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On encoding pπ in mπ

Paola Quaglia∗ 1 David Walker 2

1 BRICS∗∗ , Aarhus University
2 Oxford University Computing Laboratory, U.K.

Abstract

This paper is about the encoding of pπ, the polyadic π-calculus, in mπ, the monadic
π-calculus. A type system for mπ processes is introduced that captures the inter-
action regime underlying the encoding of pπ processes respecting a sorting. A
full-abstraction result is shown: two pπ processes are typed barbed congruent iff
their mπ encodings are monadic-typed barbed congruent.

1 Introduction

The π-calculus is a model of computation in which one can naturally express systems
where the inter-connection structure among the parts changes during evolution. Its basic
entities are names. They may be thought of as names of communication links. Processes,
terms expressing systems, use names to interact, and pass names to one another by men-
tioning them in interactions. Names received by a process may be used and mentioned
by it in further interactions.

In mπ, the monadic π-calculus [MPW92], an interaction between processes involves
the transmission of a single name. In pπ, the polyadic π-calculus [Mil92], a tuple of
names is passed in an interaction. As shown in [MPW92] atomic communication of
tuples of names is expressible in the monadic calculus. Using standard notation (a
reader unfamiliar with π-calculus may care to refer to Section 2) the key clauses in an
inductively-defined translation [[·]] from polyadic processes to monadic processes are

[[x(z1 . . . zn). P ]] = x(w). w(z1). . . . . w(zn). [[P ]]

and
[[x〈a1 . . . an〉. Q]] = νw xw.wa1. . . . . wan. [[Q]]

where in each case w is a fresh name, i.e. is not free in the translated process. The
transmission of a tuple ~a = a1 . . . an is expressed by

∗Funded by the EU, under the Marie Curie TMR Programme.
∗∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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[[x(z1 . . . zn). P | x〈a1 . . . an〉. Q]]
= [[x(z1 . . . zn). P ]] | [[x〈a1 . . . an〉. Q]]
−→ νw (w(z1). . . . . w(zn). [[P ]] | wa1. . . . . wan. [[Q]])
−→n [[P ]]{~a/~z} | [[Q]]
= [[P{~a/~z} | Q]]

where ~z = z1 . . . zn. Although communication of an n-tuple is represented using n + 1
interactions, it can be considered atomic since

νw (w(z1). . . . . w(zn). [[P ]] | wa1. . . . . wan. [[Q]]) ≈ [[P ]]{~a/~z} | [[Q]]

where ≈ is (weak) barbed congruence. The first interaction creates a private link; the
subsequent semantically-inert communications transfer the names a1 . . . an from sender
to receiver via that link.

In the polyadic calculus there is a pressing need for some kind of typing discipline,
as among the processes are terms – w(v). v(yz).0 | w〈x〉. x〈abc〉.0 is an example – where
the components disagree on the length of the tuple to be passed – in the second com-
munication in the example. Even on well-typed processes, however, the translation [[·]] is
not fully abstract when barbed congruence is adopted as process equivalence. If P and Q
are well-typed polyadic processes then the equivalence of [[P ]] and [[Q]] implies that of P
and Q, but the converse does not hold, the reason being, briefly, that there are monadic
contexts that do not conform to the interaction regime that underlies the translation. A
simple example is P = xy. xy.0 and Q = xy.0 | xy.0: the monadic processes K[[[P ]]] and
K[[[Q]]] are not barbed bisimilar where K is the monadic context [·] | x(z). x(w). a(v).0.

In this paper we introduce a typing system for monadic processes that captures the
interaction regime underlying the translation, and use it to obtain a full-abstraction
result. The following informal and incomplete account is filled out in the paper. Fix a
set S of sorts and a polyadic sorting λ, a partial function from S to S+, essentially of
the kind introduced in [Mil92]. Write Ψ `λ P if P is well-typed under λ assuming its
free names have the sorts recorded in Ψ, a finite partial function from names to S-sorts.

Write P ≈λ Q if P and Q are mutually well-typed and C[P ]
·≈ C[Q] for every suitably

well-typed context C, where
·≈ is barbed bisimilarity. We construct a set Sm of monadic

sorts and a monadic sorting λm expressed using a graph. We give a typing system for
inferring judgments of the form Ψ; ∆; Γ `mλ M where M is a monadic process and ∆,Γ
are finite partial functions from names to Sm-sorts. One property of the system is that
Ψ `λ P iff Ψ; ∅; ∅ `mλ [[P ]]. As a guide, in a judgment Ψ′; ∆; Γ `mλ M appearing in an
inference of a judgment Ψ; ∅; ∅ `mλ [[P ]], the functions ∆ and Γ will record the monadic
sorts of the monadic names introduced in translating P that are free in M and that
M may use immediately for receiving and for sending, respectively. The sort of name
that M may receive or send via a monadic name w is determined by λm; in general,
that sort changes from one use of w to the next. Using the typing system we define
≈mλ on monadic processes by setting M ≈mλ N if M and N are mutually well-typed in

the monadic system and K[M ]
·≈ K[N ] for every suitably well-typed monadic context K.

The main theorem is that if P and Q are well-typed polyadic processes then

P ≈λ Q iff [[P ]] ≈mλ [[Q]].

Thus the monadic typing system captures the interaction regime that underlies the
polyadic-monadic translation. The main theorem is not easy to prove. The proof, how-
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ever, sheds light on an important class of monadic processes, and several of the techniques
used in it may be useful in other situations.

There has been much work on typing for π-calculus processes; a sample of papers is
[Hon93, Kob97, KPT96, LW95, Mil92, NS97, PS93, PS97, San97, Tur96, VH93]. The
work to which that presented here is most closely related is [Yos96]. We will explain
the relationship at the end of the paper. In Section 2 we recall necessary background
material, in Section 3 we introduce the typing system for monadic processes, and in
Section 4 we prove the main theorem.

2 Background

In this section we recall necessary definitions and notations. We refer to the papers cited
in the Introduction for further explanation and detailed proofs.

We presuppose a countably-infinite set of names, ranged over by lower-case letters.
We write ~x for a tuple x1 . . . xn of names.

The prefixes are given by
π ::= x~y | x(~z)

where ~y and ~z are nonempty and ~z is a tuple of distinct names.
The processes are given by

P ::= 0 | π. P | P | P ′ | νz P | !P.

We write P for the set of processes; P,Q,R range over P .
A context is an expression obtained from a process by replacing an occurrence of

‘0’ by the hole [·]; C ranges over contexts. We write C[P ] for the process obtained by
replacing the occurrence of the hole in C by P .

We sometimes refer to processes and contexts collectively as terms and use T to range
over terms. A term is monadic if for each subterm x~y. T or x(~y). T of it, | ~y |= 1. We
writeM for the set of monadic processes; M,N,K range overM. Also, K,H range over
monadic contexts.

In x(~z). P and in νz P the displayed occurrences of ~z and z are binding with scope
P . An occurrence of a name in a term is free if it is not within the scope of a binding
occurrence of the name. We write fn(P ) for the set of names that have a free occurrence
in P , and fn(P,Q, . . .) for fn(P ) ∪ fn(Q) ∪ . . .. We write also bn(P ) for the set of names
that have a binding occurrence in P .

A substitution is a function on names that is the identity except on a finite set. We
use θ to range over substitutions, and write xθ for θ applied to x. The support of θ,
supp(θ), is {x | xθ 6= x}, and the cosupport is cosupp(θ) = {xθ | x ∈ supp(θ)}. If
supp(θ) = {x1, . . . , xn} and xiθ = yi for each i, we write {y1 . . . yn/x1 . . . xn} for θ. If X is
a set of names we write Xθ for {xθ | x ∈ X}. We write Pθ for the process obtained by
replacing each free occurrence of each name x in P by xθ, with change of bound names
to avoid captures.

We adopt the following conventions. We identify processes that differ only by change
of bound names. Further, when considering a collection of processes and substitutions
we tacitly assume that the free names of the processes are different from their bound
names, that no name has more than one binding occurrence, and that no bound name
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is in the support or cosupport of any of the substitutions. This convention is referred to
as the non-homonymy condition.

Definition 1 Structural congruence is the smallest congruence, ≡, on processes such
that

1. P1 | (P2 | P3) ≡ (P1 | P2) | P3, P1 | P2 ≡ P2 | P1, P | 0 ≡ P

2. νz νw P ≡ νw νz P , νz 0 ≡ 0

3. νz (P1 | P2) ≡ P1 | νz P2 provided z 6∈ fn(P1)

4. !P ≡ P | !P .

An occurrence of one term in another is unguarded if it is not underneath a prefix.

Lemma 2 If P ≡ Q then Pθ ≡ Qθ and fn(P ) = fn(Q) and for each unguarded π. P ′ in
P there is an unguarded π.Q′ in Q with P ′ ≡ Q′.

Proof: The assertions follow easily from the definitions. �

Definition 3 Intraaction is the smallest relation, −→, on processes such that

1. x~y. P | x(~z). Q −→ P | Q{~y/~z} provided |~y |=|~z |

2. P −→ P ′ implies P | Q −→ P ′ | Q

3. P −→ P ′ implies νz P −→ νz P ′

4. P ≡ Q −→ Q′ ≡ P ′ implies P −→ P ′.

We write =⇒ for the reflexive and transitive closure of −→.

Lemma 4 If P −→ Q then fn(Q) ⊆ fn(P ).

Proof: The proof is by induction on the inference of P −→ Q. It uses Lemma 2. �

In writing terms we assume composition associates to the left. Any intraaction arises
from two complementary unguarded prefixes not underneath replications:

Lemma 5 If P −→ Q then P ≡ P ′ = ν ~w (x~y. P1 | x(~z). P2 | P3) where | ~y |=| ~z | and
Q ≡ Q′ = ν ~w (P1 | P2{~y/~z} | P3) and P ′ 7→ Q′, i.e. P ′ −→ Q′ may be inferred without
use of the structural rule (rule 4).

Proof: The proof is by induction on the inference of P −→ Q. �

If x is a name then x is a co-name. We use µ to range over names and co-names.
The observability predicates, ↓µ, are defined by: P ↓x if P has an unguarded subterm

x(~z). Q and x ∈ fn(P ); and P ↓x if P has an unguarded subterm x~y.Q and x ∈ fn(P ).
Further, ⇓µ is =⇒↓µ.
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Lemma 6 The relations ↓µ are closed under ≡, and P ↓x iff P ≡ ν ~w (x(~z). Q | Q′)
where x 6∈ ~w, and P ↓x iff P ≡ ν ~w (x~y.Q | Q′) where x 6∈ ~w.

Proof: The assertions follow easily from the definitions and Lemma 2. �

Definition 7 Barbed bisimilarity is the largest symmetric relation, ≈̇, such that if P ≈̇ Q
then P ↓µ implies Q ⇓µ, and P −→ P ′ implies Q =⇒ ≈̇ P ′.

Definition 8 Monadic processes M and N are monadic barbed congruent , M ≈m N , if
K[M ] ≈̇ K[N ] for every monadic context K.

A simple but important observation is

Lemma 9 If w 6∈ fn(M,N, ~y) and ~y = y1 . . . yn and ~z = z1 . . . zn, then

νw (wy1. . . . . wyn.M | w(z1). . . . . w(zn). N) ≈m M | N{~y/~z}.

Proof: The simplest way to prove this is to appeal to the account of process behaviour
given by the labelled transition relations (which is not given in this paper). The two
processes in question are clearly congruent and hence monadic barbed congruent.

Alternatively, consider the relation containing all pairs of processes of the forms

K[K1, . . . ,Km] and K[K ′1, . . . ,K
′
m]

where K is an m-ary monadic context for some m ≥ 0, and for each i the process Ki is
of the form

νw (wy1. . . . . wyn.M | w(z1). . . . . w(zn). N)

and the process K ′i of the form
M | N{~y/~z}

where Ki and K ′i satisfy the conditions of the lemma. It can be shown that this relation
is a barbed bisimulation up to ≡. �

Definition 10 The translation [[·]] from terms to monadic terms is defined as follows:

[[x〈y1 . . . yn〉. T ]] = νw xw.wy1. . . . . wyn. [[T ]]

[[x(z1 . . . zn). T ]] = x(w). w(z1). . . . . w(zn). [[T ]]

and [[[·]]] = [·], [[0]] = 0, [[T | T ′]] = [[T ]] | [[T ′]], [[νz T ]] = νz [[T ]], and [[ !T ]] = ![[T ]].

The translation enjoys the following properties.

Lemma 11 fn([[P ]]) = fn(P ) and [[Pθ]] = [[P ]]θ.

Proof: The proof is by induction on the structure of P . �

Lemma 12 If P ≡ Q then [[P ]] ≡ [[Q]].
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Proof: The assertion follows directly from the definitions. �

Lemma 13 P ↓µ iff [[P ]] ↓µ.

Proof: The proof is by induction on the structure of P . �

Lemma 14 If P −→ Q then [[P ]] −→M =⇒ [[Q]] with M ≈m [[Q]].

Proof: The proof uses Lemmas 5, 9, 11, and 12. �

We now consider typing of polyadic processes. Fix a set S of sorts , ranged over by s, t,
and a sorting λ : S ⇀ S+.

We use Ψ to range over finite partial functions from names to sorts. We write n(Ψ)
for the domain of Ψ. If n(Ψ) = {x1, . . . , xn} and Ψ(xi) = si for each i, we write
{x1 : s1, . . . , xn : sn} for Ψ. We write Ψ(x) ' s to mean ‘if x ∈ n(Ψ) then Ψ(x) = s’.
Ψ and Ψ′ are compatible if x ∈ n(Ψ) ∩ n(Ψ′) implies Ψ(x) = Ψ′(x). If Ψ and Ψ′ are
compatible we write Ψ,Ψ′ for Ψ∪Ψ′, and we abbreviate Ψ, {x : s} to Ψ, x : s. We write
Ψθ for {xθ : s | x : s ∈ Ψ}. We say θ respects Ψ if x, y ∈ n(Ψ) and xθ = yθ implies
Ψ(x) = Ψ(y).

Definition 15 P is a λ-process if Ψ ` P may be inferred for some Ψ using the rules in
Table 1, where the side conditions are

1. z 6∈ n(Ψ),

2. λ(s) = (t1 . . . tn), Ψ(x) ' s, Ψ(yi) ' ti, x = yi implies s = ti, and yi = yj implies
ti = tj ,

3. λ(s) = (t1 . . . tn), Ψ(x) ' s, and zi /∈ n(Ψ).

Ψ ` 0

Ψ ` P
Ψ ` !P

Ψ ` P1 Ψ ` P2

Ψ ` P1 | P2

Ψ, z : s ` P
(1)

Ψ ` νz P

Ψ ` P
(2)

Ψ, x : s, y1 : t1, . . . , yn : tn ` x〈y1 . . . yn〉. P

Ψ, z1 : t1, . . . , zn : tn ` P
(3)

Ψ, x : s ` x(z1 . . . zn). P

Table 1: The polyadic typing rules

The type system enjoys the following properties.
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Lemma 16 If Ψ ` P then fn(P ) ⊆ n(Ψ) and bn(P ) ∩ n(Ψ) = ∅.

Proof: The proof is by induction on the inference of Ψ ` P . �

In view of the last assertion, when we write a judgment Ψ ` P we tacitly assume that
the bound names of P are chosen not to be in n(Ψ).

Lemma 17 If Ψ ` P and n(Ψ′) ∩ n(Ψ) = ∅, then Ψ,Ψ′ ` P .

Proof: The proof is by induction on the inference of Ψ ` P . �

Lemma 18 If Ψ ` P and Ψ′ ⊆ Ψ and fn(P ) ⊆ n(Ψ′), then Ψ′ ` P .

Proof: The proof is by induction on the inference of Ψ ` P . �

Lemma 19 If Ψ ` P and Q ≡ P , then Ψ ` Q.

Proof: The assertion follows from the definitions using Lemmas 17 and 18. �

Lemma 20 If Ψ ` P and θ respects Ψ, then Ψθ ` Pθ.

Proof: The proof is by induction on the inference of Ψ ` P . �

Lemma 21 If Ψ ` P and P −→ P ′, then Ψ ` P ′.

Proof: The assertion follows from the definitions using Lemmas 19 and 20. �

Lemma 22 If P is a λ-process and P =⇒ Q ≡ ν ~w(x~y.Q1 | x(~z). Q2 | Q3), then |~y |=|~z |.

Proof: The assertion follows from the definitions and Lemma 21. �

We write Ψ ` P,Q if Ψ ` P and Ψ ` Q. The rules for typing contexts are like the
rules for typing processes, with the addition of the rule: Ψ ` [·] for any Ψ. A context C
is a λ(Ψ)-context if using the rule-instance Ψ ` [·] we can infer Ψ′ ` C for some Ψ′. If
Ψ ` P and C is a λ(Ψ)-context, then C[P ] is a λ-process.

Definition 23 P andQ are barbed λ-congruent , P ≈λ Q, if there is Ψ such that Ψ ` P,Q
and C[P ] ≈̇ C[Q] for every λ(Ψ)-context C.
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3 The monadic type system

We now introduce the monadic type system and establish some of its properties. Fix a
set S of sorts and a sorting λ.

Definition 24 The set of m-sorts , ranged over by σ, τ , is

Sm = {◦, •} ∪ {si | 1 ≤ i ≤ |λ(s) |, s ∈ S}.

For example, if S = {s, t, r} and λ(s) = (t r), λ(t) = (s) and λ(r) = (r), then Sm =
{◦, •, s1, s2, t1, r1}.

Definition 25 The labelled directed graph Gλ has nodes Sm, labels S, and arrows

◦ s−→ s1 t1−→ s2 t2−→ . . .
tn−1−−→ sn

tn−→ •

if λ(s) = (t1 . . . tn).

For the example sorting above the arrows are

◦ s−→ s1 t−→ s2 r−→ • and ◦ t−→ t1
s−→ • and ◦ r−→ r1 r−→ •.

We use ∆,Γ to range over finite partial functions from names to Sm − {•}, and use
analogous notations to those mentioned earlier in connection with functions Ψ.

The following notion will be important in typing compositions.

Definition 26 Suppose ∆1 and Γ1 are compatible, and ∆2 and Γ2 are compatible. Then
∆1,Γ1 and ∆2,Γ2 are complementary if n(∆1)∩n(∆2) = ∅, n(Γ1)∩n(Γ2) = ∅, and ∆1,∆2

and Γ1,Γ2 are compatible.

Definition 27 A monadic process M is a λm-process if Ψ; ∆; Γ ` M may be inferred
for some Ψ,∆,Γ using the rules in Table 2.

We write 〈Ψ; ∆; Γ ` M〉 for an inference of the judgment Ψ; ∆; Γ ` M . We say w
is monadic in 〈Ψ; ∆; Γ ` M〉 if for some judgment Ψ′; ∆′; Γ′ ` M ′ in 〈Ψ; ∆; Γ ` M〉 we
have w ∈ n(∆′,Γ′).

In the premises of the rules for prefixes, {w : •} is read as ∅. This saves writing, as
illustrated in the root of the left branch of the following sample inference, where ∅; ∅; ∅ ` 0
stands for ∅; ∅; {w : •} ` 0.

Note that in the rules for input prefix, z 6= x by the convention on free and bound
names.

The rules are best understood via an example. Assuming the example sorting above,
let P = !νa (Q | R) where Q = a〈bc〉.0 and R = a(uv).0. Then

[[P ]] = !νa ((νw aw.wb. wc.0) | a(z). z(u). z(v).0)

and we have, in full,
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nil
Ψ; ∅; ∅ ` 0

out1
Ψ; ∅; {y : σ} `M

Ψ, x : s; ∅; {y : ◦} ` xy.M
◦ s−→ σ and Ψ(x) ' s and y 6∈ n(Ψ, x)

out2
Ψ; ∅; {x : τ} `M

Ψ, y : s; ∅; {x : σ} ` xy.M
◦ 6= σ

s−→ τ and Ψ(y) ' s and x 6∈ n(Ψ, y)

inp1

Ψ; {z : σ}; ∅ `M
Ψ, x : s; ∅; ∅ ` x(z).M

◦ s−→ σ and Ψ(x) ' s and z 6∈ n(Ψ)

inp2

Ψ, z : s; {x : τ}; ∅ `M
Ψ; {x : σ}; ∅ ` x(z).M

◦ 6= σ
s−→ τ and x, z 6∈ n(Ψ)

par
Ψ; ∆1; Γ1 `M1 Ψ; ∆2; Γ2 `M2

Ψ; ∆1,∆2; Γ1,Γ2 `M1 |M2

∆1,Γ1 and ∆2,Γ2 are complementary

res1

Ψ, z : s; ∆; Γ `M
Ψ; ∆; Γ ` νz M

z 6∈ n(Ψ,∆,Γ) res2

Ψ; ∆; Γ, z : ◦ `M
Ψ; ∆; Γ ` νz M

z 6∈ n(Ψ,∆,Γ)

res3

Ψ; ∆, z : σ; Γ, z : σ `M
Ψ; ∆; Γ ` νz M

z 6∈ n(Ψ,∆,Γ) and σ 6= ◦ rep
Ψ; ∅; ∅ `M
Ψ; ∅; ∅ ` !M

Table 2: The monadic typing rules

∅; ∅; ∅ ` 0

{c : r}; ∅; {w : s2} ` wc. 0

{b : t, c : r}; ∅; {w : s1} ` wb.wc.0

{a : s, b : t, c : r}; ∅; {w : ◦} ` aw.wb.wc.0

{a : s, b : t, c : r}; ∅; ∅ ` [[Q]]

{u : t, v : r, b : t, c : r}; ∅; ∅ ` 0

{u : t, b : t, c : r}; {z : s2}; ∅ ` z(v).0

{b : t, c : r}; {z : s1}; ∅ ` z(u). z(v).0

{a : s, b : t, c : r}; ∅; ∅ ` [[R]]

{a : s, b : t, c : r}; ∅; ∅ ` [[Q]] | [[R]]

{b : t, c : r}; ∅; ∅ ` νa ([[Q]] | [[R]])

{b : t, c : r}; ∅; ∅ ` [[P ]]

9



Note that in the judgment

{a : s, b : t, c : r}; ∅; {w : ◦} ` aw.wb. wc.0

the name w is recorded in the Γ-component with m-sort ◦, and that the second of the
restriction rules is applied to infer

{a : s, b : t, c : r}; ∅; ∅ ` [[Q]].

In the judgment
{b : t, c : r}; ∅; {w : s1} ` wb.wc.0

w is ascribed m-sort s1, indicating that the process can immediately send on w. The
graph Gλ stipulates that the name which can be sent via w must be of sort t. In the
judgment

{c : r}; ∅; {w : s2} ` wc.0

w has m-sort s2 and c sort r as given by Gλ. After being used for sending for the second
and last time, w disappears from the Γ-component.

In a complementary way, m-sorts are ascribed to z in the ∆-components of the judg-
ments involving subterms of R to indicate how they use the name for receiving.

We now state some properties of the type system.

Lemma 28 Suppose Ψ; ∆; Γ `M . Then

1. ∆ and Γ are compatible.

2. n(Ψ) ∩ n(∆,Γ) = ∅.

3. fn(M) ⊆ n(Ψ,∆,Γ).

4. n(∆,Γ) ⊆ fn(M).

5. ◦ /∈ cosupp(∆).

6. Γ(x) = ◦ implies x 6∈ n(∆).

7. bn(M) ∩ n(Ψ,∆,Γ) = ∅.

Proof: All the items are proved by induction on the derivation of Ψ; ∆; Γ `M . Each rule
is considered in turn as the last rule applied. Only a few issues are worth commenting
on.

• The proof of (2), relatively to the prefix cases, appeals to the side conditions of the
corresponding rules.

• In the proof of (6), the case of the par rule is carried out as follows. Suppose that
Ψ; ∆; Γ ` M1 | M2 with x : ◦ ∈ Γ. Assume that x ∈ n(∆). Then, from ∆ and Γ
compatible, it follows x : ◦ ∈ ∆. Absurd by (5).

• As for the proof of (7), by (4) and the non-homonymy condition it is sufficient to
prove that bn(M) ∩ n(Ψ) = ∅.
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In view of the last part, when we write a judgment Ψ; ∆; Γ ` M we tacitly assume
that the bound names of M are chosen not to be in n(Ψ,∆,Γ).

We write |T | for the number of operators in the term T . The reason the following
lemma takes the form it does is that to carry out later arguments by induction on type
inference, a handle on the size of terms is needed.

Lemma 29 If Ψ; ∆; Γ `M then there is M ′ ≡M such that |M ′ | ≤ |M | and:

1. If w : ◦ ∈ Γ then M ′ = ν ~w xw.N or M ′ = ν ~w (xw.N | K) where w 6∈ ~w.

2. If w : σ ∈ Γ and σ 6= ◦, then M ′ = ν ~w wx.N or M ′ = ν ~w (wx.N | K) where
w 6∈ ~w.

3. If w : σ ∈ ∆ then M ′ = ν ~w w(z). N or M ′ = ν ~w (w(z). N | K) where w 6∈ ~w.

4. If w : σ ∈ ∆∩Γ thenM ′ = ν ~w(wx.N | w(z). N ′) orM ′ = ν ~w(wx.N | w(z). N ′ | K)
where w 6∈ ~w.

Proof: The proof of the four items is by simulataneous induction on the derivation of
Ψ; ∆; Γ ` M . We show in the following the case when the last rule applied is the par
rule. The other cases are easier.

[par ] M = M1 |M2 and Ψ; ∆j; Γj `Mj with ∆1 ∪∆2 = ∆ and Γ1 ∪ Γ2 = Γ and ∆1,Γ1

and ∆2,Γ2 complementary.

1. As n(Γ1) ∩ n(Γ2) = ∅, from w : ◦ ∈ Γ it follows that w : ◦ ∈ Γi and w : ◦ /∈ Γj
for i 6= j. Let us assume i = 1. Then w : ◦ ∈ Γ1 and by inductive hypothesis (1)
there is some M ′1 ≡ M1 such that |M ′1 | ≤ |M1 | and either M ′1 = ν ~w xw.N or
M ′1 = ν ~w (xw.N | K) where w 6∈ ~w. Note that by the non-homonymy condition
we can assume ~w /∈ fn(M2). Then:

• If M ′1 = ν ~w xw.N set M ′ = ν ~w (xw.N |M2).

• If M ′1 = ν ~w (xw.N | K) set M ′ = ν ~w (xw.N | (K |M2)).

In both cases M ′ ≡M ′1 |M2 ≡M and |M ′ | ≤ |M |.

2. If w : σ ∈ Γ with σ 6= ◦ then the proof is analogous to the above case. It only
requires appealing to the inductive hypothesis (2) rather than to the inductive
hypothesis (1).

3. If w : σ ∈ ∆ then from n(∆1)∩n(∆2) = ∅ it follows that w : σ ∈ ∆i and w : σ /∈ ∆j .
Then the thesis follows from inductive hypothesis (3), analogously to the proof of
(1).

4. From n(∆1)∩n(∆2) = ∅ and the hypothesis w : σ ∈ ∆∩Γ it follows that w ∈ n(∆i)
and w /∈ n(∆j) for i 6= j. Analogously, w ∈ n(Γh) and w /∈ n(Γk) for h 6= k, from
n(Γ1) ∩ n(Γ2) = ∅. Note that σ 6= ◦ from w ∈ n(∆) and Lemma 28(5). We
distinguish two cases depending on whether or not i = h.
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• Suppose w ∈ n(∆i) ∩ n(Γi) and set, say, i = 1. Then by inductive hypothe-
sis (4) there is M ′1 ≡M1 such that |M ′1 | ≤ |M1 | and either M ′1 = ν ~w (wx.N |
w(z). N ′) or M ′1 = ν ~w (wx.N | w(z). N ′ | K). Note that in either case we can
assume ~w /∈ fn(M2). Then:

– If M ′1 = ν ~w (wx.N | w(z). N ′) set M ′ = ν ~w (wx.N | w(z). N ′ |M2).

– If M ′1 = ν ~w (wx.N | w(z). N ′ | K) set M ′ = ν ~w (wx.N | w(z). N ′ | K |
M2).

In each of the above cases M ′ ≡M ′1 |M2 ≡M and |M ′ | ≤ |M |.
• Suppose now that w ∈ n(∆i) ∩ n(Γj) and that i = 1. Then by inductive

hypothesis (2) and inductive hypothesis (3) there are M ′1 ≡M1 and M ′2 ≡M2

such that |M ′1 | ≤ |M1 | and |M ′2 | ≤ |M2 | and

M ′1 = ν ~w1 w(z). N1 or M ′1 = ν ~w1 (w(z). N1 | K1)

M ′2 = ν ~w2 wx.N2 or M ′2 = ν ~w2 (wx.N2 | K2)

where w 6∈ ~w1, ~w2 and we can assume ~w1 /∈ fn(M ′2) and ~w2 /∈ fn(M ′1). Then,
analogously to the previous cases for each of the possible four combinations
we can find M ′ so that M ′ ≡M ′1 |M ′2 ≡M and |M ′ | ≤ |M |.

�

Lemma 30 If Ψ; ∆; Γ `M and Ψ′ ⊆ Ψ and n(Ψ) ∩ fn(M) ⊆ n(Ψ′), then Ψ′; ∆; Γ `M .

Proof: By induction on the derivation of Ψ; ∆; Γ `M . �

Lemma 31 If Ψ; ∆; Γ `M and n(Ψ′) ∩ n(Ψ; ∆; Γ) = ∅, then Ψ,Ψ′; ∆; Γ `M .

Proof: By induction on the derivation of Ψ; ∆; Γ `M . �

Typing is, as would be expected, invariant under structural congruence:

Lemma 32 If Ψ; ∆; Γ `M and N ≡M , then Ψ; ∆; Γ ` N .

Proof: Note that M ≡ N iff M ≡∗1 N , where M ′ ≡1 N
′ if there are a context K and

processes M ′′, N ′′ comprising an instance of one of the axioms of structural congruence
such that M ′ = K[M ′′] and N ′ = K[N ′′].

The proof is by induction on the length of the proof M = N1 ≡1 N2 ≡1 . . . ≡1 Nn =
N . The inductive base is void, since M = N . As for the inductive step:

Assuming Ψ; ∆; Γ ` Nn−1 we show that Nn−1 ≡1 Nn implies Ψ; ∆; Γ ` Nn.

In the case when Nn−1 = K[N ′n−1] ≡1 K[N ′n] = Nn and N ′n−1 ≡1 N
′
n is an instance of

one of the axioms in Def. 1, the statement is a consequence of the following lemma:

Lemma 33 If Ψ; ∆; Γ ` K with Ψ′; ∆′; Γ′ ` [·] and Ψ′; ∆′; Γ′ `M then Ψ; ∆; Γ ` K[M ].
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Proof: By induction on the structure of K. �

It remains to show that the statement holds when Nn−1 ≡1 Nn is itself an axiom
instance. We work out the most interesting cases. Those omitted do not present difficul-
ties.

[νz (M1 |M2) ≡ (M1 | νz M2) provided z /∈ fn(M1)]
We distinguish three cases depending on the last typing rule applied to derive

Ψ; ∆; Γ ` Nn−1 = νz (M1 |M2).

Note that in each case z /∈ n(Ψ,∆,Γ).

- [res1] In this case we have: Ψ, z : s; ∆; Γ ` M1 | M2 and Ψ, z : s; ∆j ; Γj ` Mj with
∆1 ∪∆2 = ∆ and Γ1 ∪ Γ2 = Γ. Then from z /∈ fn(M1) and Lemma 30:

Ψ; ∆1; Γ1 `M1 Ψ, z : s; ∆2; Γ2 `M2

with z /∈ n(Ψ,∆2,Γ2). Hence the thesis by res1 and par .

- [res2] From typing: Ψ; ∆; Γ, z : ◦ ` M1 | M2 and Ψ; ∆j ; Γj ` Mj with ∆1 ∪∆2 = ∆
and Γ1 ∪ Γ2 = Γ ∪ {z : ◦}. Note that it cannot be that z ∈ n(Γ1) because this, by
Lemma 28(4), would contradict the hypothesis z /∈ fn(M1). Then:

Ψ; ∆1; Γ1 `M1 Ψ; ∆2; Γ
′
2, z : ◦ `M2

with z /∈ n(Ψ,∆2,Γ
′
2). Hence the thesis by res2 and par .

- [res3] Now we have: Ψ; ∆, z : σ; Γ, z : σ `M1 |M2 and Ψ; ∆j ; Γj `Mj with ∆1∪∆2 =
∆ ∪ {z : σ} and Γ1 ∪ Γ2 = Γ ∪ {z : σ}. Note that z ∈ n(∆2) ∩ n(Γ2). In fact from
z /∈ fn(M1) and Lemma 28(4), it follows that z /∈ n(∆1,Γ1). Hence:

Ψ; ∆1; Γ1 `M1 Ψ; ∆′2, z : σ; Γ′2, z : σ `M2

with z /∈ n(Ψ,∆′2,Γ
′
2). Then the thesis by res3 and par .

[(M1 | νz M2) ≡ νz (M1 |M2) provided z /∈ fn(M1)]
Here we assume that:

Ψ; ∆; Γ ` Nn−1 = M1 | νz M2

and show that Ψ; ∆; Γ ` νz (M1 |M2). From typing we have:

Ψ; ∆1; Γ1 `M1 Ψ; ∆2; Γ2 ` νz M2

with ∆1 ∪∆2 = ∆ and Γ1 ∪ Γ2 = Γ and z /∈ n(Ψ,∆2,Γ2). Note that z /∈ n(∆1,Γ1) from
z /∈ fn(M1) and Lemma 28(4).
In the cases when the last rule applied to infer Ψ; ∆2; Γ2 ` νzM2 is either res2 or res3, i.e.

it is either Ψ; ∆2; Γ2, z : ◦ `M2 or Ψ; ∆2, z : σ; Γ2, z : σ `M2, the thesis is an immediate
consequence of the above observation. So, the most interesting case to deal with is when
the last rule applied to type νz M2 is res1 and hence: Ψ, z : s; ∆2; Γ2 ` M2. In that
case, from the hypothesis z /∈ fn(M1) and Lemma 31 we get: Ψ, z : s; ∆1; Γ1 `M1. Then
Ψ, z : s; ∆1,∆2; Γ1,Γ2 `M1 |M2 and hence the thesis. �

The final result in this section shows how typing changes under intraaction. To prove
the lemma it is necessary to examine the effects of substitution on typing.
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Lemma 34 If Ψ; ∆; Γ ` M and θ = {y/z} and y, z /∈ n(∆,Γ) and θ respects Ψ, then
Ψθ; ∆; Γ `Mθ.

Proof: By induction on the derivation of Ψ; ∆; Γ `M . Each typing rule is considered in
turn as the last rule applied. We report in the following the most interesting cases.

[nil ] M = 0 then Mθ = M and Ψθ; ∅; ∅ ` Mθ where Ψθ = Ψ if z /∈ n(Ψ) and
Ψθ = Ψ′ ∪ {y : s} if Ψ = Ψ′ ∪ {z : s}.

[out1] M = xw.M ′ and Ψ = Ψ′ ∪ {x : s} for s such that ◦ s−→ σ and

Ψ′, x : s; ∅; {w : ◦} ` xw.M ′ Ψ′; ∅; {w : σ} `M ′

with Ψ′(x) ' s and w 6∈ n(Ψ′, x). Note that w 6= z, y from the hypothesis y, z /∈ n(∆,Γ).
Then Mθ = xθw.M ′θ. By inductive hypothesis:

Ψ′θ; ∅; {w : σ} `M ′θ

Moreover Ψ′θ(xθ) ' s from Ψ′θ(xθ) = Ψ′(x), and w /∈ n(Ψ′θ, xθ) ⊆ n(Ψ′, y, x) from
w 6∈ n(Ψ′, x) and w 6= y. Then from out1:

Ψ′θ, xθ : s; ∅; {w : ◦} `Mθ = xθw.M ′θ

[out2] M = xw.M ′ and Ψ = Ψ′ ∪ {w : s} for s such that ◦ 6= σ
s−→ τ and

Ψ′, w : s; ∅; {x : σ} ` xw.M ′ Ψ′; ∅; {x : τ} `M ′

with Ψ′(w) ' s and x 6∈ n(Ψ′, w). Note that x 6= z, y, so Mθ = xwθ.M ′θ and by
inductive hypothesis:

Ψ′θ; ∅; {x : τ} `M ′θ

We have also: Ψ′θ(wθ) = Ψ′(w) ' s, and x /∈ n(Ψ′θ, wθ) ⊆ n(Ψ′, y, w) from x 6∈ n(Ψ′, w)
and x 6= y. Then from out2:

Ψ′θ, wθ : s; ∅; {x : σ} `Mθ = xwθ.M ′θ

[inp1] M = x(w).M ′ and Ψ = Ψ′ ∪ {x : s} for s such that ◦ s−→ σ and

Ψ′, x : s; ∅; ∅ ` x(w).M ′ Ψ′; {w : σ}; ∅ `M ′

with Ψ′(x) ' s and w 6∈ n(Ψ′). Note that we can assume w 6= y, z. In fact, if w = z then
from the non-homonymy condition z /∈ fn(M ′), hence Mθ = M . On the other hand, if
w = y then w is renamed into a fresh w′ in Mθ = xθ(w′).M ′{w′/w}{w/z} in order to avoid
captures. From w 6= y, z and Ψ′; {w : σ}; ∅ `M ′ we deduce by inductive hypothesis:

Ψ′θ; {w : σ}; ∅ `M ′θ

It also holds: Ψ′θ(xθ) = Ψ′(x) ' s, and w /∈ n(Ψ′θ) ⊆ n(Ψ′, y). Hence:

Ψ′θ, xθ : s; ∅; ∅ `Mθ = xθ(w).M ′θ
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[inp2] M = x(w).M ′ and

Ψ; {x : σ}; ∅ ` x(w).M ′ Ψ, w : s; {x : τ}; ∅ `M ′

for s such that ◦ 6= σ
s−→ τ and with x,w 6∈ n(Ψ). As in the above case we can assume

w 6= y, z. Also note that by hypothesis y, z 6= x. Then Mθ = x(w).M ′θ and by inductive
hypothesis:

Ψθ, w : s; {x : τ}; ∅ `M ′θ

with x,w /∈ n(Ψθ) ⊆ n(Ψ, y) from x,w /∈ n(Ψ) and x 6= y and w 6= y. Hence from inp2:

Ψθ; {x : σ}; ∅ `Mθ = x(w).M ′θ

[par ] M = M1 |M2 and ∆ = ∆1∪∆2, Γ = Γ1∪Γ2 with ∆1,Γ1 and ∆2,Γ2 complementary
and Ψ; ∆j ; Γj `Mj . Note that y, z /∈ n(∆j ,Γj) from the hypothesis y, z /∈ n(∆,Γ). Then
by inductive hypothesis: Ψθ; ∆j ; Γj `Mjθ and hence: Ψθ; ∆; Γ `Mθ = M1θ |M2θ. �

Lemma 35 If Ψ; ∆; Γ ` M and θ = {y/z} and z : σ ∈ ∆ and z /∈ n(Γ) and y 6∈ n(Ψ,∆)
and (y : τ ∈ Γ implies σ = τ), then Ψ; ∆θ; Γ `Mθ.

Proof: By induction on the derivation of Ψ; ∆; Γ `M .

[inp2] M = z(w).M ′ and

Ψ; {z : σ}; ∅ ` z(w).M ′ Ψ, w : s; {z : τ}; ∅ `M ′

for s such that ◦ 6= σ
s−→ τ and with z, w 6∈ n(Ψ). Note that y /∈ n(Ψ, z) by hypothesis.

We can also assume y, z 6= w (for details see the inp1 case of the proof of Lemma 34).
Then Mθ = zθ(w).M ′θ = y(w).M ′θ and by y /∈ n(Ψ, w, z) and inductive hypothesis:

Ψ, w : s; {y : τ}; ∅ `M ′θ

Since y, w /∈ n(Ψ), from inp2 we have:

Ψ; {y : σ}; ∅ `Mθ = y(w).M ′θ

[par ] M = M1 |M2 and ∆ = ∆1∪∆2, Γ = Γ1∪Γ2 with ∆1,Γ1 and ∆2,Γ2 complementary
and

Ψ; ∆j ; Γj `Mj

From z : σ ∈ ∆ and the complementarity condition it follows that z ∈ n(∆i) and
z /∈ n(∆j) with i 6= j. Moreover z /∈ n(Ψ) by Lemma 28(2). Then z /∈ fn(Mj) from
z /∈ n(Γ) and Lemma 28(3). Hence Mθ ≡Miθ |Mj .
By inductive hypothesis:
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Ψ; ∆iθ; Γi `Miθ

Note that ∆iθ,Γi and ∆j ,Γj are complementary. In fact:

• n(∆iθ) ∩ n(∆j) ⊆ n(∆i, y) ∩ n(∆j) = {y} ∩ n(∆j) = ∅ from y /∈ n(∆);

• ∆iθ,∆j and Γi ∪ Γj are compatible from the hypothesis that y : τ ∈ Γ implies
σ = τ .

Hence we have:

Ψ; ∆iθ,∆j ; Γi,Γj `Miθ |Mj

[res1, res2, res3] M = νwM ′. As for the above input prefix case we can assume z, y 6= w.
Hence in each of the three cases for restriction the thesis is an immediate consequence of
the inductive hypothesis. �

Lemma 36 If Ψ; ∆; Γ `M and M −→M ′, then Ψ; ∆′; Γ′ `M ′ where

1. ∆′ = ∆ and Γ′ = Γ, or

2. ∆′ = ∆ ∪ {y : σ} and Γ′ = Γ− {y : ◦} ∪ {y : σ} where y : ◦ ∈ Γ and ◦ s−→ σ, or

3. ∆′ = ∆− {y : σ} ∪ {y : τ} and Γ′ = Γ− {y : σ} ∪ {y : τ} where y : σ ∈ ∆ ∩ Γ and

◦ 6= σ
s−→ τ .

Proof: From the hypothesis that Ψ; ∆; Γ `M −→M ′ and Lemma 5, we have:

M ≡ ν ~w N = ν ~w (xy.M1 | x(z).M2 |M3)

M ′ ≡ ν ~w N ′ = ν ~w (M1 |M2{y/z} |M3)

Then Ψ; ∆; Γ ` ν ~w N from Lemma 32. Assume that in 〈Ψ; ∆; Γ ` ν ~w N〉 the typing
judgment for (xy.M1 | x(z).M2 |M3) is

Ψ′; ∆′; Γ′ ` (xy.M1 | x(z).M2 |M3)

and is derived from Ψ′; ∆1; Γ1 ` (xy.M1 | x(z).M2) and Ψ′; ∆2; Γ2 `M3.
We distinguish two cases depending on the structure of 〈Ψ′; ∆1; Γ1 ` xy.M1 | x(z).M2〉.

1. Suppose that the last rule applied to type xy.M1 is out1.
Then y /∈ n(Ψ′) and x : s ∈ Ψ′ for s such that ◦ s−→ σ. So the last rule applied to

type x(z).M2 is inp1 and we have:

Ψ′, x : s; ∅; {y : ◦} ` xy.M1 Ψ′, x : s; ∅; ∅ ` x(z).M2

Ψ′; ∅; {y : σ} `M1 Ψ′; {z : σ}; ∅ `M2 (1)

Hence ∆′ = ∆2 and Γ′ = Γ2 ∪ {y : ◦} and we have:

Ψ′; ∆2; Γ2, y : ◦ ` (xy.M1 | x(z).M2 |M3) (2)
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Note that y /∈ n(Ψ′, z), since y 6= z from the non-homonymy condition. Also note
that from typing z /∈ n(Ψ′). Then from (1) and Lemma 35:

Ψ′; {y : σ}; ∅ `M2{y/z} (3)

From the complementarity of ∆1,Γ1 and ∆2,Γ2 and from y : ◦ ∈ Γ1 it follows
that y /∈ n(Γ2). Also, y /∈ n(∆2) from y : ◦ ∈ Γ′ and Lemma 28(5). Then
({y : σ}, {y : σ}) and (∆2,Γ2) are complementary and from (1) and (3) we get:

Ψ′; ∆2, y : σ; Γ2, y : σ ` (M1 |M2{y/z} |M3) (4)

We can now compare the type inference for ν ~w N ′ rooted in (4) with the type
inference for ν ~w N rooted in (2). From this comparison and Lemma 32 we have
the following two possible typing judgments for M ′:

• If y /∈ ~w then Ψ; ∆, y : σ; Γ− {y : ◦}, y : σ `M ′.
In fact the sequence of restriction rules applied in the type inference rooted in

(4) is the same as the sequence of restriction rules applied in the type inference
rooted in (2).

• If y ∈ ~w then Ψ; ∆; Γ `M ′.
In this case res3 is applied correspondingly to νy in the inference rooted in (4)

instead of the rule res2 applied in the inference rooted in (2). The sequence
of restriction rules applied in the two type inferences is otherwise the same.

2. Now suppose that the last rule applied to type xy.M1 is out2.
Then y : s ∈ Ψ′ for s such that ◦ 6= σ

s−→ τ . So the last rule applied to type

x(z).M2 is inp2 and we have:

Ψ′, y : s; ∅; {x : σ} ` xy.M1 Ψ′; {x : σ}; ∅ ` x(z).M2

Ψ′; ∅; {x : τ} `M1 Ψ′, z : s; {x : τ}; ∅ `M2 (5)

Note that from the non-homonymy condition and typing z, y 6= x and z /∈ n(Ψ′).
Then from (5) and Lemma 34:

Ψ′, y : s; {x : τ}; ∅ `M2{y/z} (6)

Under the above hypotheses ∆′ = ∆2 ∪ {x : σ} and Γ′ = Γ2 ∪ {x : σ}. Hence:

Ψ′; ∆2, x : σ; Γ2, x : σ ` (xy.M1 | x(z).M2 |M3) (7)

From the complementarity of ({x : σ}, {x : σ}) and (∆2,Γ2), the complementarity
of ({x : τ}, {x : τ}) and (∆2,Γ2) follows. Hence from (5) and (6) we have:

Ψ′; ∆2, x : τ ; Γ2, x : τ ` (M1 |M2{y/z} |M3) (8)

The type inference for ν ~w N ′ rooted in (8) is now compared to the type inference
for ν ~w N rooted in (7), leading to the following two cases.

• If x /∈ ~w then Ψ; ∆− {x : σ}, x : τ ; Γ− {x : σ}, x : τ `M ′.

17



• If x ∈ ~w then Ψ; ∆; Γ `M ′.

Hence the thesis, from the possible typing judgments for M ′ collected above. �

The rules for typing monadic contexts are like the rules in Tab. 2, with the addition
of the rule: Ψ; ∆; Γ ` [·] for any Ψ,∆,Γ. A monadic context K is a λm(Ψ,∆,∆′)-context
if assuming Ψ; ∆; ∆ ` [·] we can infer Ψ′; ∆′; ∆′ ` K for some Ψ′.

Definition 37 M and N are barbed λm-congruent , M ≈mλ N , if there are Ψ,∆ such
that Ψ; ∆; ∆ `M,N and K[M ] ≈̇ K[N ] for every λm(Ψ,∆, ∅)-context K.

Recalling the counterexample P = xy. xy.0 and Q = xy.0 | xy.0 to full abstraction of
the translation, and the monadic context K = [·] | x(z). x(w). a(v).0 such that K[[[P ]]] 6≈̇
K[[[Q]]], note that K is not a λm(Ψ,∆, ∅)-context for any Ψ and ∆.

4 Main results

In this section we prove the main results. We begin by relating typing of P under λ and
typing of [[P ]] under λm. First, typing is preserved by the translation:

Lemma 38 If Ψ ` P then Ψ; ∅; ∅ ` [[P ]].

Proof: The proof is by induction on the inference of Ψ ` P .
Suppose Ψ ` P where P = x~y.Q and ~y = y1 . . . yn. Then Ψ′ ` Q and Ψ = Ψ′, x :

s, y1 : t1, . . . , yn : tn where λ(s) = (t1, . . . , tn) and Ψ′(x) ' s and Ψ′(yi) ' ti. By
assumption, Ψ′; ∅; ∅ ` [[Q]]. Now [[P ]] = νw xw.wy1. . . . . wyn. [[Q]] where w 6∈ n(Ψ).

Hence as ◦ 6= sn
tn−→ • and Ψ′(yn) ' tn,

Ψ′, yn : tn; ∅; {w : sn} ` wyn. [[Q]]

and by similar reasoning, as ◦ 6= s1 t1−→ s2 and Ψ′(y1) ' t1,

Ψ′, y1 : t1, . . . , yn : tn; ∅; {w : s1} ` wy1. . . . . wyn. [[Q]].

Hence since ◦ s−→ s1 and Ψ′(x) ' s,

Ψ′, x : s, y1 : t1, . . . , yn : tn; ∅; {w : ◦} ` xw.wy1. . . . . wyn. [[Q]]

and hence
Ψ′, x : s, y1 : t1, . . . , yn : tn; ∅; ∅ ` νw xw.wy1. . . . . wyn. [[Q]]

i.e. Ψ; ∅; ∅ ` [[P ]].
Suppose Ψ ` P where P = x(~z). Q and ~z = z1 . . . zn. Then Ψ′, z1 : t1, . . . , zn :

tn ` Q and Ψ = Ψ′, x : s where λ(s) = (t1, . . . , tn) and Ψ′(x) ' s and zi 6∈ n(Ψ′). By
assumption, Ψ′, z1 : t1, . . . , zn : tn; ∅; ∅ ` [[Q]]. Now [[P ]] = x(w). w(z1). . . . . w(zn). [[Q]]

where w 6∈ n(Ψ′, x, ~z). Hence as ◦ 6= sn
tn−→ •,

Ψ′, z1 : t1, . . . , zn−1 : tn−1; {w : sn}; ∅ ` w(zn). [[Q]]
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and by similar reasoning, as ◦ 6= s1 t1−→ s2,

Ψ′; {w : s1}; ∅ ` w(z1). . . . . w(zn). [[Q]].

Hence since ◦ s−→ s1 and Ψ′(x) ' s,

Ψ′, x : s; ∅; ∅ ` x(w). w(z1). . . . . w(zn). [[Q]]

i.e. Ψ; ∅; ∅ ` [[P ]].
The other cases are straightforward. For instance suppose Ψ ` P where P = !Q.

Then Ψ ` Q and so by assumption Ψ; ∅; ∅ ` [[Q]] and so Ψ; ∅; ∅ ` ![[Q]], i.e. Ψ; ∅; ∅ ` [[P ]].
�

Secondly, if the translation of a process can be typed, then the process itself can be
typed:

Lemma 39 If Ψ; ∆; Γ ` [[P ]] then ∆ = Γ = ∅ and Ψ ` P .

Proof: The proof is by induction on the structure of P .
Suppose Ψ; ∆; Γ ` [[P ]] where P = x~y.Q with ~y = y1 . . . yn, so

Ψ; ∆; Γ ` νw xw.wy1. . . . . wyn. [[Q]]

where w 6∈ n(Ψ,∆,Γ).
Suppose Ψ; ∆; Γ ` [[P ]] is inferred from

Ψ, w : s; ∆; Γ ` xw.wy1. . . . . wyn. [[Q]].

Then it must be that ∆ = ∅ and Γ = {x : σ} and Ψ; ∅; Γ′ ` wy1. . . . . wyn. [[Q]] where

◦ 6= σ
s−→ τ and Γ′ = {x : τ} and Ψ(w) ' s. But this is impossible by the form of the

typing rules for output prefixes and the facts that σ, τ 6= ◦.
So suppose Ψ; ∆; Γ ` [[P ]] is inferred from

Ψ; ∆′; Γ′ ` xw.wy1. . . . . wyn. [[Q]]

where ∆′ = ∆, w : σ and Γ′ = Γ, w : σ where σ 6= ◦. Then it must be that ∆′ = ∅ and
so σ = •. Hence Γ = ∅. But this is impossible by the form of the typing rules for output
prefixes by reasoning similar to that above.

Hence Ψ; ∆; Γ ` [[P ]] is inferred from

Ψ; ∆; Γ, w : ◦ ` xw.wy1. . . . . wyn. [[Q]].

So ∆ = Γ = ∅ where w 6∈ n(Γ), and

Ψ1; ∅; {w : σ1} ` wy1. . . . . wyn. [[Q]]

where Ψ = Ψ1, x : s and Ψ1(x) ' s and ◦ s−→ σ1. In turn,

Ψ2; ∅; {w : σ2} ` wy2. . . . . wyn. [[Q]]
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where Ψ1 = Ψ2, y1 : t1 and Ψ2(y1) ' t1 and σ1
t1−→ σ2. By similar reasoning,

Ψn; ∅; {w : σn} ` wyn. [[Q]]

where Ψn−1 = Ψn, yn−1 : tn−1 and Ψn(yn−1) ' tn−1 and σn−1
tn−1−−→ σn, and hence

Ψn+1; ∅; {w : σn+1} ` [[Q]]

where Ψn = Ψn+1, yn : tn and Ψn+1(yn) ' tn and σn
tn−→ σn+1. By assumption

{w : σn+1} = ∅, so σn+1 = •, and Ψn+1 ` Q. Hence

◦ s−→ σ1
t1−→ . . .

tn−1−−→ σn
tn−→ •

so λ(s) = (t1 . . . tn). Further, if x = yi then s = ti because Ψi+1(yi) ' ti, and similarly
if yi = yj then ti = tj . Hence Ψ ` P . So in summary, ∆ = Γ = ∅ and Ψ ` P .

The case P = x(~z). Q is similar and slightly simpler. The remaining cases are straight-
forward. For instance P = !Q and Ψ; ∆; Γ ` [[P ]] then ∆ = Γ = ∅ and Ψ; ∅; ∅ ` [[Q]]. Hence
by assumption Ψ ` Q, and so Ψ ` P . �

This lemma does not hold if we admit prefixes of the forms x〈〉 and x(). For example
if λ(s) = (s), then ∅; ∅;x : s1 ` [[x〈〉.0]], [[x().0]].

We now prove that the translation is sound.

Theorem 40 If [[P ]] ≈mλ [[Q]] then P ≈λ Q.

Proof: Consider first B = {(R, [[R]]) | R a λ-process}. We noted in Section 2 that

1. R ↓µ iff [[R]] ↓µ, and

2. if R −→ R′ then [[R]] −→ N =⇒ [[R′]] with N ≈m [[R′]].

We show that
if [[R]] −→ N then N ≈m [[R′]] where R −→ R′. (9)

Assertion (9) does not hold without the assumption that R is a λ-process: consider for
instance R = a〈bc〉.0 | a(z).0. Assertion (9) is harder to prove than it may at first sight
appear. The reason is that the structural rule may be applied arbitrarily in inferring
[[R]] −→ N , and it takes some work to see that a suitable R′ can always be found. The
monadic type system plays a key role in carrying out that work.

We write M  M ′ if there are 〈Ψ; ∆; Γ ` M〉 and w monadic in it such that M ′ is
obtained from M by replacing a subterm N by N ′ where

1. N = νw νz K and N ′ = νz νw K where z is not monadic in 〈Ψ; ∆; Γ `M〉, or

2. N = νw (K | K ′) and N ′ = K | νw K ′ where w 6∈ fn(K), or

3. N = νw (K | K ′) and N ′ = νw K | K ′ where w 6∈ fn(K ′).

Note that M  M ′ implies M ′ ≡1 M . In a structural manipulation of [[R]], a  -
transformation involving νw changes the term structure in such a way as to move the
restriction towards the prefix of the form xw introduced in translating R. The  -
transformations and their inverses have no direct counterparts in a manipulation of R.
We have, however,
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Lemma 41 If [[R]] ≡M then M  ∗ [[R′′]] where R′′ ≡ R.

Proof: Since ≡ is ≡∗1, it suffices to show that

if M  ∗ [[R′′]] and M ≡1 M
′, then either M ′  ∗ [[R′′]], or M ′  ∗ [[R′]] where

R′ ≡1 R
′′.

If M ′  M then clearly M ′  ∗ [[R′′]]. Further, if M  M ′ then again M ′  ∗ [[R′′]],
since the  -transformations commute with one another. So suppose the transformation
between M and M ′ is not of these kinds. The proof is then a case analysis on the axiom
of structural congruence applied in the transformation. We give just one case. Suppose
M is K[ !N ] and M ′ is K[N | !N ]. In M  ∗ [[R′′]], each restricted monadic name is
reunited with its partner via  -transformations. The same (fourth) axiom of structural
congruence can then be applied to the corresponding subterm of R′′ to yield R′. Then
using  −1-transformations, the term M ′ can be obtained from [[R′]]. A more formal
proof can be given by appealing to a notion of embedding of an inference of Ψ ` R in
an inference of Ψ; ∅; ∅ ` [[R]]. This makes precise the notion of ‘corresponding subterm’
referred to above. �

Now returning to the proof of (1), suppose [[R]] ≡ M = ν ~w (xw.M1 | x(z).M2 | M3)
and M 7→ M ′ = ν ~w (M1 | M2{w/z} | M3) ≡ N . Then R ≡ R′′ where M  ∗ [[R′′]]. By
the form of M , R′′ = ν~v (x~y. P1 | x(~z). P2 | P3) and R′′ 7→ R′ = ν~v (P1 | P2{~y/~z} | P3)
where νw xw.M1  ∗ [[x~y. P1]], x(z).M2  ∗ [[x(~z). P2]], and ν~uM3  ∗ [[P3]] where ~w is a
permutation of ~vw~u. Further N =⇒ [[R′]] and [[R′]] ≈m N as required. By 1, 2 and (9)
we have

Corollary 42 If R is a λ-process then [[R]] ≈̇ R.

To complete the proof of the theorem, suppose [[P ]] ≈mλ [[Q]] and Ψ is such that Ψ; ∅; ∅ `
[[P ]], [[Q]] and K[[[P ]]] ≈̇ K[[[Q]]] for every λm(Ψ, ∅, ∅)-context K. Then Ψ ` P,Q and if C
is a λ(Ψ)-context then [[C]] is a λm(Ψ, ∅, ∅)-context and so

C[P ] ≈̇ [[C[P ]]] = [[C]][[[P ]]] ≈̇ [[C]][[[Q]]] = [[C[Q]]] ≈̇ C[Q].

Hence P ≈λ Q. �

We now prove that the translation is complete.

Theorem 43 If P ≈λ Q then [[P ]] ≈mλ [[Q]].

Proof: Suppose P ≈λ Q and Ψ0 is such that Ψ0 ` P,Q and C[P ] ≈̇ C[Q] for every
λ(Ψ0)-context C. Then Ψ0; ∅; ∅ ` [[P ]], [[Q]]. Suppose K is a λm(Ψ0, ∅, ∅)-context. The
crucial fact is:

There is a λ(Ψ0)-context C such that K[[[P ]]] ≈̇ [[C]][[[P ]]] and K[[[Q]]] ≈̇ [[C]][[[Q]]]. (10)

From this, using Corollary 42 we have

K[[[P ]]] ≈̇ [[C]][[[P ]]] = [[C[P ]]] ≈̇ C[P ] ≈̇ C[Q] ≈̇ [[C[Q]]] = [[C]][[[Q]]] ≈̇ K[[[Q]]].

To establish (10) we show
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Lemma 44 Suppose Ψ; ∆; ∆, ~w : ◦ ` K assuming Ψ0; ∆0; ∆0, ~w0 : ◦ ` [·]. Then there
exists C such that

1. Ψ ` C assuming Ψ0 ` [·], and

2. if Ψ0; ∆0; ∆0, ~w0 : ◦ ` M then ν~v ~w K[M ] ≈mλ [[C]][ν~v0 ~w0 M ] where ~v = n(∆) and
~v0 = n(∆0).

Proof: By induction on the derivation of Ψ; ∆; ∆, ~w : ◦ ` K. Note that the assertion
concerns ≈mλ and not ≈̇; this is important in the induction.

The most difficult cases are the prefixes. Of these, we only show the argument for
the input prefix; the argument for output prefix is dual to it.

[inp1] K = x(z).K0 and by the typing rules Ψ = Ψ′ ∪ {x : s} and ∆, ~w = ∅ and

Ψ′; {z : s1}; ∅ ` K0 (where ◦ s−→ s1). For clarity we assume that λ(s) = (t1t2) – this
retains the essence of the problem. By Lemma 29 we have (in the most complicated of
the four possible combinations):

K ≡ K′ = x(z). ν~u1 (z(z1). ν~u2 (z(z2).K3 | K2) | K1)

with | K′ | ≤ |K |. (We abuse notation here: each Ki is a term, i.e. a process or a context.
We may also omit sorts when they are not important.) From the typing rules, setting
~u3 = ∅, in 〈Ψ; ∅; ∅ ` K′〉 the judgment for Ki is of the form

Ψi, ~x1, ~x2; ∆i; ∆i, ~wi : ◦ ` Ki where n(∆i) = ~vi and ~xi~vi ~wi = ~ui.

By the inductive hypothesis there are C1, C2, C3 such that Ψi, ~x1, ~x2 ` Ci assuming Ψ0 ` [·],
and if Ψ0; ∆0; ∆0, ~w0 : ◦ `M then ν~vi ~wi Ki[M ] ≈mλ [[Ci]][ν~v0 ~w0 M ]. Then set

C = x(z1z2). ν~x1~x2 (C3 | C2 | C1).

We show that for every M such that Ψ0; ∆0; ∆0, ~w0 : ◦ `M ,

K′[M ] ≈mλ [[C]][ν~v0 ~w0 M ]. (11)

As an aside, note here the fundamental role of typing in the inductive argument. It is
not in general the case that K′[M ] ≈m [[C]][ν~v0 ~w0 M ]. For example if ν~u1K1 ↓µ for some
µ then H′[K′[M ]] 6≈̇ H′[[[C]][ν~v0 ~w0 M ]] where H′ is [·] | νw xw.0.

Returning to the main proof, if Ψ0; ∆0; ∆0, ~w0 : ◦ `M then K′′[M ] ≈mλ [[C]][ν~v0 ~w0M ]
where

K′′ = x(z). z(z1). z(z2). ν~u1~u2 (K3 | K2 | K1).

So assertion (11) follows from

K′[M ] ≈mλ K′′[M ].

This in turn follows from

Lemma 45 Suppose Ψ; ∅; ∅ ` K ′,K ′′ where

K ′ = x(z). ν~u1 (z(z1). ν~u2 (z(z2).K3 | K2) | K1)

K ′′ = x(z). z(z1). z(z2). ν~u1~u2 (K3 | K2 | K1).
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Then K ′ ≈mλ K ′′.

Proof: Let Θ = {θ | θ respects Ψ}. We show that

R = {(H[K ′θ],H[K ′′θ]) | θ ∈ Θ and H is a λm(Ψθ, ∅, ∅)-context}∪ ≈̇

is a barbed bisimulation up to ≈m. Then for any λm(Ψ, ∅, ∅)-contextH we have H[K ′] ≈̇
H[K ′′], and hence K ′ ≈mλ K ′′.

Let (H[K ′θ],H[K ′′θ]) ∈ R. The two processes H[K ′θ] and H[K ′′θ] have the same
observables. Assume now that H[K ′θ] −→ X . Then from Lemma 5:

H[K ′θ] ≡ ν ~w (zy. T1 | z(u). T2 | T3) −→ X ≡ ν ~w (T1 | T2{y/u} | T3) (12)

From this and definition of K ′,K ′′ and ≡, we have:

H[K ′′θ] ≡ ν ~w (zy. T ′1 | z(u). T ′2 | T ′3) −→ Y ≡ ν ~w (T ′1 | T ′2{y/u} | T ′3) (13)

where T ′j = Tj if Tj does not contain a copy of K ′θ which comes from filling the hole in
H. Note that by definition of λm(Ψθ, ∅, ∅)-context, there exist Ψ′,Ψ′′ such that Ψ′; ∅; ∅ `
H[K ′θ] and Ψ′′; ∅; ∅ ` H[K ′′θ]. From this and Lemma 36, it follows that:

Ψ′; ∅; ∅ ` X Ψ′′; ∅; ∅ ` Y (14)

We distinguish two cases:

[case 1] If the intraaction does not involve a copy of K ′θ which comes from filling the
hole in H, then we can further distinguish the following two subcases.

1. If T2 does not contain a copy of K ′θ then:

X ≡ H′[K ′θ] Y ≡ H′[K ′′θ]

and from (14) H′ is a λm(Ψθ, ∅, ∅)-context. Hence (X,Y ) ∈ R.

2. If T2 does contain a copy of K ′θ then:

X ≡ H′[K ′θ{y/u}] Y ≡ H′[K ′′θ{y/u}]

We show that θ{y/u} ∈ Θ by investigating on the typing of (zy. T1 | z(u). T2).

• If the last rule applied in the typing judgment for z(u). T2 is inp1 then Ψ1; {u :
σ}; ∅ ` T2 for some Ψ1 such that u /∈ n(Ψ1). Suppose that u ∈ n(Ψθ). From
the non-homonymy condition no binder on u can occur in T2. Then, since
the only rules that can decrement the size of the first component of a typing
judgment are inp2 and res1, the contradiction u ∈ n(Ψ1) follows. Hence
u /∈ n(Ψθ), namely u /∈ cosupp(θ) and either u /∈ n(Ψ) or (u ∈ n(Ψ) and
θ = θ′{w/u}), i.e. θ{y/u} = θ. In each case θ{y/u} ∈ Θ.

• If the last rule applied in the typing judgment for z(u). T2 is inp2 then the last
rule applied to type zy. T1 is out2 and hence Ψ1, u : s; {z : τ}; ∅ ` T2 for some
Ψ1 such that Ψ1(y) ' s. Then u : s ∈ Ψθ and Ψθ(y) ' s. Hence the thesis
simply noting that (w : s ∈ Ψθ implies Ψ(w) ' s).
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From θ{y/u} ∈ Θ and Lemma 34 we have: Ψθ{y/u}; ∅; ∅ ` K ′θ{y/u},K ′′θ{y/u}.
Then H′ is a λm(Ψθ{y/u}, ∅, ∅)-context from (14), and hence (X,Y ) ∈ R.

[case 2] If the intraaction does involve a copy of K ′θ which comes from filling the
hole then in (12) and (13) the following holds: z(u). T2 ≡ K ′θ and z(u). T ′2 ≡ K ′′θ and
T1 = T ′1.

Note that, since Ψθ; ∅; ∅ ` K ′θ, the typing judgment for zy. T1 must have been inferred
from out1, namely:

Ψθ; ∅; {y : ◦} ` zy. T1 Ψθ; ∅; {y : σ} ` T1

with ◦ s−→ σ and z : s ∈ Ψθ. From Ψθ; ∅; {y : ◦} ` zy. T1 and Ψ′; ∅; ∅ ` H[K ′θ] it follows
that y ∈ ~w. Also, from Ψθ; ∅; {y : σ} ` T1 and applying twice Lemma 29 we have that, in
the most complicated of the four possible cases, T1 ≡ ν ~w1 (yx1. ν ~w2 (yx2. N3 | N2) | N1)
with y 6∈ ~w1, ~w2. Hence:

X ≡ ν ~w ( ν ~w1 (yx1. ν ~w2 (yx2. N3 | N2) | N1) |
ν~u1 (y(z1). ν~u2 (y(z2).K3θ

′ | K2θ
′) | K1θ

′) |
T3 )

where θ′ = θ{y/u} and where z2 /∈ fn(K2θ
′) and z1, z2, u2 /∈ fn(K1θ

′) from the non-
homonymy condition. Analogously:

Y ≡ ν ~w ( ν ~w1 (yx1. ν ~w2 (yx2. N3 | N2) | N1) |
y(z1). y(z2). ν~u1~u2 (K3θ

′ | K2θ
′ | K1θ

′) |
T ′3 )

Then, letting θ1 = {x1/z1} and θ2 = {x1x2/z1z2}, we have:

X −→2 X ′′ ≡ ν ~w ( ν ~w1 (ν ~w2 (N3 | N2) | N1) |
ν~u1 (ν~u2 (K3θ

′θ2 | K2θ
′θ1) | K1θ

′) |
T3 )

Y −→2 Y ′′ ≡ ν ~w ( ν ~w1 (ν ~w2 (N3 | N2) | N1) |
ν~u1~u2 (K3θ

′θ2 | K2θ
′θ2 | K1θ

′θ2) |
T ′3 )

Noting that X ≈m X ′′ by y ∈ ~w, we can conclude the proof by the following argument.
If the hole in H is not underneath a replication then z(u). T2 ≡ K ′θ and z(u). T ′2 ≡ K ′′θ
are the only copies of K ′θ and K ′′θ which come from filling the hole in H. Then T3 ≡ T ′3
and hence:

X ≈m X ′′ ≡ Y ′′.

If the hole in H is underneath a replication then X ′′ and Y ′′ differ in that the used K ′θ
and K ′′θ are expanded copies of replications that still occur in T3 and in T ′3 respectively.
Then X ′′ ≡ H′[K ′θ] and Y ′′ ≡ H′[K ′′θ] where, from (14) and Lemma 36, H′ is a
λm(Ψθ, ∅, ∅)-context. Then:
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X ≈m X ′′ ≡ H′[K ′θ] R H′[K ′′θ] ≡ Y ′′.

�

[par ] K = K1 | K2 and we can distinguish the following cases.

• If ∆ = ∅ then by typing

Ψ; ∅; ~wi : ◦ ` Ki where ~w1 ~w2 = ~w.

Then by the inductive hypothesis there are C1, C2 such that Ψ ` Ci assuming Ψ0 `
[·], and if Ψ0; ∆0; ∆0, ~w0 : ◦ ` M then ν ~wi Ki[M ] ≈mλ [[Ci]][ν~v0 ~w0 M ]. Then the
thesis, upon setting C = C1 | C2.

• If ∆ 6= ∅ then z : σ ∈ ∆ for some z. Then by Lemma 29 we have, in the most
complicated case,

K ≡ K′ = ν~u (zz1.K′1 | z(z2).K′2 | K′3)

with | K′ | ≤ |K |. From the typing rules we have

Ψ, ~x1; ∆1; ∆1, ~w1 : ◦, ~w : ◦ ` (zz1.K′1 | z(z2).K′2 | K′3)

where n(∆1) = n(∆) ∪ {z, ~v1} and ~x1z~v1 ~w1 = ~u. Moreover:

Ψ, ~x1; {z : σ}; {z : σ} ` (zz1.K′1 | z(z2).K′2) = K′′1

Ψ, ~x1; ∆, ~v1; ∆, ~v1, ~w1 : ◦, ~w : ◦ ` K3 = K′′2

Then by the inductive hypothesis there are C1, C2 such that Ψ, ~x1 ` Ci assuming
Ψ0 ` [·], and if Ψ0; ∆0; ∆0, ~w0 : ◦ ` M then νz K′′1 [M ] ≈mλ [[C1]][ν~v0 ~w0 M ] and
ν~v~v1 ~w~w1K′′2 [M ] ≈mλ [[C2]][ν~v0 ~w0M ]. Then the thesis, upon setting C = ν~x1(C1 | C2).

[res1,res2,res3] K = νz K1 and, depending on the typing rule under consideration, by
the inductive hypothesis K1 is appropriately related to a certain C1. In each case the
thesis is then an immediate consequence of the inductive hypothesis, setting C = νz C1 if
Ψ, z : s; ∆; ∆, ~w : ◦ ` K1 (rule res1), and C = C1 otherwise. �

This completes the proof of Theorem 43. �

A final remark: in the translation the clause for output prefix could alternatively be

[[x〈a1 . . . an〉. Q]] = νw xw. (wa1. . . . . wan.0 | [[Q]]).

The same results hold in this case, the type system and Lemma 9 showing clearly why
the two translations are in essence the same.
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As mentioned in the Introduction, the work to which that presented here is most closely
related is [Yos96]. There a notion of graph type for monadic processes is introduced and
studied. Nodes of a graph type represent atomic actions, and edges an activation ordering
between them. Among other results, a full abstraction theorem for the translation of
polyadic processes to monadic processes is shown. The present paper is not, therefore,
the first to prove such a result. We believe, however, that the approach introduced in
this paper is considerably simpler and clearer. The type system is of a kind which is
well understood, and its rules are very natural, given the idea of the graph Gλ arising
from a polyadic sorting λ. We found the ability to argue by induction on type inference
invaluable to the proof of full abstraction. We believe the techniques introduced here
may be useful in other circumstances.
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RS-98-17 Roberto Bruni, Jośe Meseguer, Ugo Montanari, and Vladimiro
Sassone.A Comparison of Petri Net Semantics under the Collec-
tive Token Philosophy. September 1998. 20 pp. To appear in4th
Asian Computing Science Conference, ASIAN ’98 Proceedings,
LNCS, 1998.

RS-98-16 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems. September 1998.


