
B
R

IC
S

R
S

-98-22
C

attanietal.:
A

C
ategoricalA

xiom
atics

for
B

isim
ulation

BRICS
Basic Research in Computer Science

A Categorical Axiomatics for Bisimulation

Gian Luca Cattani
John Power
Glynn Winskel

BRICS Report Series RS-98-22

ISSN 0909-0878 September 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/22/

A Categorical Axiomatics for Bisimulation

Gian Luca Cattani1, John Power2,∗, Glynn Winskel1

1BRICS†, University of Aarhus, Denmark
2LFCS, University of Edinburgh, Scotland

September 1998

Abstract

We give an axiomatic category theoretic account of bisimulation in
process algebras based on the idea of functional bisimulations as open
maps. We work with 2-monads, T , on Cat. Operations on processes,
such as nondeterministic sum, prefixing and parallel composition are
modelled using functors in the Kleisli category for the 2-monad T .
We may define the notion of open map for any such 2-monad; in ex-
amples of interest, that agrees exactly with the usual notion of func-
tional bisimulation. Under a condition on T , namely that it be a
dense KZ-monad, which we define, it follows that functors in Kl(T)
preserve open maps, i.e., they respect functional bisimulation. We fur-
ther investigate structures on Kl(T) that exist for axiomatic reasons,
primarily because T is a dense KZ-monad, and we study how those
structures help to model operations on processes. We outline how this
analysis gives ideas for modelling higher order processes. We conclude
by making comparison with the use of presheaves and profunctors to
model process calculi.

∗This work is supported by EPSRC grant GR/J84205: Frameworks for programming
language semantics and logic.
†Basic Research in Computer Science, Centre of the Danish National Research Foun-

dation.

Introduction

We seek a category theoretic axiomatic account of bisimulation as studied in
concurrency, for instance by Milner [16]. There have been several category
theoretic approaches to bisimulation [8, 10]. One of them, initiated by Joyal,
Nielsen, and Winskel [10], uses the notion of open map to define functional
bisimulation, then defines a bisimulation to be a span of epimorphic open
maps. That work has only partly been axiomatic: they developed a particular
construction, namely the presheaf construction, and studied properties of the
2-category generated by it. Here, we adopt their definition of open map,
but consider a class of constructions that are defined axiomatically. Our
work, although essentially generalising theirs, suggests ways of modelling
higher order processes that were not present (because of size problems) in
the presheaf approach, but on the contrary, does not directly include the
natural way of representing higher order processes in terms of internal homs
that has been suggested for presheaf models [22, 7]. We shall expand on this
in Section 6.

To model bisimulation using open maps in presheaf categories, one starts
with a notion of observation, such as a trace. Based upon that, one defines
a small category of path objects (observation shapes), P, where an arrow is
understood as witnessing an extension of one path by another. Then one
considers the presheaf category [Pop,Set]. Following [10, 9], one defines an
open map in [Pop,Set] relative to the category P and the Yoneda embedding
of P into [Pop,Set]. A key example is given by the category of synchronisa-
tion trees over a set of labels L. These are the presheaves over the partial
order category L+ of finite non empty strings over L, ordered by the prefix
ordering. In this case, epimorphic open maps correspond to, so called, zig-zag
morphisms that are functional bisimulations. The induced bisimulation rela-
tion obtained by considering spans of such epimorphic open maps coincides
with Park-Milner’s strong bisimulation [10]. This discussion applies equally
to other notions of observation, such as those arising from non interleaving
models.

Various questions arise here. First, typically in concurrency, one does
not consider arbitrarily branching trees. It is more usual to consider finitely
branching trees, or trees for which the branching is limited, for instance to
being countable. Second, in the case of the combined presence of higher
order and names as in the Higher-Order π-calculus, it is not clear whether
the presheaf construction is sufficient (see [5] for a more detailed discus-

1

sion).Third, it is not clear how to model weak notions of bisimulation. If
we can give an axiomatic account of some of the relevant constructions, we
are in a better position to address such issues. An axiomatic account also
clarifies the reasoning behind the various decisions. So in this paper, we
do not take presheaf categories for granted, but give an axiomatic develop-
ment of precisely what structure we want in order to model concurrency and
what constructions arise in manipulating that structure. For concreteness,
we restrict our attention for the bulk of the paper to the operations needed
in modelling CCS processes by synchronisation trees. We occasionally re-
fer to more involved examples that were treated using presheaf categories
in [22, 6, 5].

We first observe that, given a category of observations, P, the basic oper-
ations of CCS lead us to consider the free completion of the category P under
countable colimits: for our choice of P, that is equivalent to the category of
countably branching trees, as we shall see in Section 2. The construction of
countable colimit completions extends to a 2-monad T on Cat with strong
category theoretic properties, as explained in Sections 2 and 3. Moreover, the
constructions we wish to consider, such as nondeterministic sum or parallel
composition, arise from maps in Kl(T), the Kleisli 2-category for T . That is
typical of basic constructions on P and of other categories of observations.

Under a condition on a 2-monad T , namely that it be a dense KZ-monad,
which we shall define and which holds of all our leading examples, we can
define the notion of open map in each TC (for C a small category) and
prove that maps in the Kleisli 2-category of T preserve all open maps. The
notion of open map agrees, in our leading examples, with the usual notion
of functional bisimulation. That forms the content of Section 3.

We next consider the structure of Kl(T) for a 2-monad T on Cat that
satisfies various conditions true of our examples. In particular, we show that
Kl(T) has finite coproducts and finite products and that they agree, and
that it has a symmetric monoidal structure. From these facts, it follows that
the various constructions on processes, such as taking nondeterministic sum,
applying a parallel operator, and prefixing, preserve open maps. It also gives
us a candidate for higher order structure (though outside Kl(T)), allowing
a possible way to model a process passing extension of CCS. This analysis
forms Sections 4 and 5.

Finally, in Section 6, we compare, especially as far as higher order is
concerned, this work with that of [22, 6, 5, 7] using presheaves and profunctors
to model process calculi, and we suggest directions for future research.

2

We do not address weak bisimulation at all here. In no way do we suggest
that it is unimportant. But it is such a large issue that it requires a full paper
devoted to it. There are delicate points involved. First, we do have some ideas
about how one might approach it directly, as it amounts to an operation that
takes a tree representing strong bisimulation and replacing it by a tree that is
essentially but not quite a quotient, representing weak bisimulation. We hope
that our axiomatics may allow that, but we are not sure yet. Second, it is
not clear to us yet whether directly modelling weak bisimulation is the most
interesting development. It may be better to develop a notion of contextual
equivalence, using strong bisimulation as a technique, along the lines of the
development of testing equivalence. So we defer a detailed analysis of the
issues to later work.

To induce bisimulation from functional bisimulation, it suffices to consider
spans of epimorphic functional bisimulations. We are careful that all our
constructions respect such spans, but we do not consider them explicitly
through the course of the paper.

1 A Motivating Example

For concreteness, we consider the process calculus CCS (assuming a fixed
set of labels) as in [16] with models given by labelled synchronisation trees;
but our analysis holds more generally (see [10]).

Definition 1.1 Let L be a set, not including the the letter τ among its el-
ements. Let L̄ = {ā | a ∈ L}, and define the category L whose objects are
strings of arbitrary length, possibly infinite, of elements of L∪ L̄∪{τ}, where
a map from p to q is a prefixing of q by p, with composition given by compos-
ing inclusions. The category L↑ is the full subcategory of non empty strings
and L+ is the restriction of L↑ to strings of finite length.

The computation trees of all CCS processes are generated by two oper-
ations freely applied to computation paths. First, given processes P and Q,
their nondeterministic sum has computation tree determined by the disjoint
sum of the computation trees of P and Q. Second, given processes P and Q
and an action a, the computation tree for a.(P +Q) is given by identifying
the computation trees for a.P and a.Q on the first step. So, to represent
the computation trees of nondeterministic sum and of prefixing, we extend
the category L by freely adding finite coproducts to model nondeterministic

3

sum and coequalisers to allow computation paths to agree for a while as they
proceed. This is equivalent to freely adding finite colimits [15]. Thus we have

Proposition/Example 1.2 The category of finitely branching synchronisa-
tion trees with finitely many maximal branches is equivalent to the free finite
colimit completion TωL

↑ of the category L↑.

This gives only a limited account of recursion, as we have not allowed
finitely branching trees with more than finitely many maximal branches.
Moreover, in order to add value passing to CCS, one approach has been
to extend a binary nondeterministic operator to a countable one [16]. That
yields the category of countably branching trees, and we have

Proposition/Example 1.3 1. The category of countably branching syn-
chronisation trees over L ∪ L̄ ∪ {τ}, ST ω, is equivalent to the free
countable colimit completion Tω1L

+ of L+.

2. The category of finitely branching synchronisation trees over L∪L̄∪{τ},
ST f , is a full subcategory of ST ω.

More generally,

Proposition/Example 1.4 For any regular cardinal κ > ω, the category of
synchronisation trees with branching less than κ is the free completion TκL

+

of L+ under colimits of size less than κ.

This line of argument applies not only to strings but to a range of no-
tions of path objects, giving one reason to consider, for any small category
C of path objects, the categories TωC, Tω1C, and more generally TκC of
free colimit completions of C under finite, countable, and less than κ size
colimits respectively. We shall soon have other reasons to consider TC for
various C, not just C = L+, even while restricting our attention to trees,
as they are needed to model many-sorted operations on trees to represent
nondeterministic sum and the like. So we seek an axiomatic account of these
constructions.

4

2 The general setting

In order to make our first observation, we need some definitions.

Definition 2.1 A 2-monad on Cat is a 2-functor T : Cat −→ Cat, i.e.,
a functor that sends natural transformations to natural transformations, re-
specting domains, codomains and composites of natural transformations, to-
gether with 2-natural transformations µ : T 2 ⇒ T and η : id ⇒ T , i.e.,
natural transformations that respect the 2-categorical structure of Cat, sub-
ject to three axioms expressing associativity of µ and the fact that η acts as
left and right unit for µ.

Considerable detail of 2-monads and the category theoretic constructions
associated with them appears in [12], but we shall try to make this paper rea-
sonably self-contained in regard to 2-monads. The reason 2-monads interest
us here is because we have

Proposition 2.2 For any regular cardinal, κ, Tκ extends to a 2-monad on
Cat.

Returning to CCS as modelled by synchronisation trees, an operation
such as nondeterministic sum respects the structure of the computation trees
of P and Q. More precisely, the functor + : TL+ × TL+ −→ TL+ strictly
preserves colimits of specified size. We shall show later that, for a general C
(and in particular, when C = L+) TC × TC is of the form TD for another
small category D (= C+C). So we are led to consider strict colimit preserving
functors from TD to TC. These are arrows in the Kleisli 2-category for T ,
which is defined as follows.

Definition 2.3 Given a 2-monad T on Cat, the Kleisli 2-category has as
objects categories of the form TC, and arrows those functors H : TC −→ TD
such that µDT (H) = HµC, with composition given by usual composition of
functors. An arrow in Kl(T) may equivalently be described as any functor
from C to TD. The 2-cells are those natural transformations α such that
µDT (α) = αµC.

Proposition 2.4 The category of countably branching synchronisation trees
over a fixed set of labels, ST ω, together with functors from finite products
of the category ST ω to itself that preserve the tree structure, form a full
subcategory of the Kleisli category Kl(Tω1).

5

This result extends directly to synchronisation trees of any bounded de-
gree of branching, say κ, with respect to Kl(Tλ), with λ a regular cardinal
strictly bigger than κ.

The situation is not so straightforward with other operators like prefixing
and parallel composition. In fact we cannot expect them to be directly
represented by arrows in Kl(T). For instance the parallel composition of
processes does not distribute over the sum (P |(Q + R) 6∼= (P |Q) + (P |R)).
However, a more careful analysis we carry out in Section 5 will represent
these other key operators in terms of arrows of Kl(T) and hence allow us to
deduce axiomatically that they respect bisimulation too.

Remark: The analysis conducted so far also gives us an idea about how to
model higher order structure. Consider an extension of CCS that allows the
passing of processes. To model that, we must consider a process that may
accept some process and produce a process, something like a λ-abstraction
(cf. [18]). So we want a notion of higher order object. Consideration of
Kl(T) immediately provides one possibility: there is a natural isomorphism
between the category Kl(T)[T (C×D), TE] and Cat[C,Cat[D, TE]]. So one
might consider the category Cat[D, TE] (or [D, TE] for short) as a possible
higher order construct. But note that unless Kl(T) is symmetric monoidal
closed (which is rare), this construction is not iterable within Kl(T). It
may however be iterable within a monoidal closed subcategory of Kl(T) by
mimicking the way in which profunctors are considered monoidal closed in
[22, 7]. For example, suppose T is Tω giving the countable colimit completion
of a category. If a category D is countable in the strong sense that both its
objects and maps form countable sets, then its countable colimit completion
TD is equivalent to [Dop,Setω], the full subcategory of presheaves over D
in which every set is countable. The full subcategory of Kl(T) consisting of
objects TC where C is countable is monoidal closed; if D and E are countable
then [D, TE] is isomorphic to T (Dop×E) where the “function space” Dop×E
is also countable. An analogous observation holds for κ colimit completions,
with infinite cardinal size κ replacing ω and countability.

An object of [D, TE] is equivalent to a functor from TD to TE in Kl(T),
which in the case of finitely branching trees, is how we model operators on
processes such as nondeterministic sum. We shall return to this construction
when we analyse functional bisimulation in the next section.

6

3 Functional bisimulations as open maps

We now show how the notion of functional bisimulation in our examples may
be identified with the notion of open map. Again, this holds more generally,
as explained in [10], but for concreteness, we shall continue to restrict our
attention to CCS as modelled by synchronisation trees, and the notion of
functional bisimulation there. For any 2-monad T on Cat, we can define the
notion of open map on TC for arbitrary C, cf [10].

Definition 3.1 Given a 2-monad T on Cat and a small category C, an
arrow h : X −→ Y in TC is open if for any commuting square

ηC(c) //
p

��

ηC(m)

X

��

h

ηC(c
′) //

q Y

with m : c→ c′ in C, there exists a map

ηC(c) //
p

��

ηC(m)

X

��

h

ηC(c
′)

77

r

//
q Y

such that the two triangles commute.

Note that the diagonal map, r, need not be unique and typically is not
unique. Working through the definition in examples, one verifies that open
maps correspond to functional bisimulations [10].

A fundamental property of process calculi (like CCS) is that construc-
tions involved in modelling the process constructors preserve functional bisim-
ulations, e.g., if P is functionally bisimilar to P ′, then P +Q must be func-
tionally bisimilar to P ′ +Q, and dually. This is exactly to say, in modelling
CCS by finitely branching trees, that open maps are preserved by the functor

+ : TC× TC −→ TC .

Thus we want a condition on T satisfied by all our examples and such that
functors in Kl(T) preserve open maps. The first major result of the paper
gives such a condition. First, we need some definitions.

7

Definition 3.2 A KZ-monad is a 2-monad for which the multiplication µ :
T 2 =⇒ T is left adjoint to ηT with counit of the adjunction given by the
identity, where η is the unit of the 2-monad, i.e., for every small category C,
the functor µC : T 2C −→ TC is left adjoint to the functor ηTC : TC −→ T 2C,
and the adjunctions are preserved by functors H : C −→ D. It is equivalent to
ask that µ be right adjoint to Tη, with the identity being the unit (see [13, 21]).

The notion of KZ-monad was introduced to study particular features of
2-monads given by free completions under classes of colimits [13]. But they
do not characterise such free completions, as the following example shows.

Example 3.3 Consider the 2-monad on Cat that sends every category to
the one object one arrow category 1. It is a KZ-monad trivially, but it does
not give free completions under a class of colimits because C typically is not
a full subcategory of 1.

Notation:

• Given a 2-monad T on Cat, let η̃C : TC −→ [Cop,Set] denote the functor
that sends an object X to the functor TC(ηC−, X) : Cop −→ Set.

• Given functors H : C −→ D and J : C −→ C′, the left Kan extension of H
along J is given by a functor LanJH : C′ −→ D and a natural transformation
α : H ⇒ (LanJH)J that is universal among such natural transformations,
i.e., given any functor K : C′ −→ D and any natural transformation β : H ⇒
KJ , there exists a unique natural transformation γ : LanJH ⇒ K such that
β = γJα.

If it exists, a left Kan extension is unique up to coherent isomorphism.
If J is fully faithful and a left Kan extension exists, then α is necessarily an
isomorphism. The left Kan extension always exists if C is a small category and
D is cocomplete (see [15], [11] or [3] for more detail on left Kan extensions,
see [6] for applications to concurrency).

Definition 3.4 A 2-monad T on Cat is dense if for every small category C,
the functors ηC : C −→ TC and η̃C : TC −→ [Cop,Set] are fully faithful, and
for any H : C −→ D, the functor LanyC(yDH) : [Cop,Set] −→ [Dop,Set],
where yC : C −→ [Cop,Set] is the Yoneda embedding, restricts to TH :
TC −→ TD up to coherent isomorphism.

8

In our examples, ηC is the inclusion of a category C into its free colimit
completion of specified size; we shall not need an explicit description of µC.
Moreover, ηC : C −→ TC is always fully faithful, and it follows by a general
theorem [11] that, since each object of TC is a colimit of a diagram in C,
the functor η̃C : TC −→ [Cop,Set] is also fully faithful, and for every given
functor H : C −→ D, the functor LanyC(yDH) : [Cop,Set] −→ [Dop,Set]
restricts to TH : TC −→ TD up to coherent isomorphism. We have

Proposition 3.5 If κ is any regular cardinal, Tκ is a dense KZ-monad.

Now we can state our first major theorem.

Theorem 3.6 Let T be a 2-monad on Cat for which ηC : C −→ TC and
η̃C : TC −→ [Cop,Set] are fully faithful for every C. Then T is a dense KZ-
monad if and only if every functor F : TC −→ TD in Kl(T) is the restriction
of LanyC(η̃DFηC) : [Cop,Set] −→ [Dop,Set] up to coherent isomorphism.
Moreover, under the equivalent conditions, every F in Kl(T) is a left Kan
extension of FηC : C −→ TD along ηC : C −→ TC.

Proof: Suppose T is dense and KZ, and let F : TC −→ TD be a functor
in Kl(T). Then F = µDK where K = FηC : C −→ TD. Using the density
condition applied to K and the definition of KZ-monad, and the fact that
left Kan extensions into cocomplete categories (such as [(TD)op,Set]) are
colimits, so are preserved by functors with right adjoints, gives the result.

For the converse, given H : C −→ D, let F = TH . By naturality of η
and since η̃DηD = yD : D −→ [Dop,Set] by fully faithfulness of ηD, it follows
that η̃DFηC = yDH , so T is dense.

To see that T is KZ, first observe that µC : T 2C −→ TC is a functor in
Kl(T) since, by the monad laws, it respects the structure of T . So, up to
isomorphism, µC is the restriction of LanyTC(η̃CµCηTC) = LanyTC η̃C. But, by
fully faithfulness of η̃C, the functor ηTC : TC −→ T 2C is the restriction of the
functor sending Kε[Cop,Set] to [Cop,Set](η̃C−, K), but this latter functor
is the right adjoint of LanyTC η̃C. Since η̃C and η̃TC are both fully faithful, it
follows that µC is left adjoint to ηTC.

For the final statement of the theorem, given any K : TC −→ TD, it
follows by fully faithfulness of η̃C : TC −→ [Cop,Set] that η̃DK is isomorphic
to Lanη̃C(η̃DK)η̃C. Moreover, since ηC is fully faithful, the Yoneda embed-
ding yC : C −→ [Cop,Set] equals η̃CηC. Hence any natural transformation

9

α : FηC ⇒ KηC, induces a natural transformation from η̃DFηC : C −→
[TDop,Set] to Lanη̃C(η̃DK)yC, hence by definition of left Kan extension, a
natural transformation

ᾱ : LanyTC(η̃DFηC)⇒ Lanη̃C(η̃DK) .

The result follows immediately from fully faithfulness of η̃D and the two
commutativities up to coherent isomorphism. 2

Corollary 3.7 Given a dense KZ-monad T on Cat, for every C, µC is the
left Kan extension of id : TC −→ TC along ηTC : TC −→ T 2C and is the
restriction of [ηC,Set] : [TCop,Set] −→ [Cop, Set].

Corollary 3.8 Let T be a dense KZ-monad on Cat. Then every functor
in Kl(T) preserves open maps.

Proof: Given a small category C, one may define open maps in [Cop,Set]
just as we did in TC, with openness relative to the Yoneda embedding yC :
C −→ [Cop,Set]. It was stated in [6] (a proof will appear in the forthcoming
PhD thesis of the first author of this paper) that all functors of the form
LanyC(yDH) : [Cop,Set] −→ [Dop,Set] preserve open maps. Since ηC and η̃C
are both fully faithful, a map in TC is open if and only if its image under η̃C
is open. Putting that together with Theorem 3.6 yields the result. 2

We regard this corollary as fundamental for the reasons outlined above.
In order to account for bisimulation at higher types, we need to extend the
notion of open map from categories of the form TC to categories of the form
[D, TE]. By construction, Cat[C, [D, TE]] is isomorphic to Kl(T)[T (C ×
D), TE]. So, putting C = 1 and considering this isomorphism on maps of
the two categories, we see that to give a map in [D, TE] is to give a natural
transformation between functors in Kl(T) from TC to TD. The weakest
plausible definition is

Definition 3.9 A map α : X −→ Y in [D, TE], i.e., a natural transfor-
mation between X and Y is open if every component of the corresponding
natural transformation in Kl(T),

ᾱ
def
= µET (α) ,

is open in TE.

10

Thus, Corollary 3.8 gives us

Proposition 3.10 For every functor F : TE −→ TA in Kl(T), composition
with F sends open maps in [D, TE] to open maps in [D, TA].

Trivially, using the composition in Kl(T), composition with respect to D
also preserves open maps. This suggests a notion of functional bisimulation
at higher types arising from category theoretic principles. Obviously, it must
be tested against concerns arising naturally from concurrency, but we defer
such investigations here.

Remark: It might seem tempting in Definition 3.9 to define α to be open if
every component αD, for D an object of D, was open in TE. This definition
would have had a significant drawback. Its choice would have meant that
open maps were no longer closed under horizontal composition in Kl(T),
i.e., α open in [D, TE] and β open in [E, TF] would not have implied that
β ∗ α was open in [D, TF]. In other words, restricting the 2-cells of Kl(T)
to be open according to this choice of definition would not have yielded a
sub-2-category of Kl(T). In computational terms, the definition would not
have enforced that bisimilar abstractions acted on the same input process to
give bisimilar outputs. This is surely the minimal requirement one expects of
bisimulation for higher-order processes (the requirement is obviously satisfied
by Definition 3.9). Note that the definition of open map and bisimulation
in [22, 7], arising from the monoidal closed structure of profunctors, is a
stricter way to ensure that horizontal composition preserves openness than
the condition of Definition 3.9 above.

Theorem 3.6 is of fundamental importance. It can be used to characterise
all dense KZ-monads on Cat. The notion of dense KZ-monad is the central
new mathematical notion we introduce in this paper. It includes all monads
that arise as free completions under a class of colimits, and it is possible,
using Theorem 3.6, to characterise dense KZ-monads in those terms. That
is beyond the scope of this paper (see [17]), but we do remark that the precise
statement is very subtle. For instance,

Example 3.11 There exists a dense KZ-monad T for which there is no
class S of small categories such that for every small category C, the category
TC is the free completion of C under colimits of diagrams with shape in S.
Consider T0 = 0 (0 being the empty category) with TC given by freely adding

11

an initial object to C for all other C. Suppose our claim was false. Since
T0 is empty, it follows that every category in S must be nonempty. The free
completion of C under colimits of diagrams with shape in S is given by a
transfinite induction. At every step in that construction, one adds a new
colimit. But since each category in S is nonempty, each new colimit added
must have an arrow into it from a pre-existing object, so ultimately from an
object of C. So at no point in the transfinite induction does one introduce an
initial object, a contradiction.

4 Structure of Kl(T) for dense KZ-monads

Based upon our results of the previous two sections, in particular Corol-
lary 3.8, in this section we investigate the structure of categories of the form
Kl(T) for dense KZ-monads T . Of course, that includes (size bounded)
colimit completions as illustrated in Section 3.

Routinely, as for any monad on a category with coproducts, we have

Proposition 4.1 For any 2-monad T on Cat, the 2-category Kl(T) has
coproducts, with the coproduct of TC and TD in Kl(T) given by the con-
struction T (C+ D) in Cat.

This does not immediately appear to be of computational interest, al-
though it does generalise a domain theoretic property on ω − Cpo which is
used to model conditional statements. However, we shall soon show that,
under a mild extra condition, T (C+D) is isomorphic to TC× TD, and that
is important to us as the latter construction is used in defining nondetermin-
istic sum for example. It will follow that Kl(T) has finite products, with the
product in Kl(T) of TC and TD given by T (C+ D). But first, we have

Theorem 4.2 If T is a dense KZ-monad on Cat, then Kl(T) is a sym-
metric monoidal 2-category, with TC⊗ TD given by T (C×D).

Proof: To give a symmetric monoidal structure on Kl(T) that extends the
finite product structure on Cat is equivalent to showing that the strength on
T corresponding to its Cat-enrichment is commutative. What that means is
as follows. For each object X of C, consider the functor tX : D −→ T (C×D)
determined by ηC×D composed with the functor into C choosing the object
X. Every map f : X −→ Y in C determines a natural transformation

12

from tX to tY . Since the isomorphism between Kl(T)[TD, T (C × D)] and
Cat[D, T (C × D)] is an isomorphism of categories, we obtain a functor t :
C×TD −→ T (C×D). Dually, we obtain a functor t̄ : TC×D −→ T (C×D).
To obtain a symmetric monoidal structure on Kl(T), it suffices to show that
the two ways of using these constructions to obtain a functor T̄ : TC×TD −→
T (C × D), either by first applying t, then applying T t̄, then applying µ, or
dually, give the same result.

To see that, recall that for every functor F : C −→ TD, the lifting of
F to Kl(T) is given, up to isomorphism, by the restriction of LanyC(yDF).
And µC : T 2C −→ TC is the restriction, up to isomorphism, of [ηC,Set] :
[TCop,Set] −→ [Cop,Set]. The result now follows by tedious calculation of
the extension of the two composites to the presheaf categories. 2

In the proof of the Theorem 4.2, we have shown

Proposition 4.3 If T is a dense KZ-monad on Cat and X is an object of
TD, then

TC ∼= TC× 1 //
id×X

TC× TD //T
T (C× D)

is in Kl(T).

This opens a second category theoretically natural candidate for mod-
elling process passing CCS. For any 2-monad on Cat, the Kleisli 2-category
Kl(T) embeds fully into the 2-category T−Alg, which is the other major
construction one studies given a 2-monad (see [1]). It follows from the Theo-
rem 4.2 that for any dense KZ-monad T on Cat subject to a size condition
that all our leading examples satisfy, the 2-category T−Alg is symmetric
monoidal closed [14]. That closed structure is another candidate for mod-
elling higher order structure. It is not clear how to define the notion of open
map in this setting, but one might restrict attention to categories in Kl(T)
and categories generated by applying a higher order construction to them; it
may be possible to define open maps for any such category similarly to the
previous section; but we leave that for further work.

For any regular cardinal κ, Tκ−Alg is the 2-category of small categories
with colimits of size up to κ and functors that preserve them strictly.

As promised before, we now consider constructions of the form TC×TD.
We first mention that if T is aKZ-monad and TH strictly preserves any class

13

of colimits, for H : C → D any functor between any two small categories,
then it follows that every functor in Kl(T) preserves that class of colimits.
However, because of a particularly subtle but important difference in category
theory between the notions of strict preservation and ordinary preservation
of a colimit, it need not follow that every functor in Kl(T) strictly preserves
the class of colimits. We avoid analysing that distinction in the statement of
the theorem, although resolutions are well known to us [11]. Suffice it to say
that it follows from routine category theory that all our examples satisfy the
hypotheses of the following theorem.

Theorem 4.4 Let T be a dense KZ-monad on Cat, and suppose every TC
has finite coproducts given by restriction from [Cop,Set], and every functor
in Kl(T) strictly preserves finite coproducts. Then the category TC× TD is
isomorphic to T (C+D) naturally in C and D and coherently with respect to
the associative, commutative, and unitary structures of binary product and
coproduct.

Proof: Using the universal property of the Kleisli construction, and using
the universal properties of products and coproducts, in order to define a
functor H : T (C+D) −→ TC× TD, we give functors from C to each of TC
and TD and from D to each of TC and TD. We define them by ηC and the
constant at the initial object of TD, and by duality.

We define K : TC × TD −→ T (C + D) by sending (X, Y) to (T i0)X +
(T i1)Y , where i0 : C −→ C + D and i1 : C −→ C + D are the left and right
coprojections respectively.

We must show that H and K are mutually inverse. They are obvi-
ously natural in C and D. To see that KH = idT (C+D), first see that
KHηC+D = ηC+D, which may be checked on each component. That follows
routinely since T i0 strictly preserves the initial object, and dually. Now, since
finite coproducts are given by restriction from [Cop,Set] and using routine
manipulation of diagrams, the commutativity extends to T (C+ D).

To see thatHK = idTC×TD, we must verify that π0HK = π0 and π1HK =
π1, where π0 and π1 are the first and second projections from TC × TD
respectively. By definition, π0H and π1H both lie in Kl(T), so preserve
finite coproducts strictly. Restricting our attention to π0, the other case
being dual, it suffices to show that (π0H × π0H)(T i0 × T i1) sends (X, Y)
to (X, 0), where 0 is the initial object of TC. Again, this amounts to two
commutativities.

14

For the first, observe that π0H = µCT (ηC , 0), so precomposing with T i0
yields the identity since (ηC, 0)io = ηC and by one of the monadic unit laws,
giving the desired commutativity.

For the second, by a similar calculation, it suffices to show that the lifting
of the constant functor 0 : D −→ TC to TD is the constant functor at the
initial object 0 of TC. But by Theorem 3.6, the lifting is given by the left
Kan extension of 0 : D −→ TC along ηC : C −→ TC; and one can check by
calculation that that is necessarily the constant at 0. 2

As promised before, this theorem allows us to consider constructions of
the form TC × TC −→ TC, as required to model nondeterministic sum for
example, as functors of the form TD −→ TC in Kl(T). So, such functors
preserve open maps, hence functional bisimulations, as desired.

Remark: Theorem 4.4 is an instance of a limit/colimit coincidence [19, 20,
4]. In particular, by categorical folklore, the coproduct in Kl(T), T (C + D)
is also a bicategorical version of product because both Kl(T)[TC, T (C+D)]
and Kl(T)[TD, T (C+D)] have coproducts that are preserved by composition
and the coprojections

T (i) : TC −→ T (C+ D)←− T (D) : T (j)

have right adjoints (that become projections for the product). Such a result
allows us to conclude that T (C+D) is a product in a bicategorical sense [21]
but not in the strict sense we are asserting; that is, from the limit/colimit
coincidence we could only deduce (in principle) an equivalence T (C + D) '
TC × TD but not an isomorphism as we do in the proof of Theorem 4.4.
Nonetheless the link of Theorem 4.4 to the more general question of when
limits and colimits of certain diagrams of adjoint pairs coincide is worth
exploring in greater detail also to see under what condition one can obtain
limits in the usual categorical sense rather than in the bicategorical one.

5 Parallel Composition and Prefixing

We already mentioned in Section 2 that parallel composition and prefixing
are not modelled as directly as the sum. Prompted by the desire to give an
axiomatic treatment of these operations, we carry out some further analysis
of Kl(T). We concentrate first on the class of examples given by the free
completions under all colimits up to a certain size κ.

15

Definition 5.1 Let (−)⊥ be the 2-monad on Cat that freely adds to a small
category a strict initial object.

Definition 5.2 For any regular cardinal κ, let Cκ be the 2-monad on Cat
that takes a small category C to its free completion under all connected col-
imits of size less than κ.

Proposition 5.3 The 2-monad on Cat, Tκ that takes a small category C to
its free completion under all colimits of size less than κ can be factored as

Tκ = Cκ((−)⊥) .

Corollary 5.4 For small categories C and D,

Kl(Cκ)[TκC, TκD] ∼= Kl(Tκ)[TκC⊥, TκD]

Proof:

Kl(Cκ)[TκC, TκD] = Kl(Cκ)[CκC⊥, TκD]
∼= Cat[C⊥, TκD]
∼= Kl(Tκ)[TκC⊥, TκD]

2

Hence there is a way of representing connected colimit preserving functors
between TκC and TκD as arrows of Kl(Tκ).

We now consider prefixing and parallel composition for CCS.

5.0.1 Prefixing:

Let a ∈ L. Define prea : L+
⊥ → L+ as follows

⊥ 7→ a

p 7→ ap

By post-composing prea with ηL+ we obtain a functor L+
⊥ → Tκ(L

+), i.e., a
connected colimit preserving functor,

Prea : Tκ(L
+)→ Tκ(L

+).

This defines precisely the usual prefixing operator on trees.

16

5.0.2 Parallel Composition:

One starts from a functor

|| : L⊥ × L⊥ → Tκ(L)

that induces an arrow ||! : Tκ(L⊥ × L⊥)→ Tκ(L) in Kl(T). In order to get

| : Tκ(L)× Tκ(L)→ Tκ(L)

one needs to embed Tκ(L) × Tκ(L) into Tκ(L⊥ × L⊥). Recall that Tκ is
commutative and note that, if i : L → L⊥ is the unit at L of the 2-monad,
(−)⊥, and η : L⊥ → Tκ(L⊥) is the unit at L⊥ of the 2-monad Tκ, then
Lanĩ(ηL⊥) : Tκ(L)→ Tκ(L⊥) exists, hence we can form the embedding

Tκ(L)× Tκ(L) //
Lanĩ(ηL⊥)×Lanĩ(ηL⊥)

Tκ(L⊥)× Tκ(L⊥) //
T̄(L⊥,L⊥)

Tκ(L⊥ × L⊥) .

Call the composite above e, and define | = ||!e. By Proposition 4.3, T̄
preserves colimits in both arguments separately, hence | preserves connected
colimits in both arguments separately.

In [22, 5] explicit descriptions based on decomposition results for presheaves
were given of prefixing and parallel composition. In [5] it was suggested how
to recover explicit descriptions in the above terms when T is replaced by the
presheaf completion.

Turning to bisimulation, we have

Proposition 5.5 Any connected colimit preserving functor between Tκ(C)
and Tκ(D) preserves epimorphic open maps.

Corollary 5.6 Prefixing and parallel composition functors on synchronisa-
tion trees preserve bisimulation.

We conclude this section by showing a way of axiomatising the situation just
described, where the composite of two 2-monads gives rise to a third one
together with congruence properties with respect to bisimulation from open
maps. Let R be a dense KZ-monad on Cat and let S be another 2-monad
on Cat (not necessarily KZ). By a distributive law of S over R one mean a
natural transformation δ : SR⇒ RS that preserves multiplications ad units
of the two 2-monads [2]. If such a distributive law is given, then a 2-monad

17

structure is induced on the composite functor T = RS. So we have (cf.
Corollary 5.4)

Kl(R)[TC, TD] ∼= Kl(T)[TSC, TD] .

In particular, one obtains a functor in Kl(R) from a functor F : TSC→ TD
in Kl(T), by precomposing F with RηSC : TC = RSC → RSSC = TSC,
where η : Id ⇒ S is the unit of S. Moreover, at each C, RηSC sends open
maps with respect to SC to open maps with respect to SSC, as we saw
in Corollary 3.6. So, if one has that, in TC, being open with respect to C
implies being open with respect to SC, then the every functor in Kl(R) of
domain TC preserves open maps with respect to C.

In our case this specialises to S = (−)⊥ and R = Cκ. Although this may
seem a heavy way to axiomatise something for which we have given only one
substantial example, note that even in this single case it is easier to check
that it satisfies all the needed requirements than it is to provide a direct
proof.

6 Conclusions and further work

We have considered dense KZ-monads T on Cat, and deduced the exis-
tence of various structures on the 2-category Kl(T) that allow us to give
an axiomatic account of functional bisimulation, showing that various con-
structors such as prefixing, nondeterministic sum, and a parallel operator,
may axiomatically be seen as preserving functional bisimulations. We have
proved, under an additional condition, that Kl(T) has finite products and
coproducts (and they agree), and a symmetric monoidal structure, and it sup-
ports some higher order structure. The axioms all hold of for KZ-monads
induced by free colimit completions as outlined in Section 3.

The obvious closely related work, in fact work on which our Theorem 3.6
depends, was that of [6] which considered categories of presheaves and pro-
functors. In fact, the free completion under all colimits of a small category C
is equivalent to the category [Cop,Set]. A proof appears in [11]. It is one of
the fundamental theorems of category theory. However, the free completion
under all colimits, unlike our examples of Section 3, does not form a 2-monad
on Cat. The reason is size: if C is a small category, then so are TωC, Tω1C,
and TκC, but [Cop,Set] is not, so it is not an object of Cat. However, one
can pass to a larger universe of sets. Doing this allows us to see some of the
results about presheaf categories and profunctors in our terms. Specifically,

18

our work here gives independent proofs that the 2-category of free comple-
tions under all colimits, with strict colimit preserving functors, has all finite
products and coproducts (and they agree), and is symmetric monoidal, with
symmetric monoidal structure given by T (C× D).

In fact, more is true of this particular 2-category, well-known to be
biequivalent to the bicategory of profunctors. In particular, unlike examples
given by dense KZ-monads in general, it is symmetric monoidal closed and
so provides models for higher order processes (see [22, 7]). In the light of the
above paragraph, that construction can also be seen axiomatically, by con-
sidering a full subcategory of Kl(T) for a particular dense KZ-monad T . By
Remark 2, ending Section 2, the same axiomatisation would be appropriate
for any KZ-monad T of the form Tκ for an infinite cardinal κ; the monoidal
closure of profunctors would cut down to monoidal closed structure on full
subcategories of Kl(T) whose objects TD were subject to a size restriction
on D. One of our major goals in further work is to study bisimulation on
higher order processes in more depth.

Another main goal for future work is the study of weaker forms of equiva-
lence. An obvious such class of equivalences to consider here are those given
by weak bisimulation. That involves a construction that takes a tree to an-
other tree, broadly but not precisely by a quotienting operation. Another
obvious class of equivalences here are those given by contextual equivalence,
for instance testing or failures equivalence. We hope to pursue one of those
equivalences too.

Finally, we seek an operational account of the structures we are develop-
ing. As in [7], this may provide new versions of process passing calculi with
a firm semantic foundation.

References

[1] R. Blackwell, G.M. Kelly, and A.J. Power. Two-dimensional monad
theory. Journal of Pure and Applied Algebra, 59:1–41, 1989.

[2] M. Barr, C. Wells. Toposes, Triples and Theories. Springer-Verlag,
1985.

[3] F. Borceux. Handbook of Categorical Algebra, vol. 1. CUP, 1994.

19

[4] G. L. Cattani, M. Fiore, and G. Winskel. A Theory of Recur-
sive Domains with Applications to Concurrency. In Proceedings of
LICS ’98, pages 214–225, 1998.

[5] G. L. Cattani, I. Stark, and G. Winskel. Presheaf Models for the π-
Calculus. In Proceedings of CTCS ’97, LNCS 1290, pages 106–126,
1997.

[6] G. L. Cattani and G. Winskel. Presheaf Models for Concurrency.
In Proceedings of CSL’ 96, LNCS 1258, pages 58–75, 1997.

[7] G. L. Cattani and G. Winskel. On bisimulation for higher order
processes. Manuscript, 1998.

[8] B. Jacobs and J. Rutten. A tutorial on (Co)algebras and
(Co)induction. EACTS Bulletin 62 (1997) 222-259.

[9] A. Joyal and I. Moerdijk. A completeness theorem for open maps.
Annals of Pure and Applied Logic, 70:51–86, 1994.

[10] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open
maps. Information and Computation, 127:164–185, 1996.

[11] G.M. Kelly. Basic concepts of enriched category theory. London
Math. Soc. Lecture Note Series 64, CUP, 1982.

[12] G.M. Kelly and R. Street. Review of the elements of 2-categories.
In Proceedings of Sydney Category Theory Seminar 1972/73, LNM
420, pages. 75–103, Springer-Verlag, 1974.

[13] A. Kock. Monads for which structures are adjoint to units. Journal
of Pure and Applied Algebra, 104:41–59, 1995

[14] A. Kock. Closed categories generated by commutative monads.
Journal of the Australian Mathematical Society, 12:405–424, 1971.

[15] S. Mac Lane. Categories for the working mathematician. Springer-
Verlag, 1971.

[16] R. Milner. Communication and concurrency. Prentice Hall, 1989.

20

[17] A. J. Power, G. L. Cattani and G. Winskel. A representation result
for free cocompletions. Submitted for publication.

[18] D. Sangiorgi. Bisimulation for higher-order process calculi. Infor-
mation and Computation, 131(2):141–178, 1996.

[19] D. S. Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes,
Algebraic Geometry and Logic, LNM 274, pages 97–136. Springer-
Verlag, 1972.

[20] M.B. Smyth and G. D. Plotkin. The category-theoretic solu-
tion of recursive domain equations. SIAM Journal of Computing,
11(4):761–783, 1982.

[21] R. Street. Fibrations in Bicategories. Cahiers de Topologie et
Géométrie Différentielle, XXI(2):111-160, 1980.

[22] G. Winskel. A presheaf semantics of value-passing processes. In
Proceedings of CONCUR’96, LNCS 1119, pages 98–114, 1996.

21

Recent BRICS Report Series Publications

RS-98-22 Gian Luca Cattani, John Power, and Glynn Winskel.A Cate-
gorical Axiomatics for Bisimulation. September 1998. ii+21 pp.
Appears in Sangiorgi and de Simone, editors,Concurrency
Theory: 9th International Conference, CONCUR ’98 Proceed-
ings, LNCS 1466, 1998, pages 581–596.

RS-98-21 John Power, Gian Luca Cattani, and Glynn Winskel.A Repre-
sentation Result for Free Cocompletions. September 1998.

RS-98-20 Søren Riis and Meera Sitharam.Uniformly Generated Submod-
ules of Permutation Modules. September 1998. 35 pp.

RS-98-19 Søren Riis and Meera Sitharam.Generating Hard Tautologies
Using Predicate Logic and the Symmetric Group. September
1998. 13 pp.

RS-98-18 Ulrich Kohlenbach. Things that can and things that can’t be
done in PRA. September 1998. 24 pp.

RS-98-17 Roberto Bruni, Jośe Meseguer, Ugo Montanari, and Vladimiro
Sassone.A Comparison of Petri Net Semantics under the Collec-
tive Token Philosophy. September 1998. 20 pp. To appear in4th
Asian Computing Science Conference, ASIAN ’98 Proceedings,
LNCS, 1998.

RS-98-16 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems. September 1998.

RS-98-15 Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing
the Overhead of ML Exceptions by Selective CPS Transforma-
tion. September 1998. 31 pp. To appear in the proceedings of
the 1998 ACM SIGPLAN Workshop on ML, Baltimore, Mary-
land, September 26, 1998.

RS-98-14 Sandeep Sen.The Hardness of Speeding-up Knapsack. August
1998. 6 pp.

RS-98-13 Olivier Danvy and Morten Rhiger.Compiling Actions by Partial
Evaluation, Revisited. June 1998. 25 pp.

RS-98-12 Olivier Danvy. Functional Unparsing. May 1998. 7 pp. This
report supersedes the earlier report BRICS RS-98-5. Extended
version of an article to appear in Journal of Functional Pro-
gramming.

