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A Linear Metalanguage for

Concurrency?

Glynn Winskel

BRICS??, University of Aarhus, Denmark

Abstract. A metalanguage for concurrent process languages is intro-
duced. Within it a range of process languages can be defined, including
higher-order process languages where processes are passed and received
as arguments. (The process language has, however, to be linear, in the
sense that a process received as an argument can be run at most once, and
not include name generation as in the Pi-Calculus.) The metalanguage
is provided with two interpretations both of which can be understood as
categorical models of a variant of linear logic. One interpretation is in a
simple category of nondeterministic domains; here a process will denote
its set of traces. The other interpretation, obtained by direct analogy with
the nondeterministic domains, is in a category of presheaf categories; the
nondeterministic branching behaviour of a process is captured in its de-
notation as a presheaf. Every presheaf category possesses a notion of
(open-map) bisimulation, preserved by terms of the metalanguage. The
conclusion summarises open problems and lines of future work.

1 Introduction

Over the last few years, Gian Luca Cattani and I have worked on
presheaf models for interacting processes, culminating in Cattani’s
forthcoming PhD thesis [3]. The work started from the general defini-
tion of bisimulation via open maps in [13] which suggested examining
a broad class of models for concurrency—presheaf categories. Later
we realised that presheaf models can themselves be usefully assem-
bled together in a category in which the maps are colimit-preserving
functors. There are two main benefits: one is a general result stating
that colimit-preserving functors between presheaf categories preserve
open maps and bisimulation [6]; the other that the category of the
presheaf models is a form of domain theory for concurrency, with
a compositional account of bisimulation, though at the cost that
domains are categories rather than special partial orders [20, 4].

? Invited paper AMAST ’98, Brazil
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We originally concentrated on the category of presheaf categories
with colimit-preserving functors (or equivalently, the bicategory of
profunctors). We’ve come to realise that by shifting category, to
presheaf categories with connected-colimit preserving functors, a lot
of our work can be done more systematically. (A connected colimit
is a colimit of a nonempty connected diagram.) In particular the
new category supports a metalanguage in which many of our con-
structions can be defined once and for all. This is not the only way
the metalanguage saves work. Its terms will automatically preserve
connected colimits. The metalanguage supports recursive definitions
because ω-colimits are examples of connected colimits. Connected-
colimit preserving functors preserve open-map bisimulation. Conse-
quently terms of the metalanguage preserve open-map bisimulation;
if two terms which are open-map bisimilar are substituted for the
same variable in a term of the metalanguage then the resulting terms
will be open-map bisimilar.

The metalanguage can be interpreted in a wide range of cate-
gories. To spare some of the overhead of working with presheaf cate-
gories the metalanguage will first be interpreted in a simple category
of nondeterministic domains. Equality of terms in this model will co-
incide with trace equivalence. However the nondeterministic domains
are mathematically close to presheaf categories. With a switch of
viewpoint, essentially the same constructions lead to an interpre-
tation of the metalanguage in presheaf categories with connected-
colimit preserving functors, for which open-map bisimulation is an
appropriate equivalence.

2 Presheaf models sketched

Let P be a small category. The category of presheaves over P, written
P̂, is the category [Pop,Set] with objects the functors from Pop (the
opposite category) to Set (the category of sets and functions) and
maps the natural transformations between them.

In our applications, the category P is thought of as consisting of
abstract paths (or computation-path shapes) where a map e : p→ p′

expresses how the path p is extended to the path p′. In this paper
the categories over which we take presheaves will be (the category
presentation of) partial orders; the way a path p extends to a path
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p′ will be unique and a map from a path p to a path p′ simply a
witness to p ≤ p′ in the partial order.

A presheaf X : Pop → Set specifies for a typical path p the
set X(p) of computation paths of shape p. The presheaf X acts on
e : p → p′ in P to give a function X(e) saying how p′-paths in
X restrict to p-paths in X. In this way a presheaf can model the
nondeterministic branching of a process.

Bisimulation on presheaves is derived from notion of open map
between presheaves [12, 13]. Open maps are a generalisation of func-
tional bisimulations, or zig-zag morphisms, known from transition
systems [13]. Presheaves in P̂ are bisimilar iff there is a span of sur-
jective (i.e., epi) open maps between them.

Because the category of presheaves P̂ is characterised abstractly
as the free colimit completion of P we expect that colimit-preserving
functors between presheaf categories to be useful. They are, but not
all operations associated with process languages preserve arbitrary
colimits. Prefixing operations only preserve connected colimits while
parallel compositions usually only preserve connected colimits in
each argument separately. However, the preservation of connected
colimits is all we need of a functor between presheaf categories for it
to preserve bisimulation.

Proposition 1. [7] Let G : P̂ → Q̂ be any connected-colimit pre-
serving functor between presheaf categories. Then G preserves sur-
jective open maps and open-map bisimulation.

Define Con to be the category consisting of objects partial orders
P,Q, · · ·, with maps g : P → Q the connected-colimit preserving
functors g : P̂ → Q̂ between the associated presheaf categories, and
composition the usual composition of functors. Define Col to be the
subcategory of colimit-preserving functors.

3 Categories of nondeterministic domains

We obtain nondeterministic domains by imitating the definitions on
presheaves but replacing Set by the much simpler partial order cat-
egory 2 with two elements 0, 1 ordered by 0 ≤ 1.

Instead of presheaves P̂ = [Pop,Set] we now obtain P̂ = [Pop, 2],
functors, and so monotonic functions from Pop to 2. It’s not hard
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to see that an object x of P̂ corresponds to a downwards-closed set
given by {p ∈ P | x(p) = 1}, and that a natural transformation from

x to y in P̂ corresponds to the inclusion of {p ∈ P | x(p) = 1} in

{p ∈ P | y(p) = 1}. So we can identify P̂ with the partial order of
downwards-closed subsets of P, ordered by inclusion. Thought of in
this way it is sensible to think of P̂ as a nondeterministic domain in
the sense of [10, 9]; the order P̂ has joins got simply via unions so
it is certainly a cpo, with least element ∅, and we can think of the
union operation as being a form of nondeterministic sum. It’s worth
remarking that the domains obtained in this way are precisely the
infinitely-distributive algebraic lattices (see e.g. [18, 19]) and that
these are just the same as the prime algebraic lattices of [17], and
free join completions of partial orders.

There are several choices about what to take as maps between
nondeterministic domains. If we eschew “fairness”, the most gen-
erous we seem to have call for is that of all Scott-continuous func-
tions between the domains. We are interested in maps which are just
broad enough to include those operations we associate with interact-
ing processes, operations such prefixing of actions, nondeterministic
sum and parallel composition, so we look for a narrower class of maps
than continuous functions.

3.1 The category Doms

On mathematical grounds it is natural to consider taking maps be-
tween nondeterministic domains which preserve their join structure,
to choose functions f from P̂ to Q̂ which preserve all joins, i.e. so
f(
⋃
X) =

⋃
x∈X f(x). Such functions (known often as additive func-

tions) compose as usual, have identities and give rise to a category
rich in structure. Call this category Doms and write f : P →s Q
for a map in Doms, standing for an additive function from P̂ to Q̂.
Notice that such maps can be presented in several different ways.
Because such maps preserve joins they are determined by their re-
sults on just the “complete primes”, elements p ↓ ∈ P̂, for p ∈ P,
such that

p ↓(p′) = 1 if p′ ≤ p, and 0 otherwise.

Let f : P →s Q, so f : P̂ → Q̂, and write f o : P → Q̂ for its
restriction such that f o(p) = f(p ↓), for p ∈ P. As every element x
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of P̂ is the join
⋃
p∈x p ↓ we see that

f(x) =
⋃
p∈x

f o(p) .

In this way maps f : P →s Q correspond to monotonic functions
f o : P → Q̂. But monotonic functions g : P → Q̂ are just the same
as monotonic functions g : P → [Qop, 2] and, uncurrying, these cor-
respond to monotonic functions h : P×Qop → 2 and so to elements

of P̂op ×Q = [(Pop×Q)op, 2]. This suggests that Pop×Q is a function
space, as indeed is so.

The category Doms is monoidal-closed and in fact carries enough
structure to be a categorical model of classical linear logic, the in-
volution of linear logic, P⊥, being given as Pop. The tensor of P and
Q is given by the product of partial orders P × Q and the func-
tion space from P to Q by Pop × Q. Its products and coproducts
are both given by disjoint unions on objects; for example the usual

product of domains P̂× Q̂ is easily seen to be isomorphic to P̂+Q,
the nondeterministic domain of the disjoint union P+Q.

3.2 Lifting

One important construction on domains, that of lifting, is missing.
Lifting a domain places a new bottom element below a domain. We
can achieve this by adjoining a new element ⊥ below a copy of P to
obtain P⊥; a way to realise this is by taking ⊥ to be the empty set
∅ and the copy of P to be {p ↓ | p ∈ P} so that the order of P⊥ is

given simply by restricting the order of P̂. Operations on processes,
notably prefixing and parallel composition, make essential use of an
operation associated with lifting. The operation is the function

b−c : P̂→ P̂⊥

such that bxc(⊥) = 1 and bxc(p ↓) = x(p) for x ∈ P̂. But the function
b−c is not a map from P to P⊥ in Doms as it does not preserve all
joins; the problem occurs with the join of the empty set

⋃
∅, the

least element of P̂, which is not sent to the least element of P̂⊥.
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3.3 The category Dom

To accommodate the function b−c we are forced to move to a slightly
broader category, though fortunately one that inherits a good many
properties from Doms. The category Dom has the same objects,
partial orders, but its morphisms from P to Q, written f : P → Q,
are functions f : P̂ → Q̂ which need only preserve nonempty joins,
or more accurately, joins of non-empty sets.

Maps P → Q in Dom are determined by their action on ∅ and
p ↓, for p ∈ P. This is because any x ∈ P̂ is trivially the nonempty
join with the least element ∅ ∪

⋃
p∈x p ↓. Given the way to represent

P⊥ as consisting precisely of the elements ∅ and p ↓, for p ∈ P, there
is an embedding j : P⊥ → P̂. So any map f : P → Q is determined
by its restriction f ◦ j : P⊥ → Q̂. The restriction f ◦ j is clearly
monotonic. Moreover any monotonic function g : P⊥ → Q̂ has an
extension1 g† : P → Q in Dom given by g†(x) =

⋃
p∈bxc g(p ↓) for

x ∈ P̂. The two operations (−) ◦ j and (−)† are mutually inverse.
Consequently maps P → Q in Dom correspond bijectively to maps

P⊥ →s Q in Doms,
2 and so to elements in ̂(P⊥)op ×Q.

3.4 Fixed points

The set of maps in Dom from a path order P to one Q inherits an

order from elements of the function space ̂(P⊥)op ×Q. Operations
of the category Dom will come to preserve nonempty joins of such
maps and, in particular, joins of ω-chains. Hence operations F of
Dom taking maps P → Q to maps P → Q will have least fixed
points fix F : P→ Q.

3.5 Intuition

How is one to think of the category Dom? The interpretation we’ll
give and the way in which we define denotational semantics to pro-
cess languages will have some novelty, though similar uses of cate-
gories of nondeterministic domains have been made (see for instance

1 In fact, the left Kan extension along j.
2 The correspondence is natural in P and Q making Dom the coKliesli category asso-

ciated to the comonad (−)⊥ on Doms and a reflective subcategory of Doms.
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[10, 9]). An object P is to be thought of as consisting of finite com-
putation paths (each one a “trace” in the sense of [11]), for example
the finite string of actions that a CCS or CSP process might per-
form. The partial order p ≤ p′ on P is thought of as saying that the
computation path p can be extended to the computation path p′.
With this intuition in mind we shall call the objects of Dom path
orders. An element of P̂ is a trace set as in [11] and stands for the
set of computation paths a nondeterministic process can perform.

A map f : P→ Q takes a nondeterministic process with compu-
tation paths in P as input and yields a nonderministic process with
computation paths in Q as output. How is one to understand that a
map preserves joins of nonempty sets? Because the map need only
preserve nonempty joins it is at liberty to ignore the input process
in giving nontrivial output. Because the map preserves all nonempty
joins the interaction with the input process has to be conducted
in a linear way; the input process cannot be copied to explore its
different nondeterministic possibilities, so once started it can only
follow a single course of computation, during which it may be in-
teracted with intermittently. It’s helpful to think of a map in Dom
as a context which surrounds an input process interacting with the
input process occasionally and sometimes interacting with its own
environment; whichever computation path the output process (the
context surrounding the input process) follows it can only involve
the input process following a single computation path.

4 Constructions on path orders

4.1 Tensor

The tensor of path orders P ⊗ Q is given by the set (P⊥ × Q⊥) \
{(⊥,⊥)}, ordered coordinatewise, in other words, as the product of
P⊥ and Q⊥ as partial orders but with the bottom element (⊥,⊥)
removed.

Let f : P→ P′ and g : Q→ Q′. We define f⊗g : P⊗Q→ P′⊗Q′
as the extension (cf. Section 3.3) h† of a monotonic function

h : (P⊗Q)⊥ → P̂′ ⊗Q′ .
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Notice that (P⊗Q)⊥ is isomorphic to the product as partial orders
of P⊥ × Q⊥ in which the bottom element is then (⊥,⊥). With this

realisation of (P ⊗ Q)⊥ we can define h : P⊥ × Q⊥ → P̂′ ⊗Q′ by
taking

(h(p, q))(p′, q′) = bf(p)c(p′)× bg(q)c(q′)
for p ∈ P⊥, q ∈ Q⊥ and (p′, q′) ∈ P′ ⊗Q′—on the right we use the
product, or meet, of 2, so 0× 0 = 0×1 = 1×0 = 0 and 1× 1 = 1.

The unit for tensor is the empty path order O.
Elements x ∈ P̂ correspond to maps x̃ : O → P sending the

empty element to x. Given x ∈ P̂ and y ∈ Q̂ we define x⊗y ∈ P̂⊗Q
to be the element pointed to by x̃⊗ ỹ : O→ P⊗Q.

4.2 Function space

The function space of path orders P ( Q is given by the product
of partial orders (P⊥)op×Q. Thus the elements of P( Q are pairs,
which we write suggestively as (p 7→ q), with p ∈ P⊥, q ∈ Q, ordered
by

(p′ 7→ q′) ≤ (p 7→ q) ⇐⇒ p ≤ p′ & q′ ≤ q

—note the switch in order on the left.
We have the following chain of isomorphisms between partial

orders:

P⊗Q( R = (P⊗Q)⊥ ×R ∼= P⊥ ×Q⊥ × R ∼= P( (Q( R) .

This gives isomorphism between the elements ̂P⊗Q( R and ̂P( (Q( R).
Thus there is a 1-1 correspondence curry from maps P⊗Q→ R to
maps P→ (Q( R) in Dom; its inverse is called uncurry . We obtain
linear application, app : (P( Q)⊗ P→ Q, as uncurry(1P(Q).

4.3 Products

The product of path orders P&Q is given by the disjoint union of P
and Q. An element of P̂&Q can be identified with a pair (x, y), with

x ∈ P̂ and y ∈ Q̂, which provides the projections π1 : P&Q→ P and
π2 : P&Q→ Q. More general, not just binary, products &i∈I Pi with
projections πj , for j ∈ I, are defined similarly. From the universal
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property of products, a collection of maps fi : P→ Pi, for i ∈ I, can
be tupled together to form a unique map 〈fi〉i∈I : P→ &i∈I Pi with
the property that πj ◦ 〈fi〉i∈I = fj for all j ∈ I. The empty product
is given by O and as the terminal object is associated with unique
maps P → O, constantly ∅, for any path order P. Finite products
are most often written as P1& · · ·&Pk.

Each object P is associated with (nondeterministic) sum oper-
ations, a map Σ : &i∈I P → P in Dom taking an element of the

domain, viewed as a tuple {xi | i ∈ I}, to its union
⋃
i∈I xi in P̂.

The empty sum yields ∅ ∈ P. Finite sums are typically written as
x1 + · · ·+ xk.

Because there are empty elements we can define maps in Doms

from products to tensors of path orders. For instance, in the binary
case, σ : P&Q→s P⊗Q in Doms is specified by

(x, y) 7→ (x⊗ ∅) + (∅ ⊗ y) .

The composition of such a map with the diagonal map, viz.

P diag→ P&P σ→ P⊗ P

will play a role later in the semantics of the metalanguage, allowing
us to duplicate arguments to maps of a certain kind.

4.4 Lifted sums

The category Dom does not have coproducts. However, we can build
a useful sum in Dom with the help of the coproduct of Doms and
lifting. Let Pi, for i ∈ I, be a family of path orders. As their lifted
sum we take the disjoint union of the path orders Σi∈IPi⊥, over the
underlying set

⋃
i∈I{i} × (Pi)⊥ ; the latter path order forms a co-

product in Doms with the obvious injections inj : Pj⊥ →s Σi∈IPi⊥,
for j ∈ I. The injections Inj : Pj → Σi∈IPi⊥ in Dom, for j ∈ I, are
defined to be the composition Inj(−) = inj(b−c). This construction
is not a coproduct in Dom. However, it does satisfy a weaker prop-
erty analogous to the universal property of a coproduct. Suppose
fi : Pi → Q are maps in Dom for all i ∈ I. Then, there is a unique
mediating map

f : Σi∈IPi⊥ →s Q
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in Doms (note the subscript) such that

f ◦ Ini = fi

for all i ∈ I.
Suppose that the family of maps fi : Pi → Q, with i ∈ I, has

the property that each fi is constantly ∅ whenever i ∈ I is different
from j and that fj is h : Pj → Q. Write [h]j :

∑
i∈I Pi⊥ → Q for the

unique mediating map obtained for this choice. Then

[h]j(Inj(z)) = h(z) , [h]j(Ini(z)) = ∅ if i 6= j , and [h]j(∅) = ∅ .

For a general family fi : Pi → Q, with i ∈ I, we can describe

the action of the mediating morphism on x ∈ Σ̂i∈IPi⊥ as f(x) =
Σi∈I [fi]i(x).

Because lifted sum is not a coproduct we do not have that tensor
distributes over lifted sum to within isomorphism. However there is
a map in Doms

dist : Q⊗Σi∈IPi⊥ →s Σi∈I(Q⊗ Pi)⊥ ,

expressing a form of distributivity, given as the extension h† of the
function

h : Q⊥×(Σi∈IPi⊥)⊥ → Σi∈I(Q⊗Pi)⊥; h(q, (i, p)) = (i, (q, p)) ↓, h(q,⊥) = ∅ .

Unary lifted sums in Dom, when I is a singleton, are an impor-
tant special case as they amount to lifting.

4.5 Recursive definitions

Suppose that we wish to model a process language rather like CCS
but where processes are passed instead of discrete values, subject
to the linearity constraint that when a process is received it can be
run at most once. Assume the synchronised communication occurs
along channels forming the set A. The path orders can be expected
to satisfy the following equations:

P = P⊥ +Σa∈AC⊥ +Σa∈AF⊥ , C = P⊗ P , F = (P( P) .
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The three components of process paths P represent paths beginning
with a silent (τ) action, an output on a channel (a!), resuming as a
concretion path (in C), and an input from a channel (a?), resuming
as an abstraction path (in F). It is our choice of path for abstractions
which narrows us to a linear process-passing language, one where the
input process can be run at most once to yield a single (computation)
path.

Fortunately the simple technique for solving recursive domain
equations via information systems in [14] suffices to solve such equa-
tions. A path order P can be regarded as an information system in
which every finite subset of P is consistent and in which the entail-
ment relation is given by the partial order ≤ of P, so {p′} ` p iff
p ≤ p′. Path orders under the order

P E Q ⇐⇒ P ⊆ Q & (∀p, p′ ∈ P. p ≤P p′ ⇐⇒ p ≤Q p′)
form a (large) cpo with respect to which all the constructions on path
orders we have just seen are continuous (their continuity is verified
just as in information systems by showing them monotonic w.r.t. E
and “continuous on token sets”). Solutions to equations like those
above are then obtained as (simultaneous) least fixed points.

5 A metalanguage

Assume that path orders are presented using the constructions with
the following syntax:

T ::=O | T1 ⊗ T2 | T1 ( T2 | Σi∈ITi⊥ | T1&T2

| P | µjP1, · · · , Pk.(T1, · · · ,Tk)
All the construction names have been met earlier with the exception
of the notation for recursively defined path orders. Above P is drawn
from a set of variables used in the recursive definition of path orders;
µjP1, · · · , Pk.(T1, · · · ,Tk) stands for the j-component (so 1 ≤ j ≤ k)
of the E-least solution to the defining equations

P1 = T1, · · · , Pk = Tk ,

in which the expressions T1, · · · ,Tk may contain P1, · · · , Pk. We shall
write µP1, · · · , Pk.(T1, · · · ,Tk) as an abbreviation for

(µ1P1, · · · , Pk.(T1, · · · ,Tk), · · · , µkP1, · · · , Pk.(T1, · · · ,Tk)) .
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In future we will often use vector notation and, for example, write
µ
−→
P .
−→T for the expression above, and confuse a closed expression for

a path order with the path order itself.
The operations of Sections 3 and 4 form the basis of a “raw” syn-

tax of terms which will be subject to typing and linearity constraints
later:

t, u, v, · · · ::= x, y, z, · · · (Variables)
∅ | Σi∈Iti | (Sums)
rec x.t | (Recursive definitions)
λx.t | u · v | (Abstraction and application)
Inj(t) | [t > Inj(x)⇒ u] | (Injections and tests for lifted sums)
(t, u) | [t > (x,−)⇒ u] |

[t > (−, x)⇒ u] | (Pairing and tests for products)
t⊗ u | [t > x⊗ y ⇒ u] (Tensor operation and tests)

The language is similar to that in [1], being based on a form of
pattern matching. In particular [t > Inj(x) ⇒ u] “tests”or matches
t denoting an element of a lifted sum against the pattern Inj(x)
and passes the results of successful matches for x on to u; how the
possibly multiple results of successful matches are combined to a
final result varies according to the category in which language is
interpreted. Accordingly, variables like x in such patterns are binding
occurrences and bind later occurrences of the variable in the body, u
in this case. We shall take for granted an understanding of free and
bound variables, and substitution on raw terms. In examples we’ll
allow ourselves to use + both in writing sums of terms and lifted
sums of path orders.

Let P1, · · · ,Pk be closed expressions for path orders and assume
that the variables x1, · · · , xk are distinct. A syntactic judgement

x1 : P1, · · · , xk : Pk ` t : Q

stands for a map

[[x1 : P1, · · · , xk : Pk ` t : Q]] : P1 ⊗ · · · ⊗ Pk → Q

in Dom. We shall typically write Γ , or ∆, for an environment list
x1 : P1, · · · , xk : Pk. We shall most often abbreviate the denotation
map to

P1 ⊗ · · · ⊗ Pk t→ Q , or even Γ t→ Q .
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Here k may be 0 so the list in the syntactic judgement is empty and
the corresponding tensor product the empty path order O.

A linear language will restrict copying and so substitutions of a
common term into distinct variables. The counterpart in the models
is the absence of a suitable diagonal map from objects P to P ⊗ P.

For example the function x 7→ x⊗x from P̂ to P̂⊗ P is not in general
a map in Dom. To see this assume that P is the discrete order on
the set {a, b}. Then the nonempty join x = a ↓∪ b ↓ is not sent to

(a ↓⊗ a ↓) ∪ (b ↓⊗ b ↓) = {(a, a), (b, b), (a,⊥), (⊥, b)}

as would be needed to preserve non-empty joins, but instead to

x⊗ x = {(a, a), (b, b), (a, b), (a,⊥), (⊥, b)}

with the extra “cross term” (a, b). Consider a term t(x, y), with its
free variables x and y shown explicitly, for which

x : P, y : P ` t(x, y) : Q ,

corresponding to a map P ⊗ P t(x,y)→ Q in Dom. This does not
generally entail that

x : P ` t(x, x) : Q

—there may not be a corresponding map in Dom, for example if
t(x, y) = x⊗ y. There is however a condition on how the variables x
and y occur in t which ensures that the judgement x : P ` t(x, x) : Q
holds and that it denotes the map in Dom obtained as the compo-
sition

P diag→ P&P σ→ P⊗ P t(x,y)→ Q

—using the maps seen earlier in Section 4.3. Semantically, the map
P ⊗ P t(x,y)→ Q has to be essentially a map P&P → Q, more
precisely the left Kan extension of such a map along σ. Syntactically,
this is assured if the variables x and y are not crossed in t according
to the following definition:

Definition 2. Let t be a raw term. Say a set of variables V is crossed
in t iff there are subterms of t of the form

13



a tensor s⊗ u, an application s · u, or a test [z > u⇒ s]

for which t has free occurrences of variables from V appearing in
both s and u.

For example, variables x and y are crossed in x⊗y, but variables
x and y are not crossed in (x + y)⊗ z. Note that a set of variables
V is crossed in a term t if V contains variables x, y, not necessarily
distinct, so that {x, y} is crossed in t. We are mainly interested in
when sets of variables are not crossed in a term.

The term-formation rules are listed below alongside their inter-
pretations as a constructors on morphisms, taking the morphisms
denoted by the premises to that denoted by the conclusion (along
the lines of [2]). We assume that the variables in any enviroment list
which appears are distinct.
Structural rules:

x : P ` x : P , interpreted as P 1P→ P .

∆ ` t : P
Γ,∆ ` t : P , interpreted as

∆ t→ P
Γ ⊗∆ ∅⊗1Γ→ O⊗∆ ∼= ∆ t→ P

.

Γ, x : P, y : Q, ∆ ` t : R
Γ, y : Q, x : P, ∆ ` t : R , interpreted via s : Q⊗ P ∼= P⊗Q as

Γ ⊗ P⊗Q⊗∆ t→ R
Γ ⊗Q⊗ P⊗∆ 1Γ⊗s⊗1∆→ Γ ⊗ P⊗Q⊗∆ t→ R .

Recursive path orders:

Γ ` t : Tj [µ
−→
P .
−→T /−→P ]

Γ ` t : µj
−→
P .
−→T

,
Γ ` t : µj

−→
P .
−→T

Γ ` t : Tj [µ
−→
P .
−→T /−→P ]

.

where the premise and conclusion of each rule are interpreted as
the same map because µj

−→
P .
−→T and Tj [µ

−→
P .
−→T /−→P ] denote equal path

orders.
Sums of terms:

Γ ` ∅ : P , interpreted as
Γ ∅→ P

, the constantly ∅ map.

Γ ` ti : P for all i ∈ I
Γ ` Σi∈Iti : P , interpreted as

Γ ti→ P for all i ∈ I
Γ 〈ti〉i∈I→ &i∈I P

Σ→ P
.

14



Recursive definitions:

Γ, x : P ` t : P {y, x} not crossed for all y in Γ
Γ ` rec x.t : P , interpreted as

Γ ⊗ P t→ P
Γ fix F→ P

—see Section 3.4, where for Γ g→ P the map F (g) is the composi-
tion

Γ diag→ Γ&Γ σ→ Γ ⊗ Γ 1Γ⊗g→ Γ ⊗ P t→ P .

Abstraction:

Γ, x : P ` t : Q
Γ ` λx.t : P( Q , interpreted as

Γ ⊗ P t→ Q
Γ curry t→ (P( Q)

.

Application:

Γ ` u : P( Q ∆ ` v : P
Γ,∆ ` u · v : Q ,interpreted as

Γ u→ (P( Q) ∆ v→ P
Γ ⊗∆ u⊗v→ (P( Q)⊗ P app→ Q .

Injections and test for lifted sums:

Γ ` t : Pj , where j ∈ I
Γ ` Inj(t) : Σi∈IPi⊥

, interpreted as
Γ t→ Pj , where j ∈ I
Γ t→ Pj Inj→ Σi∈IPi⊥

.

Γ, x : Pj ` u : Q , where j ∈ I. ∆ ` t :
∑

i∈I Pi⊥
Γ,∆ ` [t > Inj(x)⇒ u] : Q , interpreted as

Γ ⊗ Pj u→ Q ,where j ∈ I. ∆ t→
∑

i∈I Pi⊥
Γ ⊗∆ 1Γ⊗t→ Γ ⊗

∑
i∈I Pi⊥

dist→
∑

i∈I(Γ ⊗ Pi)⊥
[−]j→ Q

.

Pairing and tests for products:

Γ ` t : P Γ ` u : Q
Γ ` (t, u) : P&Q , interpreted as

Γ t→ P Γ u→ Q
Γ 〈t,u〉→ P&Q

.

Γ, x : P ` u : R ∆ ` t : P&Q
Γ,∆ ` [t > (x,−)⇒ u] : R , interpreted as

Γ ⊗ P u→ R ∆ t→ P&Q
Γ ⊗∆ 1Γ⊗(π1◦t)→ Γ ⊗ P u→ R

.
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Γ, x : Q ` u : R ∆ ` t : P&Q
Γ,∆ ` [t > (−, x)⇒ u] : R , interpreted as

Γ ⊗Q u→ R ∆ t→ P&Q
Γ ⊗∆ 1Γ⊗(π2◦t)→ Γ ⊗Q u→ R

.

Tensor operation and test for tensor:

Γ ` t : P ∆ ` u : Q
Γ,∆ ` t⊗ u : P⊗Q , interpreted as

Γ t→ P ∆ u→ Q
Γ ⊗∆ t⊗u→ P⊗Q .

Γ, x : P, y : Q ` u : R ∆ ` t : P⊗Q
Γ,∆ ` [t > x⊗ y ⇒ u] : R , interpreted as

Γ ⊗ P⊗Q u→ R ∆ t→ P⊗Q
Γ ⊗∆ 1Γ⊗t→ Γ ⊗ P⊗Q u→ R .

Proposition 3. Suppose Γ, x : P ` t : Q. The set {x} is not crossed
in t.

Lemma 4. (Well-formed substitutions) Suppose

Γ, x1 : P, · · · , xk : P ` t : Q

and that the set of variables {x1, · · · , xk} is not crossed in t. Suppose
∆ ` u : P where the variables of Γ and ∆ are disjoint. Then,

Γ,∆ ` t[u/x1, · · · , u/xk] : Q .

In particular, as singleton sets of variables are not crossed in
well-formed terms we immediately deduce:

Corollary 5. If Γ, x : P ` t : Q and ∆ ` u : P, where the variables
of Γ and ∆ are disjoint, then Γ,∆ ` t[u/x] : Q.

Exploiting the naturality of the various operations used in the
semantic definitions, we can show:

Lemma 6. (Substitution Lemma) Suppose Γ, x : P ` t : Q and
∆ ` u : P where Γ and ∆ have disjoint variables. Then,

[[Γ,∆ ` t[u/x] : Q]] = [[Γ, x : P ` t : Q]] ◦ (1Γ ⊗ [[∆ ` u : P]]) .

In particular, linear application amounts to substitution:

Lemma 7. Suppose Γ ` (λx.t) · u : Q. Then, Γ ` t[u/x] : Q and

[[Γ ` (λx.t) · u : Q]] = [[Γ ` t[u/x] : Q]] .
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5.1 Extending the metalanguage

General patterns are well-formed terms built up according to

p ::= x | ∅ | Inj(p) | p⊗ q | (p,−) | (−, p) | p 7→ p′ .

A test on a pattern [u > p ⇒ t] binds the free variables of the
pattern p to the resumptions after following the path specified by
the pattern in u; because the term t may contain these variables
freely the resumptions may influence the computation of t. Such a
test is understood inductively as an abbreviation for a term in the
metalanguage:

[u > x⇒ t] ≡ (λx.t) · u , [u > ∅ ⇒ t] ≡ t ,

[u > Inj(p)⇒ t] ≡ [u > Inj(x)⇒ [x > p⇒ t]] for a fresh variable x,

[u > (p,−)⇒ t] ≡ [u > (x,−)⇒ [x > p⇒ t]] for a fresh variable x,

[u > (−, p)⇒ t] ≡ [u > (−, x)⇒ [x > p⇒ t]] for a fresh variable x,

[u > p⊗ q ⇒ t] ≡ [u > x⊗ y ⇒ [p > x⇒ [q > y ⇒ t]]] for fresh variables x, y,

[u > (p 7→ q)⇒ t] ≡ [u > f ⇒ [f · p > q ⇒ t]] for a fresh variable f .

Let λx ⊗ y.t stand for λw.[w > x ⊗ y ⇒ t], where w is a fresh
variable, and write [u1 > p1, · · · , uk > pk ⇒ t] to abbreviate [u1 >

p1 ⇒ [· · · [uk > pk ⇒ t] · · ·].

5.2 Interpretation in Con

We can interpret the metalanguage in the category of presheaf mod-
els Con with essentially the same constructions and operations as
those in Dom, once we replace 2 by Set and understand (nonempty)
joins as (connected) colimits; 3 the category of presheaf models Col
will play the role of Doms. Because now domains [Pop, 2] are re-
placed by presheaf categories [Pop,Set] we shall often have to make
do with isomorphism rather than straight equality.

In fact, to mimic the mathematics behind the interpretation of
the metalanguage in Dom, all that’s required of a category V, in
place of 2, is that it has all colimits and all finite products. Now P̂,

3 A function between partial orders with least elements preserves (connected) colimits
iff it preserves (nonempty) joins.
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taken to be [Pop,V], will have all colimits, in particular coproducts
to interpret (nondeterministic) sums, and will also support left Kan
extensions to play the role of (−)†. We can understand the embed-

ding (−) ↓ : P→ P̂ through the initial and terminal objects 0 and 1

of V. The lifting map b−c : P→ P̂, again defined so bxc(⊥) = 1 and
bxc(p ↓) = x(p), will preserve connected colimits. Using the product
of V, instead of that of 2, we can copy the definition of the functor
⊗.

The advantage of this generality is that objects in the category
V don’t just have to say whether a path is present in a process but
can provide a “measure” of how. If V is Set a process will denote a
presheaf X which identifies the set of different ways X(p) in which
a path p is realised.

6 Examples

6.1 CCS

As in CCS, assume a set of labels A, a complementation operation
producing ā from a label a, with ¯̄a = a, and a distinct label τ . In
the metalanguage we can specify the path order P as the E-least
solution

P = P⊥ +Σa∈AP⊥ +Σa∈AP⊥ .

Write the injections from P into its expression as a lifted sum as
τ.t, a.t and ā.t for a ∈ A and term t of type P. The curried CCS
parallel composition can be defined as the following term of type
P( (P( P) in the metalanguage:

Par = rec P. λxλy. Σα∈A∪{τ}[x > α.x′ ⇒ α.(P · x′ · y)]+
Σα∈A∪{τ}[y > α.y′ ⇒ α.(P · x · y′)]+
Σa∈A[x > a.x′, y > ā.y′ ⇒ τ.(P · x′ · y′)] .

The other CCS operations are easy to encode. Interpreted in Dom
two CCS terms will have the same denotation iff they have same
traces (or execution sequences). By virtue of having been written
down in the metalanguage the operation of parallel composition will
preserve open-map bisimulation when interpreted in Con; for this
specific P, open-map bisimulation coincides with strong bisimulation.
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In Con we can recover the expansion law for general reasons: the
Substitution Lemmas 6,7 hold in Con, though with isomorphism
replacing equality; the mediating morphism associated with lifted
sums are now in Col (the analogue of Doms) so that tests for lifted
sums distribute over nondeterministic sums. In more detail, write
X|Y for Par ·X · Y , where X and Y are terms of type P. Suppose

X = Σα∈A∪{τ}Σi∈I(α)α.Xi , Y = Σα∈A∪{τ}Σj∈J(α)α.Yj .

Using Lemma 7, and then that the tests distribute over nondeter-
ministic sums,

X|Y ∼=Σα∈A∪{τ}[X > α.x′ ⇒ α.(x′|Y )] +Σα∈A∪{τ}[Y > α.y′ ⇒ α.(X|y′)]
+Σa∈A[X > a.x′, Y > ā.y′ ⇒ τ.(x′|y′)]

∼=Σα∈A∪{τ}Σi∈I(α)α.(Xi|Y ) +Σα∈A∪{τ}Σj∈J(α)α.(X|Yj)
+Σa∈AΣi∈I(a),j∈J(ā)τ.(Xi|Yj) .

The equation for the path order for CCS with early value-passing
would be very similar to that above. An equation suitable for late
value-passing is

P = P⊥ +Σa∈A,v∈V P⊥ +Σa∈A(Σv∈V P⊥)⊥ ,

though this is not the same equation as in [20] which hasΣa∈A(Σv∈V P)⊥
as the final component—perhaps the metalanguage should be broad-
ened to allow this.

6.2 A linear higher-order process language

Recall the path orders for processes, concretions and abstractions for
a higher-order language in Section 4.5. We are chiefly interested in
the parallel composition of processes, ParP,P of type P⊗P( P. But
parallel composition is really a family of mutually dependent opera-
tions also including components such as ParF,C of type F⊗ C( F
to say how abstractions compose in parallel with concretions etc. All
these components can be tupled together in a product using &, and
parallel composition defined as a simultaneous recursive definition
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whose component at P⊗ P( P satisfies

P |Q =Σα[P > α.P ′ ⇒ α(P ′|Q)]+

Σα[Q > α.Q′ ⇒ α(P |Q′)]+
Σa[P > a?F, Q > a!S ⊗ R⇒ τ.(F · S|R)]+

Σa[P > a!S ⊗R, Q > a?F ⇒ τ.(R|F · S)] ,

where we have chosen suggestive names for the injections and, for
instance, P |Q abbreviates ParP,P ·(P⊗Q). In the summations a ∈ A
and α ranges over a!, a?, τ for a ∈ A.

7 Problems

The interpretation of the metalanguage in Con provides a base from
which to examine its equational theory and operational semantics.
We should update the treatment of bisimulation in [4] to take better
account of Con and the metalanguage.

The range of interpretations for the metalanguage indicated in
Section 5.2 is restrictive, for example, in requiring V to be cocom-
plete. As remarked in [8] there are sensible choices for V which are
not cocomplete—the countable sets for instance, provided we also
restrict the path orders to be countable.

Perhaps instantiating V to some specific category, can help pro-
vide a “presheaf model” of a higher-order Pi-Calculus to accom-
pany [5]. This would be a good basis from which to compare and
relate with the project of action structures [16].

The metalanguage here cries out for extensions in two directions,
one to cope with name generation as in the Pi-Calculus, the other
to go beyond linearity. The exponential ! of [20, 5] seems appropriate
but its effects on open-map bisimulation are not understood.

The question of how to approach higher-order independence mod-
els remains.

How to turn the framework on weak bisimulation and contextual
equivalence is the subject of current work based on a lead by Marcelo
Fiore.

Gian Luca Cattani and I are working on how to understand open-
map bisimulation at higher-order in operational terms [7].
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