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Talagrand’s Inequality in Hereditary Settings ∗

Devdatt P. Dubhashi †

Department of Computer Science and Engg.
Indian Institute of Technology, Delhi

Hauz Khas, New Delhi 110016, INDIA.
email: dubhashi@cse.iitd.ernet.in

October 6, 1998

Abstract

We develop a nicely packaged form of Talagrand’s inequality that
can be applied to prove concentration of measure for functions defined
by hereditary properties. We illustrate the framework with several
applications from combinatorics and algorithms. We also give an ex-
tension of the inequality valid in spaces satisfying a certain negative
dependence property and give some applications.

1 Talagrand’s Inequality

Talagrand’s inequality is an isoperimetric inequality that applies in the set-
ting where Ω =

∏
i∈I Ωi is a product space indexed by some finite index set

I with the product measure.

∗Submitted to Random Structures and Algorithms and under revision.
†Work done while at the SPIC Mathematical Institute, Chennai, India and while visit-

ing BRICS, Basic Research in Computer Science, Centre of the Danish National Research
Foundation, Department of Computer Science, University of Aarhus, Denmark.
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The crucial matter however is the distance. Talagrand’s convex distance is
defined by1

dT (x,A) := max
06=α≥0

min
y∈A

∑
xi 6=yi αi

(
∑
i α

2
i )

1/2
. (1)

The max is taken over all non–negative reals αi which are not all zero. By
normalising the αis we can write this also as:

dT (x,A) := max∑
i
α2
i=1

min
y∈A

∑
xi 6=yi

αi.

Define the t–neighbourhood of a set in the Talagrand distance in the usual
way:

At := {x ∈ Ω | dT (x,A) ≤ t}.

Theorem 1 (Talagrand’s Inequality) Let A be a subset in a product space.
Then for any t > 0,

Pr[A]Pr[ATt ] ≤ e−t
2/4. (2)

In this note, we shall supplement Talagrand’s inequality in hereditary set-
tings:

• We develop a general framework for applying Talagrand’s inequality
to functions defined on product spaces by hereditary properties. The
precise definition is in § 2 below. This gives a nicely packaged and easy
to use framework for proving concentration of measure. We should
point out that the germs of this are already implicit in the original
paper of Talagrand [6], see also the account in Steele’s monograph
[5]. Spencer [4] makes it explicit, but we believe our formulation is of
independent interest.

• We extend Talagrand’s inequality to certain settings where the un-
derlying measure is not the product measure (i.e. independence is
not available), but satisfies a certain negative dependence condition.

1We should have sup and inf in place of max and min but in the cases of interest to
us, where A is finite, the replacement is justified by compactness.
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This extension is incomparable with Marton’s recent extension of Ta-
lagrand’s inequality to dependent variables [3]. The extension is stated
precisely and proved in § 3

We illustrate the frameworks developed with several examples; still these
only scratch the surface of the wide applicability of these tools.

2 Hereditary Properties

We will develop a general framework to analyse a certain class of functions on
product spaces which are defined by hereditary (i.e. monotone) properties
of index sets. This framework generalises slightly the results implicit in
Talagrand [6] and explicit in Steele [5] and Spencer [4]. We then illustrate
the versatality of this framework by several examples.

2.1 A General Framework

The starting point of our framework comes from the original example that
motivated Talagrand to develop his theory: increasing subsequences. Given
a sequence of reals x = x1, . . . , xn, an increasing subsequence is an index set
J ⊆ [n] such that for each j < k ∈ J , we have xj ≤ xk. Consider the boolean
property φ(x, J) which is true iff J is an increasing subsequence in x. One
observes that

• If xj = yj for each j ∈ J , then φ(x, J) = φ(y, J).

• If J ⊆ J ′, then φ(x, J) ≥ φ(x, J ′) (where we are identifying true with
1 and false with 0).

These are the two essential properties that are needed in order to apply
Talagrand’s inequality. We will actually generalise even further to consider
properties defined by families of index sets. However, it will be helpful to
keep in mind the example and the formulation of the two properties above.
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We shall need some notations. For x, y ∈ Ω and J ⊆ I, we use the notation
xJ = yJ to mean xj = yj , j ∈ J , and for a family J of subsets of I, by
xJ = yJ we mean xJ = yJ , J ∈ J . Let Jx=y := {J ∈ J | xJ = yJ} and note
that xJx=y = yJx=y .

Let φ(x,J ) be a boolean property such that it is

• a property of index sets i.e. if xJ = yJ , then φ(x,J ) = φ(y,J ), and

• hereditary non–increasing on the index sets, i.e. if J ⊆ J ′ then
φ(x,J ) ≥ φ(x,J ′) (where again, we . identify true with 1 and false

with 0).

We shall say that φ is a hereditary property of index sets.

Let w(i, J), i ∈ I, J ⊆ I be a matrix of non–negative weights. Set w(J) :=∑
iw(i, J). The function fφ defined by a hereditary property φ of index sets

is given by:
fφ(x) := max

J :φ(x,J )

∑
J∈J

w(J). (3)

By J (x), we shall denote a family achieving the maximum in (3). Thus,

fφ(x) :=
∑

J∈J (x)

w(J). (4)

A function f such that f = fφ for some hereditary property φ of index sets
will be called a hereditary function of index sets .

Theorem 2 Let f be a hereditary function defined by a hereditary property
φ and weights w(i, J), i ∈ I, J ⊆ I. Then for all t > 0,

Pr[f > M[f ] + t] ≤ 2 exp

(
−t2

4wk(M [f ] + t)

)
,

and

Pr[f < M[f ]− t] ≤ 2 exp

(
−t2

4wkM [f ]

)
,
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where M[f ] is a median of f and

k := max
x∈Ω

max
J∈J (x)

|J |,

and
w := max

x∈Ω
max
i∈I

∑
J∈J (x)
i∈J

w(J).

Proof. First note that for any x, y ∈ Ω,

1 = φ(x,J (x))

≤ φ(x,J (x)x=y), by the herditary property

= φ(y,J (x)x=y), index set property of φ.

Hence,

f(y) = max
J

φ(y,J )

∑
J∈J

w(J)

≥
∑

J∈J (x)x=y

w(J)

=
∑

J∈J (x)

w(J)−
∑

J∈J (x)x 6=y

w(J)

= f(x)−
∑

J∈J (x)
xJ 6=yJ

w(J) (5)

Define αi = α(x)i :=
∑
J∈J (x) 1[i ∈ J ]w(J) for i ∈ I. Then,∑

xi 6=yi
αi =

∑
xi 6=yi

∑
J∈J (x)

1[i ∈ J ]w(J)

=
∑

J∈J (x)

w(J)
∑
i∈J

1[xi 6= yi]yi]

≥
∑

J∈J (x)

w(J)1[xJ 6= yJ ].

Hence, by (5), we have,

f(y) ≥ f(x)−
∑
xi 6=yi

αi. (6)
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Now set A = A(a) := {y ∈ Ω | f(y) ≤ a}. Then we have by the definition of
Talagrand’s distance,

dT (x,A) ≥ miny∈A
∑
xi 6=yi α(x)i

(
∑
i α

2
i )

=

∑
xi 6=y∗i αi

(
∑
i α

2
i )

,

for some y∗ ∈ A. Further note that

∑
i

α2
i =

∑
i

 ∑
J∈J (x)

1[i ∈ J ]w(J)

2

≤
∑
i

w
∑

J∈J (x)

1[i ∈ J ]w(J)

= w
∑

J∈J (x)

w(J)
∑
i∈J

1

≤ wk
∑

J∈J (x)

w(J)

= wkf(x).

Thus, ∑
xi 6=yi

α(x)i ≤
√
wkf(x)dT (x,A),

and plugging into (6), we get:

dT (x,A) ≥ f(x)− a√
wkf(x)

.

Now applying Talagrand’s inequality, we have,

Pr[f(X) > a+ t] = Pr

 f(X)− a√
wk(a+ t)

>
t√

wk(a+ t)


≤ Pr

f(X)− a√
wkf(x)

>
t√

wk(a+ t)


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≤ Pr

dT (x,A) >
t√

k(a + t)


≤ 1

Pr[A]
exp

(
−t2

4wk(a+ t)

)
.

Let us rewite this as

Pr[f(X) ≤ a]Pr[f(X) > a+ t] ≤ exp

(
−t2

4wk(a+ t)

)
.

Setting a := M[f ] and a := M[f ]− t successively,we get the result.

Setting t := εM[f ] in Proposition 2, we get

Pr[f > (1 + ε)M[f ]] ≤ 2 exp

(
−ε2

4k(1 + ε)
M[f ]

)
,

Pr[f < (1− ε)M[f ]] ≤ 2 exp

(
−ε2
4k

M[f ]

)
.

One can obtain a concentration of measure inequality around the mean rather
than the median via the following genral result:

Proposition 3 The following are equivalent for an arbitrary function f and
random variables X1, . . . , Xn:

• For all t > 0, there are positive constants c and α such that

Pr[|f − M[f ]| > t] ≤ ce−αt.

• For all t > 0, there are positive constants c′ and α′ such that

Pr[|f − E[f ]| > t] ≤ c′e−α
′t.

2.2 Examples

We illustrate the general framework with several examples. The example
of increasing subsequences in § 2.2.1 was one of the motivating examples
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for Talagrand’s inequality [6], see also [5]. The examples involving counting
extensions in § 2.2.3 and counting representations in § 2.2.4 were pointed out
by Spencer [4].

In the examples below, we will always identify a singleton set with the element
itself. To indicate how the framework of Theorem 2 applies, we shall give the
weight system w(i, J), the hereditary property φ and the parameters k and
w that appear in the bound, without writing the probability bound explicitly
each time. The unweighted case will easily follow by setting all weights to
be unity.

2.2.1 Increasing subsequences

Let w1, . . . , wn be given non–negative weights and let I(x1, . . . , xn) denote the
weight of the heaviest increasing subsequence from x1, . . . , xn. LetX1, . . . , Xn

be chosen independently at random from [0, 1]. Theorem 2 can be applied
immediately to give a sharp concentration result on I(X1, . . . , Xn).

Set w(i, J) := 1[i ∈ J ]wi. Take the hereditary property φ(x,J ) to be:

• |J | = 1 for all J ∈ J .

• For j, j′ ∈ J , if j < j′ then x(j) ≤ x(j ′).

Here k = 1 and w = maxi wi. Taking wi = 1 for all i ∈ [n] gives the original
result.

2.2.2 Balls and Bins

Consider the probabilistic experiment where m balls are thrown indepen-
dently at random into n bins and we are interested in a sharp concentration
result on the number of empty bins. Equivalently, we can give a sharp con-
centration result on the number of non–empty bins.
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To cast this in the framework of configuration functions, consider the product
space [n]m with the product measure where Pr[Xk = i] is the probability that
ball k is thown into bin i. We shall give a sharp concentration result on the
number of non–empty bins. Take w(i, J) = 1[i ∈ J ] and the hereditary
property φ(x,J ) to be:

• |J | = 1 for all J ∈ J .

• For distinct j, j ′ ∈ J , x(j) 6= x(j ′).

2.2.3 Counting Extensions

Consider the random graph G(n, p) with non–negative weights we, e ∈ E on
the edges. A subset E ′ of the edges has weight w(E ′) :=

∑
e∈E′ we. For a

fixed vertex u, let let T (u) denote the weight of the triangles containing a
given vertex u. One obtains a sharp concentration result on T (u) as follows.
Consider the product space {0, 1}E, take w(e, J) := 1[e ∈ J ]we and take the
hereditary property φ(x,J ) to be:

• |J | = 3 for all J ∈ J .

• The edges in {e1, e2, e3} in J form a triangle including the vertex u.

With all weights we = 1, it is easy to see that the number of triangles
containing u is E[N(u)] =

(
n−1

2

)
p3 and we get sharp concentration around

this value. Similarly one can prove generalisations due to Spencer for the
number of extensions N(x1, . . . , xr) of a given set of vertices to a copy of a
given graph H .

A number of other results about random graphs can also be proved in a
similar fashion.
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2.2.4 Counting Representations

For a given set S of natural numbers, let fS(n) denote the number of repre-
sentations n = x+ y for distinct x, y ∈ S. An old result of Erdös shows that
there is a set S for which fS(n) = θ(lnn). This is obtained by a probabilistic

construction: define S randomly setting Pr[x ∈ S] := min
(
1, 10

√
lnx
x

)
. One

can show that E[fS(n)] ∼ 100π lnn. A sharp concentration result about this
value is obtained by taking unit weights wi = 1, i ≥ 1 and the hereditary
property φ(x,J ) to be:

• |J | = 2 for all J ∈ J .

• x+ y = n for all {x, y} ∈ J .

Note that in this example, k = 2 and also w = 2 since an element x can be
in at most one subset in J .

Extending this let gS(n) denote the number of representations n = x+ y+ z

for distinct x, y, z ∈ S. Erdös and Tetali choose S randomly by letting

Pr[i ∈ S] := min(10
(

ln i
i2

)1/3
1/2) and show that E[gS(n)] = K lnn for some

constant K > 0. In fact one obtains a sharp concentration result around this
value by bootstrapping the previous result. Set all weights to be unity as
before and take the hereditary property φ(x,J ) to be:

• |J | = 3 for all J ∈ J .

• x+ y + z = n for all {x, y, z} ∈ J .

This time k = 3 and w is bounded by fS(n) before.

Similarly, one can bootstrap upwards to k–ary representations for k > 3.

2.2.5 Discrete Isoperimetric Inequalities

Let A be a downward closed subset of the cube {0, 1}n equipped with the
product measure, and let us consider the Hamming distance dH(x,A) from a
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point x to the set A. This is in fact a function of hereditary index sets. Take
the weight system w(i, J) := 1[i ∈ J ] and the hereditary property φ(x,J ) to
be:

• |J | = 1 for all J ∈ J .

• For all j ∈ J , x(j) = 1 and y(j) = 0 for all y ∈ A.

We have k = 1 = w and the bound obtained is comparable with the bounds
obtained directly by isoperimetric inequalities in the theory of hereditary sets
[1, Theorem 14] (see also [5, p. 132].

2.2.6 Edge Colouring

In this example, we shall consider some simple randomised algorithms for
edge colouring a graph and illustrate the flexibility of our framework for
giving sharp concentration results for different colouring schemes.

Given a graph G and a palette ∆ of colours, we would like to assign colours
to the edges in such a way that no two edges incident on a vertex have
the same colour. We would also like the algorithm to be truly distributed,
and hence to have a local character. This leads naturally to randomised
algorithms of the type considered below. These algorithms run in stages. At
each stage, some edges are successfully coloured by some simple local process.
The others pass on to the next stage. Typically one analyses the algorithm
stage by stage; in each stage, we would like to show that a significant number
of edges are successfully coloured, so that the graph passed to the next stage
is significantly smaller.

Algorithm 1: each edge picks a colour independently from the common
palette [∆]. Conflicts are resolved in the simplest fashion: all edges incident
on a given vertex which recive the same colour are decoloured and remain to
be passed to the next stage.

We are interested in a sharp concentration result on the number of edges
around a fixed vertex u that are successfuly coloured. Alternatively, we can
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give a sharp concentration result on the number of edges around u that are
not successfully coloured.

The underlying product space is [∆]E(u) where E(u) is the set of edges that
are incident to u or to a neighbour of u. Let w(e, J) := [e ∈ J ][u ∈ e]
(thus only edges incident on u carry non–zero weights). Take the hereditary
property φ(x,J ) to be:

• The sets in J are all disjoint and |J | = 2 or |J | = 3 for all J ∈ J .

• All edges in each J ∈ J are incident on a common vertex, and

• For each J ∈ J is monochromatic with respect to x i.e. x(e) = x(e′)
for each e, e′ ∈ J ∈ J .

Some comments are in order about how to find J (x) in this case.

• First, for each edge e = (u, v) which is unsuccessful beacuse of an edge
e′ = (u′, v) which received the same colour, pick the set {e, e′}.

• This leaves, for each colour, a bunch of edges incident on u with the
same colour. Group these in disjoint pairs. Either this exhaust all of
the bunch or leaves one. In the latter case, pick the triple that results
by adding the remaining odd edge to the last pair.

In this case k = 3 and w ≤ 3wmax; in the unweighted case, w ≤ 3.

Next we consider another variant of the colouring algorithm. In Algorithm
2, we assume that edges are numbered in some canonical order and that after
all edges have chosen colours tentatively, conflicts are resolved by decolouring
higher numbered edges in favour of lower numbered edges that received the
same colour. Thus, for each bunch of conflicting edges, a “winner” is chosen
in some canonical fashion.

Let w(e, J) := [e ∈ J ][u ∈ e] if e is not the lowest numbered edged in J (thus
the lowest numbered edge in a set is not counted)). Take the hereditary
property φ(x,J ) to be:

12



• |J | = 2 for all J ∈ J and the higher numbered edge in two different
J, J ′ ∈ J are different (i.e. the sets in J are “disjoint” with respect to
their higher numbered edges).

• The two edges in each J ∈ J are incident on a common vertex, and

• For each J ∈ J is monochromatic with respect to x i.e. x(e) = x(e′)
for each e, e′ ∈ J ∈ J .

Some comments are in order about how to find J (x) in this case.

• First, for each edge e = (u, v) which is unsuccessful beacuse of an edge
e′ = (u′, v) which received the same colour, pick the set {e, e′}.

• This leaves, for each colour, a bunch of edges, A incident on u with the
same colour. Let e∗ be the lowest numbered edge in A. Pick the sets
{e∗, e} for e∗ 6= e ∈ A.

In this case k = 2 and w ≤ 2wmax; in the unweighted case, w ≤ 3.

3 Talagrand’s Inequality with Negative De-

pendence

In this section we give an extension of Talagrand’s inequality to a setting
where the the underlying measure in the product space is not the product
measure but satisfies a negative dependence property. We will consider prod-
uct spaces of the form Ω =

∏
i Ωi where each Ωi is ordered.

3.1 A General Framework

A function f(xi, i ∈ i) is said to be non–decreasing (or non–increasing) if
it is non–decreasing (non–increasing) in each co–ordinate. A subset A is
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non–decreasing (non–increasing) if its characteristic function χ(xi, i ∈ I) :=
1[(xi, i ∈ I) ∈ A] is.

A set of variables X1, . . . , Xn satisfies the negative regression condition (−R)
if for all disjoint index sets I and J of [n] and all non–decreasing functions
f(xi, i ∈ I),

E[f(Xi, i ∈ I) | Xj = tj, j ∈ J ],

is non–increasing in each tj , j ∈ J . A measure in a product space Ω =
∏
i Ωi

is said to satisfy negative regression if the co–ordinate functions Xk(ωi, i ∈
I) = ωk satisfy negative regression.

A set of variables X1, . . . , Xn is said to be exchangeable or symmetric if for
all permutations σ : [n]→ [n] and all a1, . . . , an,

Pr[Xi = ai, i ∈ [n]] = Pr[Xi = aσ(i), i ∈ [n]].

A product space is symmetric if the co–ordinate functions are symmetric.

Theorem 4 (Talagrand’s Inequality with Negative Dependence)
Let Ω = {0, 1}I be a symmetric product space satisfying (−R). Then for any
non–increasing subset A ⊆ Ω,

Pr[A]Pr[At] ≤ e−t
2/4.

Remark 5 Marton [3] has extended Talagrand’s inequality to dependent
variables in a different way. Our result is incomparable with Marton’s: Our
extension applies in situations that are qualitatively different from indepen-
dence (i.e. negative) whereas Marton’s inequality applies in situations quan-
titatively different from independence (i.e. one has a handle on the amount
of dependence). Thus, while Marton’s result covers a general kind of de-
pendence (negative or otherwise), our result is stronger when applied in a
situation of negative dependence on two counts: first, we do not require any
handle on the amount of dependence (qualitative negative dependence in the
form (−R) suffices) and second, our estimate is sharper in general since it is
the same as Talagrand’s inequality itself.
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The proof follows very much along the lines of the usual proof of Talagrand’s
inequality with some simple additional observations.

There are two main ingredients of the standard proof. The first is a general
probabilistic fact, namely Holder’s inequality : for any two random variables
X and Y (whether independent or not), and any two reals p, q with 1/p +
1/q = 1,

E[|XY |] ≤ E[Xp]1/pE[Y q]1/q. (7)

The second is a key inequality having to do with the convexity of Talagrand’s
distance function. For a subset A ⊆ Ω =

∏
i∈[n] Ωi, denote by

π(A) := {x | (x, xn) ∈ A},

the projection of A on all coordinates except the last, and for xn ∈ Ωn, let

A(xn) := {x | (x, xn) ∈ A},

denote the xn–section of A. Then for (x, xn) ∈ Ω, and all 0 ≤ λ ≤ 1,

d2
T ((x, xn), A) ≤ (1− λ)d2

T (x, π(A)) + λd2
T (x,A(x)) + (1− λ)2. (8)

We will also use crucially, two more simple observations. First are some
general properties of the Talagrand distance valid in any product space of
ordered spaces.

Proposition 6 Let A ⊆ Ω be a non–increasing subset. Then

• Any projection π(A) as well as any section A(ω) are also non–increasing.

• The Talagrand distance dT (x,A) is a non–decreasing function of x.

• For any x = (x1, . . . , xn), dT (x1, . . . , xn−1, A(xn)) is a non–decreasing
function of x.

Proof. The first part is immediate. We will prove that dT (x,A) is non–
decreasing and a similar proof applies to the last part.
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Let x ≤ x′ and suppose consider some arbitrary non–negative α 6= 0. We
shall show that

min
y∈A

∑
xi 6=yi

αi ≤ min
y′∈A

∑
xi 6=y′i

αi,

which will complete the proof. For each y′ ∈ A, consider min(x, y′) which is
in A since A is non–increasing. Hence,

min
y∈A

∑
xi 6=yi

αi ≤
∑

xi 6=min(x,y′)i

αi

≤
∑
xi 6=y′i

αi,

which completes the proof.

The second is a property of the “influence” of Boolean variables from [2] that
is of independent interest and has other applications. Let f(xi, i ∈ [n]) be a
Boolean function. A variable xi, i ∈ [n] is said to have positive influence for
f and a given distribution if

E[f(X1, . . . , Xn) | Xi = x],

is non–decreasing in x.

Proposition 7 For any Boolean function f(x1, . . . , xn) and any distribution
of its arguments, there is always a variable of positive influence i.e. an i ∈ [n]
such that

E[f(X1, . . . , Xn) | Xi = 0] ≤ E[f(X1, . . . , Xn) | Xi = 1].

Proof. (Of Theorem 4): We have,

Pr[dT (X,A) > t] = Pr[e
1
4
d2
T (X,A) > e

1
4
t2 ]

≤ E[e
1
4
d2
T (X,A)]e−

1
4
t2 .

Thus to complete the proof, we only need to show that E[e
1
4
d2
T (X,A)] ≤ 1

Pr[A]
.
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This will be proved by induction on the dimension n. For n = 1, we have
dT (x,A) = 1[x 6∈ A] and hence

E[e
1
4
d2
T (X,A)] = e1/4(1− Pr[A]) + Pr[A]

≤ 1/Pr[A],

since e1/4(1− u) + u ≤ 1/u for 0 ≤ u ≤ 1 by elementary calculus.

For the induction step, we shall use the key convexity inequality (8) to write

E[e
1
4
d2
T (X1,...,Xn+1,A)] ≤
E
[
e

1
4

(1−λ)2

e(1−λ) 1
4
d2
T (X1,...,Xn,π(A))eλ

1
4
d2
T (X1,...,Xn,A(Xn+1))

]
= E

[
e

1
4

(1−λ)2

E
[
e(1−λ) 1

4
d2
T (X1,...,Xn,π(A))eλ

1
4
d2
T (X1,...,Xn,A(Xn+1)) | Xn+1

]]
≤ E

[
e

1
4

(1−λ)2
(
E
[
e

1
4
d2
T (X1,...,Xn,π(A))|Xn+1

])1−λ(
E
[
e

1
4
d2
T (X1,...,Xn,A(XN+1))|Xn+1

])λ]
,

using Holder’s inequality in the last line.

Now, using Proposition 6 and the (−R) property, we have that

E
[
e

1
4
d2
T (X1,...,Xn,π(A)) | Xn+1 = xn+1

]
,

is a non–increasing function of xn+1 whereas by Proposition 7,

E
[
e

1
4
d2
T (X1,...,Xn,A(xn+1)) | Xn+1 = xn+1

]
is a non–decreasing function of xn+1. Hence,

E[e
1
4
d2
T (X1,...,Xn+1,A)] ≤
E
[
e

1
4

(1−λ)2

E
[
e

1
4
d2
T (X1,...,Xn,π(A)) | Xn+1

]
E
[
e

1
4
d2
T (X1,...,Xn,A(Xn+1)) | Xn+1

]]
= e

1
4

(1−λ)2

E
[
E
[
e

1
4
d2
T (X1,...,Xn,π(A)) | Xn+1

]]
E
[
E
[
e

1
4
d2
T (X1,...,Xn,A(Xn+1)) | Xn+1

]]
= e

1
4

(1−λ)2

E
[
e

1
4
d2
T (X1,...,Xn,π(A))

]
E
[
e

1
4
d2
T (X1,...,Xn,A(Xn+1))

]
≤ E

e 1
4

(1−λ)2

(
1

Pr[π(A)]

)1−λ (
1

Pr[A(Xn+1)]

)λ ,
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where the last line follows by induction. applied to the sets π(A) and A(Xn).

Now, we appeal to simple calculus once again to show that for 0 ≤ r ≤ 1,
inf0≤λ≤1 r

−λe
1
4

(1−λ)2 ≤ 2− r. Hence, continuing the inequalities from above,
we have

E[e
1
4
d2
T (X1,...,Xn+1,A)] ≤ E

e 1
4

(1−λ)2

(
1

Pr[π(A)]

)1−λ (
1

Pr[A(Xn+1)]

)λ
=

1

Pr[π(A)]
E

(Pr[A(Xn+1)]

Pr[π(A)]

)−λ
e

1
4

(1−λ)2


≤ 1

Pr[π(A)]
E

[
2− Pr[A(Xn)]

Pr[π(A)]

]

=
1

Pr[π(A)]

(
2− Pr[A]

Pr[π(A)]

)

=
1

Pr[A]

Pr[A]

Pr[π(A)]

(
2− Pr[A]

Pr[π(A)]

)

≤ 1

Pr[A]
,

since x(2− x) ≤ 1 for all reals x.

We can apply this to derive an analogue of Theorem 2 in a negative de-
pendence situation. Call a hereditary property φ(x,J ) of index sets bi–
hereditary if it is also non–decreasing in x i.e. if x ≤ y, then for any J ,
φ(x,J ) ≤ φ(y,J ).

Theorem 8 Let Ω := {0, 1}n be a symmetric space satisfying (−R) and let
f be a function defined by a bi-hereditary property φ and weights w(i, J), i ∈
I, J ⊆ I. Then for all t > 0,

Pr[f > M[f ] + t] ≤ 2 exp

(
−t2

4wk(M [f ] + t)

)
,

and

Pr[f < M[f ]− t] ≤ 2 exp

(
−t2

4wkM [f ]

)
,
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where M[f ] is a median of f and k := maxx∈Ω maxJ∈J (x) |J |, and w :=
maxx∈Ω maxi∈I

∑
J∈J (x)
i∈J

∑
J w(J).

Proof. The proof is exactly analogous to that of Theorem 2 noting that if φ
is bi–hereditary then the set A(a) := {y | f(y) ≤ a} is non–increasing, and
hence Theorem 4 is applicable.

3.2 Examples

We give examples to illustrate how to obtain concentration of measure re-
sults by applying Theorem 8 in settings where the underlying space is not a
product space but is symmetric and satisfies (−R).

3.2.1 Hypergeometric Distribution

Consider a sample of size n drawn from an urn containing N ≥ n balls,
M ≤ N of which are red. We are interested in the number of red balls drawn
in the sample, H(N,M, n) – this is the hypergeometric distribution.

The underlying product space is {0, 1}n where we identify 1 with a red ball
and 0 with a non–red ball. The measure here is not the product measure but
is easily shown to satisfy (−R). To apply Theorem 8, take the hereditary
property φ(x,J ) to be

• |J | = 1 for all J ∈ J .

• For j ∈ J , x(j) = 1.

This is easily verified to be a bi–hereditary property and we get the following
concentration of measure result on the hypergeometric distribution:

Pr[H(N,M, n) > m+ t] ≤ 2 exp(
−t2
m+ t

),

Pr[H(N,M, n) < m− t] ≤ 2 exp(
−t2
m

),

19



which is comparable to the Chernoff bound. Taking arbitrary weights wi, i ∈
[n] and setting w(i, J) := [i ∈ J ]wi gives a weighted version of the result.

3.2.2 Balls and Bins

Let us return to the balls ad bins experiment, considered this time as the
product space {0, 1}[n]×[m] where a 1 in co–ordinate (i, k) indicates that ball
k is put into bin i. This measure (for any probabilities pi,k of ball k going into
bin i) is easily shown to satisfy (−R). Take φ(x,J ) to be the same as in the
previous example: |J | = 1, J ∈ J and x(i, k) = 1 for (i, k) ∈ J . This gives
the same concentration result for the number of non–empty bins as derived
in the previous section.

3.2.3 Fermi–Dirac statistics

Consider an ensemble of particles occupying a set of n states. There are
m types of particles, with ck ≤ n particles of type k ∈ [m]. Each type is
independent of any other type, but the particles of a given type satisfy the
Pauli exclusion principle: no two particles of the same type may occupy
the same state. In particular, the particles of a fixed type obey the Fermi–
Dirac statistics: for each k ∈ [m], all ck subsets of the n–states are equally
likely to be occupied. We are interested in the number of unoccupied states.
Equivalently we acn focus on the number of occupied states. (This example
generalises the balls and bins experiment above where each ck = 1 and each
ball is uniformly distributed in the bins.)

The underlying product space is {0, 1}[n]×[m] and the measure can be shown
to satisfy (−R). (the measure is not a product measure). Take the same
bi–hereditary property φ(x,J ) as in the previous balls and bins example to
get a concentration result for the number of non–empty cells.
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3.2.4 Discrete Isoperimetric Inequalities

One can extend the discrete isoperimetric inequalty from § 2.2.5 to the case
when te underlying space is not a product measure but is symmetric and
satisfies the (−R) condition. The same inequality obtains in this setting as
well.
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