can be reconstructed from a subset A of the wi’s, if A ∈ Γ , whereas a set
A 6∈ Γ gives no information. Finally, if honest proxies forming a set A ∈ Γ decide to
reconstruct w, they can do so successfully, even if dishonest proxies also participate.

This notion of “group encryption” should not be confused with the notion of
threshold encryption [13]. In the latter case, a number of parties publishes single
public key and the access structure is determined by these parties during the setup
of the system.

4.1 Realisation

A verifiable group encryption scheme can be realized using a secret sharing scheme
for the chosen access structure Γ . We just need to observe that our verifiable en-
cryption scheme from before works based on any public key encryption scheme. In
particular, we will execute it using the following encryption scheme: given input s,
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P(u, m, y, s ′, E) V(u, m, y, E)↓ ↓
r ∈R Zq, t := yr

s0 := r, s1 := r+ s (mod q)

s00, s10 ∈R Zq
s01 := s0 − s00 (mod q), s11 := s1 − s10 (mod q)

r00, r01, r10, r11 ∈R {0, 1}`
e00 := E0(r00, s00), e10 := E0(r10, s10)

e01 := E1(r01, s01), e11 := E1(r11, s11)

-

t, e00, e10, e01, e11

c ∈R {0, 1}
�

c

s̃0 := sc0, r̃0 := rc0
s̃1 := sc1, r̃1 := rc1

-

s̃0, s̃1, r̃0, r̃1

s := s̃0 + s̃1 (mod q)

o :=

(c, e0c̄, e1c̄, s, t)
{

t = yc(ugh(u‖m))s

e0c = E0(r̃0, s̃0), e1c = E1(r̃1, s̃1)

⊥ otherwise ↓
(o)

Figure 4: An example of verifiable group encryption for Γ = {{0, 1}}. For simplicity
only one round is described (cf. previous section). Schnorr signature on m is defined
to be (c ′, s ′) such that c ′ = h(u‖m) holds, where u = gc

′
ys
′

and y is the public key
of signer. The signature can be verifiable encrypted by providing u and m and using
the relation {(u/gh(u‖m), w)|w = log

y
(u/gh(u‖m)) (mod q)}. Recovery takes place

by computing (−1)c(D0(e0c̄) +D1(e1c̄) − s) (mod q).

use the given secret sharing scheme to get shares s1, . . . , sn, and then let the output
ciphertext be E1(s1), . . . , En(sn). Clearly, you can compute s from a correctly formed
ciphertext, if you can decrypt a subset of the si’s corresponding to a set in Γ .

¿From the construction it is clear that the proxies can reconstruct the witness
when given E1(s1), . . . , En(sn) and Γ due to the properties of secret sharing schemes
by decryption and pooling the shares. This is possible even with the participation
of malicious proxies as long as the honest proxies form a set A ∈ Γ , however, they
might not be able to do this efficiently in the presence of malicious proxies who
provide incorrect values for the si’s. If the encryption scheme used directly allows
proxy i to prove that si is indeed the value encrypted in Ei(si), the problem is triv-
ial to solve. If this is not the case, we can modify the encryption scheme and en-
crypt the random choices used for encryption of the shares as well for the respec-
tive proxies, i.e., our encryption scheme would output

(
E1(r1, s1), E1(r̃1, r1)

)
, . . . ,(

En(rn, sn), En(r̃n, rn)
)
. Now, proxy i can prove correct decryption by providing ri

and si.

Remark. In case the scheme made interactive using the Fiat-Shamir heuristic [17], the
access structure Γ should also be included in the hash-function.
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4.2 Verifiable Group Encryption Versus Verifiable Signature Shar-
ing

The concept of verifiable signature sharing (VΣS) [6, 19] involves asignature receiver who
distributes shares of a signature on a public message to a set of proxies such that all
proxies can verify that this has been done correctly, and a qualified set of proxies can
always reconstruct the signature, even in presence of malicious proxies. Trivially, a
verifiable group encryption scheme can be used to implement VΣS: we simply exe-
cute verifiable group encryption of a signature on the given message, such that the
signature receiver plays the role of the prover, and the proxies together play the role
of the verifier. If the interactive variant is used, this is done by having proxies gen-
erate challenges for the prover by collective coin-flipping. With the non-interactive
variant, no special precautions are needed, and the scheme becomes even publicly
verifiable. The possibility to use any encryption scheme for the individual proxies
solves an open problem raised in [6]. Moreover, a (publicly) verifiable secret sharing
scheme, e.g., see [27], can be obtained along the same lines.

5 Application to Group Signatures and Identity Escrow

A group signature scheme [2, 4, 5, 7, 8, 24] allows a member of a group of users to
sign a message on the group’s behalf. The scheme protects the privacy of signers
in that the verifier should not be able to find the identity of the signer. However,
to handle special cases where the scheme is misused by some user, there is a revo-
cation manager who can indeed find the identity of the signer from the signature. In
some schemes, there is also a group manager who takes care of the key set-up and
enrolment of users in the group. No collusion of users (even including the group
manager) should be able to forge signatures such that it is not possible for the re-
vocation manager to reveal the identity of the signer. Furthermore, no collusion of
users (even including both managers) should be able to forge signatures such that
upon revocation they seem to originate from another user. Moreover, we want to
minimise the involvement of parties in the protocols. This means that managers
should not be involved in creating a signature, and ideally also that the revocation
manager is not involved in establishing the group, and is in fact completely inactive
until revocation of anonymity is needed.

The interactive equivalent of group signatures are group identification scheme
with revocable anonymity (also called identity escrow [22]). Here, the goal is for
a group member to anonymously identify himself as a member - rather than being
able to sign a message. Except for this, the security properties of group signatures
carry over directly.

For both kind of schemes, it is of course desirable that they can be implemented
based on keys that users and managers already have established, even if those keys
were not indented to be used in group identification. This property is called separa-
bility3.

In the following, we show how to use a verifiable encryption scheme to design a
separable group identification scheme with revocable anonymity. This scheme can

3The term originates from [22]. However, we use it in a stronger sense, that is, in [22] it only denotes
the fact that the revocation manager is able to choose his/her public key independently.
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be proved secure, assuming only security of the encryption, signature, and identifi-
cation schemes involved. We then modify this to a (non-interactive) group signature
scheme using the Fiat-Shamir heuristic [17]. This scheme is secure assuming in ad-
dition that the heuristic is valid for the protocol and hash function involved. It can
be proved secure with no additional assumptions in the random oracle model. For a
formal model of group signatures and identity escrow we refer to [5, 22].

5.1 Realizations

We describe the basic idea for the case where the users’ public keys are of some
signature schemes and then extend the scheme such that the users’ public keys can
also be of some interactive identification scheme.

We assume we are given public keys P1, . . . , Pn of secure signature schemes for n

players, and that for each signature scheme employed, there is a Σ-protocol for the re-
lation {(x, w)| w is a valid signature on message x}. As mentioned earlier, this is true of
any signature scheme for which reduction functions to a group-homomorphism ex-
ists [1]. To prove our scheme’s security formally, we need that the signature schemes
are secure against chosen message attacks. Finally, we assume that a revocation man-
ager has been selected, who has a public key E to a semantically secure encryption
scheme. Now, by Lemma 1 and Theorem 3 we get a group identification scheme
with revocable anonymity, as follows:

The group’s public key consists just of the group manager’s signature (certificate)
on the tuple (P1, . . . , Pn). To identify as a group member, the prover computes the
signature on message x (randomly chosen by the verifier) with respect to his/her
public key. Then the prover and the verifier carry out the verifiable encryption pro-
tocol for the relation

{(x, w)|w is a valid signature on x with respect to one of the public keys P1, . . . , Pn} ,

where encryption public key used is E, the one of the revocation manager. We can
do this because, by Lemma 1, an efficient Σ-protocol for this relation can be derived
from the Σ-protocols we assumed exist for each single signature scheme.

This derived Σ-protocol proves that w is valid w.r.t. one of the public keys, but
yields no information about which one is involved. This, and the zero-knowledge
property of the verifiable encryption implies anonymity for the prover. Furthermore,
if some coalition of users could impersonate another user, then they could also forge
this user’s signatures. Finally, the anonymity can be revoked just by decryption, and
will yield correct results by validity of the verifiable encryption. With respect to the
revocation manager’s ability to prove correct decryption of the witness the remarks
of the previous section applies. That is, either the underlying encryption scheme
allows this or, if not, the verifiable encryption scheme is modified as described above.

Clearly, applying the Fiat-Shamir heuristic [17] yields a group signature scheme
from this construction: the message x which was chosen by the verifier before, will
now be the message to be signed. And we hash x and the prover’s first message in
the verifiable encryption protocol to get a challenge. This can be proved secure in
the random oracle model.

In summary, we have argued:
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Theorem 4. Given any secure signature scheme with an associated Σ-protocol, and any
secure public key encryption scheme. Then there exists a secure separable group identification
scheme with revocable anonymity, and a separable group signature scheme secure in the
random oracle model. The complexities of the schemes are linear in the group’s size, the
security parameter, and in the complexity of the signature and encryption schemes.

What if we are not given a number of signature public keys, but in stead pub-
lic keys to an interactive identification protocol, which we assume to be Σ-protocol
(such as Fiat-Feige-Shamir or Schnorr)? Can we still build a group identification
scheme? We could try using directly the identification protocol together with the
1-out-of-n method in the verifiable encryption scheme. But this would allow the
revocation manager to compute the secret key of the prover and hence the scheme
could be used only once.

In the following we provide a method to transform the Σ-protocol of any iden-
tification scheme such that we can nevertheless build a group identification scheme
from it. The idea is to only prove the knowledge of the response in an instance of the
identification protocol rather than providing it. LetRi be the relation of some identi-
fication scheme with the Σ-protocol (σt, σs, σv) and let x be the instance ofRi consis-
tent with the public key Pi. Define the relation R̃i = {(s, (x, t, c))|1 = σv(x, t, c, s), x ∈
LRi }. In other words, t and c were the first two messages in the identification pro-
tocol and the third message is a witness to x̃ = (x, t, c) for R̃i. Thus, if the prover
and the verifier construct x̃ together as the first two step of the identification pro-
tocol, and then the prover proves the knowledge of a witness to x̃ for R̃i, then the
verifier will be convinced, that the prover also knows a witness to x for Ri. For
most known identification protocol there exists an efficient Σ-protocols for this lat-
ter relation. Figure 5 shows an example of such a transformation of for the Schnorr
identification protocol.

This transformation allows us now to construct a group identification scheme
with revocable anonymity as follows. The prover and the verifier carry out the first
two steps of the identification protocols for every public key Pi to get instances for
the new relations R̃i and then carry out the Σ-protocol for proving knowledge of
a witness to (at least) one of these new instances (using Lemma 1). The rest of the
construction is the same as in case we start from signature schemes. It is clear that
we can also mix identification schemes and signature schemes.

5.2 Extensions and Related Work

Extensions to generalised group identification schemes with revocable anonymity or
generalised group signature schemes [2] are straight forward. In this case the prover
is actually a set of group members who demonstrate that they form a qualified set
w.r.t some access structure, but without revealing which set is present. Thus they
have to do joint computations and some precautions must be taken. We refer to [2]
for details.

To protect group members from fraudulent behaviour of the revocation manager,
the ability of revocation can be distributed to several parties by using our verifiable
group encryption instead of ordinary verifiable encryption (cf. Section4).

Comparing our group signature schemes with previous proposals (none of which
provide separability) our schemes are clearly less efficient – that’s the price we have
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P(g, z = gy, y) V(g, z)↓ ↓
r ∈R Z∗q, t = gr

-

t

c ∈R {0, 1}k
�

c

z̃ := t/zc z̃ := t/zc
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r̃ ∈R Z∗q, t̃ = gr̃
-

t̃

c̃ ∈ {0, 1}k
�

c̃

s̃ := r̃+ c̃(r+ yc) (mod q)
-

s̃

o :=

{
(t̃, c̃, s̃) t̃ = z̃c̃gs̃

⊥ otherwise↓
(o)

Figure 5: Transforming Schnorr’s identification protocol. The prover’s public key is
(z, G = 〈g〉) where |G| = q and y = log

g
z is the prover’s secret key. In the protocol

steps above the dotted line, the prover and the verifier jointly construct the instance
(z̃, G = 〈g〉) of the new relation. The protocol steps below the dotted line constitute
the well-known protocol for proving the knowledge of z̃, i.e., the witness in the new
relation.

to pay for complete separability.
The schemes proposed in [5, 4, 22] have the property that the group’s public

key does not depend on the size of the group. Our verifiable encryption scheme
can be used as a subroutine in these scheme allowing the revocation manager to
independently choose any encryption scheme. It remains an open problem to find
efficient schemes providing complete separability where the group’s public key does
not depend on the size of the group.

6 Miscellaneous Applications

6.1 How to Hide Your Trustees

The goal here is that there are n trustees and the prover encrypts the witness for one
of them but not for the others. However, the verifier must not learn which particular
trustee is able to decrypt. This can be an advantage if the application requires that
the witness be reconstructible by access to only one trustee, but you still want some
protection against attacks aiming to reveal the witness.

This can be solved by simply observing that our verifiable encryption scheme is
itself a Σ-protocol, and hence applying Lemma 1 directly gives a protocol for this
problem.

This generalises easily to any access structure, i.e., the verifier gets convinced
that some qualified subset of trustees can each individually decrypt the witness, but
he does not learn which subset. Note that this is not the same as verifiable group
encryption, where any qualified subset can decrypt collectively.
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6.2 Blind Signatures With Revokable Anonymity

Another application that uses verifiable encryption are blind signature schemes and
e-cash systems that provide revokable anonymity (e.g., [3, 18, 28]). Here we have
four parties, a customer, a bank, a shop, and a trustee. The two basic protocols in
these schemes are a withdrawal protocol between the bank and the customer and
a payment protocol between the shop and the customer. During both protocol, the
customer is required to provide some string and to prove that this string is an en-
cryption under the trustee’s public key of some information that will allow to link
the two protocols. For these tasks, our verifiable encryption schemes can be used as
a subroutine in these protocols hence allowing the trustee to independently choose
any encryption scheme.
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