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Abstract

It is well-known by now that large parts of (non-constructive) mathematical rea-

soning can be carried out in systems T which are conservative over primitive recursive

arithmetic PRA (and even much weaker systems). On the other hand there are prin-

ciples S of elementary analysis (like the Bolzano-Weierstraß principle, the existence of

a limit superior for bounded sequences etc.) which are known to be equivalent to arith-

metical comprehension (relative to T ) and therefore go far beyond the strength of PRA

(when added to T ).

In this paper we determine precisely the arithmetical and computational strength (in

terms of optimal conservation results and subrecursive characterizations of provably re-

cursive functions) of weaker function parameter-free schematic versions S− of S, thereby

exhibiting different levels of strength between these principles as well as a sharp border-
line between fragments of analysis which are still conservative over PRA and extensions
which just go beyond the strength of PRA.

1 Introduction

It is well-known by now, mainly from work done on the program of so-called reverse mathe-
matics (although not using the reverse direction explicitly), that substantial parts of math-

ematics (and in particular analysis) can be carried out in systems T which are conservative

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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over primitive recursive arithmetic PRA (see [25] for a systematic account). This is of
interest for mainly two reasons

1) If a Π0
2-sentence A is provable in T and the conservation of T over PRA has been

established proof-theoretically, then one can extract a primitive recursive program
which realizes A from a given proof. Typically the resulting program will have a
quite restricted complexity or rate of growth (compared to merely being primitive

recursive). In fact in a series of papers we have shown that in many cases even a

polynomial bound is guaranteed (see [9],[11],[14] among others).

2) One can argue that PRA formalizes what has been called finitistic reasoning (see e.g.

[26]). If the conservation of T over PRA has been established finitistically (which is

possible for mathematically strong systems T (see [22],[8]), then all the mathematics

which can be carried out in T has a finitistic justification (see [24],[25] for a discussion

of this).

In this paper we exhibit a sharp boundary between finistically reducible parts of analysis
and extensions which provably go beyond the strength of PRA.
More precisely we study the (proof-theoretical and numerical) strength of function parameter-

free schematic forms of1

• the convergence (with modulus of convergence) of bounded monotone sequences

(an)n∈IN ⊂ IR principle (PCM)

• the Bolzano-Weierstraß principle (BW) for (an)n∈IN ⊂ [0, 1]d

• the Ascoli-Arzela principle for bounded sequences (fn)n∈IN ⊂ C[0, 1] of equicontinuous

functions (A-A)

• the existence of the limit superior principle for (an)n∈IN ⊂ [0, 1] (Limsup).

Let us discuss what we mean by ‘function parameter-free schematic form’ in more detail for
BW:
‘Schematic’ means that an instance BW(t) of BW is given by a term t of the underlying

system which defines a sequence in [0, 1]d. We allow number parameters k in t, i.e. we

consider sequences ∀k ∈ IN BW(t[k]) of instances of BW, but not function parameters.
Allowing function parameters to occur in BW would make the schema equivalent to the
single second-order sentence

(∗) ∀(an) ⊂ [0, 1]d BW(an).

1For precise formalizations of these principles in systems based on number and function variables see [12]
on which the present paper partially relies. We slightly deviate from the notation used in [12] by writing
(PCM),(PCMar) instead of (PCM2),(PCM1).
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It is well-known by the work on program of reverse mathematics that (∗) is equivalent

to the schema of arithmetical comprehension (relative to weak fragments of second-order

arithmetic).
On the other hand, the restriction of BW to function parameter-free instances – in short:

BW− – is much weaker since the iterated use of BW is now no longer possible.

We calibrate precisely the strength of PCM−, BW−, A-A− and Limsup− relative second-
order extensions of primitive recursive arithmetic PRA (thereby completing research started

in [12]). It turns out that the results depend heavily on what type of extension of PRA we
choose:
One option is straightforward: extend PRA by number and variables x0 and quantifiers for
objects fρ of type-level 1, i.e. ρ = 0(0) · · · (0), where ρ(0) is the type of functions from

IN into objects of type ρ (note that modulo λ-abstraction objects of type 0

n︷ ︸︸ ︷
(0) . . . (0) are

just n-ary number theoretic functions).2 We have the axioms and rules of many-sorted
classical predicate logic as well as symbols and defining equations for all primitive recursive
functionals of type level ≤ 2 in the sense of Kleene [7] (i.e. ordinary primitive recursion

uniformly in function parameters, for details see e.g. [6](II.1) or [21]). We also have a

schema of quantifier-free induction (w.r.t. to this extended language) and λ-abstraction for
number variables, i.e.

(λy.t[y])x = t[x], x, y tuples of the same length.

So PRA2 is the second-order fragment of the (restricted) finite type system P̂A
ω|\ from [3].

It is clear that the resulting system PRA2 is conservative over PRA.
We often write 1 instead of 0(0).

Another option is to impose a restriction on the type-2-functionals which are allowed. We

include functionals of arbitrary Grzegorczyk level in the sense of [9]3 (including all elemen-

tary recursive functionals) but not the iteration functional

(It) Φit(0, y, f) = y, Φit(x+ 1, y, f) = f(x,Φit(x, y, f)),

although it is primitive recursive in the sense of Kleene (and not only in the extended sense

of Gödel [5], ‘=’ is equality between natural numbers). We call the resulting system PRA2
−.

On easily shows that PRA2 is a definitorial extension of PRA2
− + (It).

2So we could have used also variables and quantifiers for n-ary functions instead and treat sequences of
functions as fn := λm.f(n,m). However the use of variables f0(0)...(0) is more convenient since it avoids the
use of the λ-operator in many cases.

3This means that we allow all the type-2-functionals Φn from [9] plus a bounded search operator and
bounded recursion – uniformly in function parameters – on the ground type (see [9]).
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EA2 is the restriction of PRA2
− to elementary recursive function(al)s only (see [20] for a

definition of ‘elementary recursive functional’).

Remark 1.1 In contrast to the class of primitive recursive functions, there exists no Grze-
gorzcyk hierarchy for primitive recursive functionals which would include all of them: if Φit

would occur at a certain level of such a hierarchy, then this hierarchy would collapse to this
level since all primitive recursive functions can be obtained from the initial functions and
Φit by substitution.

The schema of quantifier-free choice for numbers is given by

AC0,0-qf : ∀x0∃y0A0(x, y)→ ∃f∀xA0(x, fx),

where A0 is a quantifier-free formula.4 We also consider the binary König’s lemma as
formulated in [27]:

WKL :≡ ∀f1(T (f) ∧ ∀x0∃n0(lth(n) =0 x ∧ f(n) =0 0)→ ∃b ≤1 1∀x0(f(bx) =0 0)),

where b ≤1 1 :≡ ∀n(bn ≤ 1) and

T (f) :≡ ∀n0,m0(f(n ∗m) = 0→ f(n) = 0) ∧ ∀n0, x0(f(n ∗ 〈x〉) = 0→ x ≤ 1)

(here lth, ∗, bx, 〈·〉 refer to a standard elementary recursive coding of finite sequences of

numbers).

One easily shows that the schema of Σ0
1-induction is derivable in PRA2+ AC0,0-qf (but

not in PRA2
−+ AC0,0-qf). The schema of recursive comprehension is already provable in

PRA2
−+ AC0,0-qf. So PRA2+ AC0,0-qf (resp. PRA2+ AC0,0-qf + WKL) is a function

variable version of the system RCA0 (resp. WKL0) used in reverse mathematics, which
uses set variables instead of function variables.
The main results of this paper are5

Theorem 1.2 1) PRA2
−+PCM− contains PRA+Σ0

1-IA.

2) PRA2
−+AC0,0-qf+WKL+PCM−+BW−+A-A− is Π0

3-(but not Π0
4-)conservative over

PRA+Σ0
1-IA and hence Π0

2-conservative over PRA.

Corollary 1.3

The provably recursive functions of PRA2
−+AC0,0-qf+WKL+PCM−+BW−+A-A− are ex-

actly the primitive recursive ones.

4Throughout this paper A0, B0, C0, . . . denote quantifier-free formulas.
5Here and in the following we denote the (conservative) extension of PRA by first-order predicate logic

also by PRA.
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Theorem 1.4 1) PRA2
−+Limsup− contains PRA+Σ0

2-IA.

2) PRA2
−+AC0,0-qf+WKL+PCM−+BW−+A-A−+Limsup− is Π0

4-conservative over

PRA+Σ0
2-IA.

Corollary 1.5 The provably recursive functions of

PRA2
−+AC0,0-qf+WKL+PCM−+BW−+A-A−+Limsup− are exactly the α(< ω(ωω))- re-

cursive ones,6 i.e. the functions definable in the fragment T1 of Gödel’s T ([5]) with recur-
sion of level ≤ 1 only, which includes the Ackermann function.

This results also holds for EA2 instead of PRA2
−.

Theorem 1.6 PRA2+ PCM− is closed under the function parameter-free rule Σ0
2-IR

− of

Σ0
2-induction.

Corollary 1.7 Every α(< ω(ωω))-recursive (i.e. T1-definable) function (including the Ack-

ermann function) is provably recursive in PRA2+ PCM−.

Together with the fact that PRA2+AC0,0-qf+WKL is Π0
2-conservative over PRA (see [22]

and for more general results [8]) this yields

Corollary 1.8 PRA2+AC0,0-qf+WKL /̀ PCM− (this holds a fortiori for BW−, A-A− and

Limsup− instead of PCM−).

Theorem 1.9 Let P be PCM−, BW− or A-A−. Then PRA2+ AC0,0-qf +P contains PRA

+Π0
2-IA (=PRA +Σ0

2-IA).

So relative to PRA2+ AC0,0-qf, the principles PCM−, BW− and A-A− are not conservative
over PRA.
Relative to PRA2

− (+AC0,0-qf +WKL) these principles are conservative over PRA but the

principle Limsup− is not.

2 Preliminaries

We first indicate how to represent real numbers and the basic arithmetical operations and

relations on them in EA2.
The results of this section a fortiori hold for PRA2

− instead of EA2.

6Here α-recursive is meant in the sense of [16], i.e. unnested. In contrast to this the notion of α-
recursiveness as used e.g. in [2],[21] corresponds to nested recursion.
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The representation of IR presupposes a representation of Q: Let j be the Cantor pairing
function. Rational numbers are represented as codes j(n,m) of pairs (n,m) of natural

numbers n,m. j(n,m) represents

the rational number
n
2

m+ 1
, if n is even, and the negative rational −

n+1
2

m+ 1
if n is odd.

Because of the surjectivity of j, every natural number is a code of a uniquely determined
rational number. On the codes of Q, i.e. on IN, we define an equivalence relation by

n1 =Q n2 :≡
j1n1

2

j2n1 + 1
=

j1n2

2

j2n2 + 1
if j1n1, j1n2 both are even

and analogously in the remaining cases, where a
b = c

d is defined to hold iff ad =0 cb (for

bd > 0).

On IN one easily defines functions | · |Q,+Q ,−Q, ·Q :Q,maxQ,minQ ∈ EA2 and (quantifier-

free) relations) <Q,≤Q which represent the corresponding functions and relations on Q. In

the following we sometimes omit the index Q if this does not cause any confusion.

Notational convention: For better readability we often write e.g. 1
k+1 instead of its code

j(2, k) in IN. So e.g. we write x0 ≤Q
1

k+1 for x ≤Q j(2, k).

Real numbers are represented as Cauchy sequences (qn)n∈IN of rational numbers with fixed
rate of convergence

∀n∀m, m̃ ≥ n(|qm − qm̃| ≤
1

n+ 1
).

By the coding of rational numbers as natural numbers, sequences of rationals are just

functions f1 (and every function f1 can be conceived as a sequence of rational numbers

in a unique way). In particular representatives of real numbers are functions f1 modulo
this coding. We now show that every function can be viewed of as an representative of
a uniquely determined Cauchy sequence of rationals with modulus 1/(k + 1) and therefore
can be conceived as an representative of a uniquely determined real number.

To this end we need the following functional f̂ .

Definition 2.1 The functional λf1.f̂ ∈ EA2 is defined such that

f̂n =


fn, if ∀k,m, m̃ ≤0 n(m, m̃ ≥0 k → |fm−Q fm̃| ≤Q

1
k+1)

f(n0 − 1) for n0 := min l ≤0 n[∃k,m, m̃ ≤0 l(m, m̃ ≥0 k ∧ |fm−Q fm̃| >Q
1

k+1)],

otherwise.
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One easily proves in EA2 that

1) if f1 represents a Cauchy sequence of rational numbers with modulus 1/(k + 1), then

∀n0(fn =0 f̂n),

2) for every f1 the function f̂ represents a Cauchy sequence of rational numbers with

modulus 1/(k + 1).

Following the usual notation we write (xn) instead of fn and (x̂n) instead of f̂n.

Definition 2.2 1) (xn) =IR (x̃n) :≡ ∀k0(|x̂k −Q
̂̃xk| ≤Q

3
k+1);

2) (xn) <IR (x̃n) :≡ ∃k0(̂̃xk − x̂k >Q
3

k+1);

3) (xn) ≤IR (x̃n) :≡ ¬(̂̃xn) <IR (x̂n);

4) (xn) +IR (x̃n) := (x̂2n+1 +Q
̂̃x2n+1);

5) (xn)−IR (x̃n) := (x̂2n+1 −Q
̂̃x2n+1);

6) |(xn)|IR := (|x̂n|Q);

7) (xn) ·IR (x̃n) := (x̂2(n+1)k ·Q ̂̃x2(n+1)k), where k := dmaxQ(|x0|Q + 1, |x̃0|Q + 1)e;

8) For (xn) and l0 we define

(xn)
−1 :=

 (maxQ(x̂(n+1)(l+1)2 , 1
l+1)−1), if x̂2(l+1) >Q 0

(minQ(x̂(n+1)(l+1)2 , −1
l+1)−1), otherwise;

9) maxIR ((xn), (x̃n)) := ( maxQ(x̂n, ̂̃xn)), minIR ((xn), (x̃n)) := (minQ(x̂n, ̂̃xn)).
Sequences of real numbers are coded as sequences f1(0) of codes of real numbers.

The principles PCM and PCMar of convergence for bounded monotone sequences are given

by7

PCMar(f
1(0)) :≡

∀n(0 ≤IR f(n+ 1) ≤IR f(n))→ ∀k∃n∀m, m̃ ≥ n(|fm−IR fm̃| ≤ 1
k+1),

7The restriction to decreasing sequences and the special lower bound 0 is of course inessential.
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PCM(f1(0)) :≡

∀n(0 ≤IR f(n+ 1) ≤IR f(n))→ ∃g∀k∀m, m̃ ≥ gk(|fm−IR fm̃| ≤ 1
k+1).

Relative to PRA2
−, PCM is equivalent to the principle stating the convergence of f with

a modulus of convergence (PCMar does not imply in PRA2
− the existence of a limit since

reals have to be given as Cauchy sequences with given rate of convergence). For monotone
sequences the existence of a modulus of convergence can be obtained from the existence of

a limit by the use of AC0,0-qf. So relative to PRA2
−+ AC0,0-qf we don’t have to distinguish

between our formulation of PCM, the existence of a limit of f and the existence of a limit
together with a modulus of convergence.

PCM− and PCM−ar denote the function parameter-free schematic versions of PCM(f) and

PCMar(f) (in the sense discussed in the introduction).

Let BW(f) be the statement

(f1(0) codes a sequence ⊂ [0, 1]d ⇒ this sequence has a limit point in [0, 1]d)

(for details see [12]). In [12] we also discuss the (relative to PRA2
− slightly stronger) principle

BW+(f) expressing that f possesses a convergent subsequence (with modulus of conver-

gence). All the results of this paper are valid for both versions BW(f) and BW+(f) and
so we don’t distinguish between them and denote their function parameter-free schematic

forms both by BW−. Likewise for the Arzela-Ascoli lemma (see [12] for the precise formu-

lations of A-A(f) and A-A+(f)).

We define the limit superior according to the so-called ε-definition, i.e. a ∈ [−1, 1] is the

limit superior of (xn) ⊂ [−1, 1] if8

(∗) ∀k(∀m∃n > m(|a− xn| ≤
1

k + 1
) ∧ ∃l∀j > l(xj ≤ a+

1

k + 1
)).

(∗) implies (relative to PRA2
−) that a is the maximal limit point of (xn). The reverse

direction follows with the use of BW (we don’t know whether it can be proved in PRA2
−).

Limsup(f) is the principle stating

(f codes a sequence ⊂ [−1, 1] ⇒ this sequence has a lim sup in the sense of (∗)).

Limsup− is the corresponding function parameter-free schematic version.

8Again the restriction to the particular bound 1 is inessential.
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3 Things that can be done in (a conservative extension of)

PRA resp. in PRA +Σ0
2-IA

In this section we draw some consequences of our results from [12] and [13] and formulate
them in a way which fits into the present framework.

Theorem 3.1 Every Π0
3-theorem of PRA2

−+AC0,0-qf+WKL+PCM−+BW−+A-A− is prov-

able in PRA+Σ0
1-IA.

Proof: From the proofs of propositions 5.5 and 5.6 from [12] and proposition 5.5.2) below

it follows that there exist instances Π0
1-CA(ξj) which prove, relative to E-G∞Aω+AC1,0-

qf+F− all universal closures G̃i of the instances Gi of PCM−, BW− and A-A− which

are used in the proof of the Π0
3-sentence A ≡ ∀x∃y∀z A0(x, y, z) ∈ PRA. The instances

Π0
1-CA(ξj) can be coded together into a single instance Π0

1-CA(ξ) (see again the proof of

proposition 5.5 from [12]). Since furthermore PRA2
− ⊂ E-G∞Aω and – by [9] (section 4) –

WKL can be derived in E-G∞Aω+AC1,0-qf +F−,9 we obtain

E-G∞Aω+ AC1,0-qf + F− ` Π0
1-CA(ξ)→ A.

Corollary 4.7 from [13] (combined with the elimination of extensionality procedure as used

in the proof of corollary 4.5 in [13]) yields that

G∞Aω + Σ0
1-IA ` A,

and hence (since G∞Aω + Σ0
1-IA can easily be seen to be conservative over PRA+Σ0

1-IA)10

PRA +Σ0
1-IA ` A.

2

Remark 3.2 1) In section 4 below we will show that already PRA2
−+PCM− contains

PRA+Σ0
1-IA.

2) Already PRA2
−+ AC0,0-qf+PCM− is not Π0

4-conservative over PRA+Σ0
1-IA: From

proposition 5.5 below it follows that PRA2
−+ AC0,0-qf+PCM− proves Π0

1-CA− and

therefore every function parameter-free instance of the principle of Π0
1-collection prin-

ciple Π0
1-CP. Hence PRA+Π0

1-CP is a subsystem of PRA2
−+ AC0,0-qf+PCM−. How-

ever from [17] we know that there exists an instance of Π0
1-CP which cannot be proved

9In the proof of theorem 4.27 from [9], AC0,1-qf is only needed to derive the strong sequential version
WKLseq of WKL.

10We work here in the variant of G∞Aω where the universal axioms 9) are replaced by the schema of
quantifier-free induction.
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in PRA +Σ0
1-IA. The claim now follows from the fact that (the universal closure of)

every instance of Π0
1-CP can be shown to be equivalent to a Π0

4-sentence in PRA+Σ0
1-

IA.

Corollary 3.3 Let A ≡ ∀x∃yA0(x, y) be a Π0
2-sentence in L(PRA). Then the following

rule holds: 
PRA2

−+AC0,0-qf+WKL+PCM−+BW−+A-A− ` ∀x∃yA0(x, y)

⇒ one can extract a primitive recursive function p such that

PRA ` A0(x, px).

Proof: The corollary follows from theorem 3.1 and the well-known fact that PRA+Σ0
1-IA

is Π0
2-conservative over PRA. 2

Theorem 3.4 Every Π0
4-theorem of

PRA2
−+AC0,0-qf+WKL+PCM−+BW−+A-A−+Limsup− is provable in PRA +Σ0

2-IA.

Proof: One easily shows (relative to PRA2
−+AC0,0-qf that Limsup− follows from Π0

2-CA−:

for sequences (qn) ⊂ [0, 1] of rational numbers this is particularly straightforward (the

general case can be reduced to this one): by Π0
2-CA define f such that for i < 2j

f(i, j) = 0↔ ∞-many elements of (qn) are in [ i
2j
, i+1

2j
].

Let g(j) := maximal i < 2j [f(i, j) = 0]. Then (an) defined by an := g(j)
2j

is a Cauchy

sequence which converges (with rate 2n) to the limsup (in the sense of (∗)) of (qn).

The theorem now follows from [13](corollary 4.7) similar to the use of this corollary in the
proof of theorem 3.1 above. 2

Remark 3.5 In section 5 below we will show that already PRA2
−+Limsup− contains

PRA+Σ0
2-IA.

Definition 3.6 By Tn we denote the fragment of Gödel’s calculus T of primitive recursive
functionals in all finite types where one only has recursor constants Rρ with deg(ρ) ≤ n (see

[19] for details).

Corollary 3.7 Let A ≡ ∀x∃yA0(x, y) be a Π0
2-sentence in L(PRA). Then the following

rule holds:
PRA2

−+AC0,0-qf+WKL+PCM−+BW−+A-A−+Limsup− ` ∀x∃yA0(x, y)

⇒ one can extract a closed term Φ1 of T1 such that

T1 ` A0(x,Φx).

10



Proof: The corollary follows from theorem 3.4 and Parsons’ result from [19] that

PRA+Σ0
n+1-IA has (via negative translation) a Gödel functional interpretation in Tn. 2

Remark 3.8 Our results in [12] and [13] actually can be used to obtain stronger forms of

the corollaries 3.3 and 3.7 since in [12],[13] we

1) allowed finite type extensions of the systems in the corollaries 3.3 and 3.7,

2) considered more general conclusions A ≡ ∀u1∀v ≤ρ tu∃zτA0(x, y, z) (where ρ is an

arbitrary type and τ ≤ 2) and showed how to extract uniform bounds Φ ∈ T0 (resp.

∈ T1 in the case of corollary 3.7) such that ∀u1∀v ≤ρ tu∃z ≤τ ΦuA0(x, y, z),

3) allowed the instances of PCM, BW, A-A, Limsup to depend on the parameters u, v of
the conclusion and

4) allowed more general analytical axioms ∆ (than only F−).

4 Some proof theory of PRA2 + Π0
1-AC−

We consider the following schemata:

Π0
1-CA

−
: ∃f1∀x0(fx = 0↔ ∀yA0(x, y)),

Π0
1-ÂC

−
: ∃f1∀x0, z0(¬A0(x, fx) ∨A0(x, z)),

Π0
1-AC

−
: ∀x0∃y0∀z0A0(x, y, z)→ ∃f1∀x, zA0(x, fx, z),

where A0 is quantifier–free and has no function parameters.

Π0
1-CA(g) is the form of Π0

1-CA− where A0(x, y) is replaced by g(x, y) = 0. Similarly for

Π0
1-ÂC(g) and Π0

1-AC(g). One easily verifies the following

Lemma 4.1

1) PRA2 proves the implications Π0
1-AC− → Π0

1-ÂC
− → Π0

1-CA−.

2) PRA2+AC0,0-qf proves Π0
1-CA− ↔ Π0

1-ÂC
− ↔ Π0

1-AC−.

Proposition 4.2 1) PRA2+Π0
1-ÂC

−
is closed under Σ0

2-IR
− (i.e. the induction rule for

Σ0
2-formulas without function parameters) and hence contains the first-order system

PRA+Σ0
2-IR.

2) PRA2 + Π0
1-ÂC

−
proves every Π0

3-theorem of PRA +Π0
2-IA.

11



3) Every function which is definable in T1 (i.e. every α(< ω(ωω))-recursive function is

provably recursive in PRA2 + Π0
1-ÂC

−
. In particular PRA2 + Π0

1-ÂC
−

(and a fortiori

PRA2 + Π0
1-AC−) proves the totality of the Ackermann function.

Proof: 1) Let A ≡ ∃y0∀z0A0(a
0, x0, y0, z0) be a Σ0

2–formula which contains only a, x free.

Suppose that PRA2 proves:

Π0
1–ÂC

− → ∃y∀zA0(a, 0, y, z) ∧ ∀x(∃y∀zA0(a, x, y, z)→ ∃y∀zA0(a, x
′, y, z)).

For notational simplicity we assume that only one instance of Π0
1–ÂC

−
without parameters is

used (every instance of Π0
1–ÂC

−
with a number parameter a can be reduced to a parameter-

free one by coding a and x together) and let this instance be ∃f∀a, b(¬G0(a, fa) ∨G0(a, b)︸ ︷︷ ︸
G̃0:≡

).

Then
(1) PRA2 ` ∃f∀a, bG̃0 → ∃y∀zA0(a, 0, y, z) and

(2) PRA2 ` ∃f∀a, bG̃0 → ∀x(∃y∀zA0(a, x, y, z)→ ∃y∀zA0(a, x
′, y, z)).

Since

∀g(∀a, x, y, z(
Ã0(a,x,y,z,g):≡︷ ︸︸ ︷

¬A0(a, x, y, gaxy) ∨A0(a, x, y, z))

→ ∀a, x, y(g̃axy = 0↔ ∀zA0(a, x, y, z))),

where

g̃axy :=

 1, if ¬A0(a, x, y, gaxy)

0, otherwise

is primitive recursive in g, one has

(1)∗ PRA2 ` ∀f, g(∀a, bG̃0 ∧ ∀a, x, y, zÃ0 → ∃y0(g̃(a, 0, y0) = 0))

(2)∗

PRA2 `

∀f, g(∀a, bG̃0 ∧ ∀a, x, y, zÃ0 → ∀x(∃y1(g̃axy1 = 0)→ ∃y2(g̃ax
′y2 = 0))).

Using functional interpretation combined with normalization (and the fact that the finite

type extension of PRA2 obtained by adding variables and quantifiers for all finite types as

12



well as the Π,Σ-combinators is conservative over PRA2) or alternatively cut-elimination as

in [21]) one obtains closed terms Φ1,Φ2 of PRA2 such that

(3) PRA2 `

 ∀f, g(∀a, bG̃0 ∧ ∀a, x, y, zÃ0 → g̃(a, 0,Φ1fga) = 0

∧∀x, y1(g̃(a, x, y1) = 0→ g̃(a, x′,Φ2(fgaxy1) = 0)).

Using ordinary (Kleene–) primitive recursion we define in PRA2 a functional Φ by Φfga0 =0 Φ1fga

Φfgax′ =0 Φ2(f, g, a, x,Φfgax).

Using only quantifier-free induction, (3) yields

PRA2 ` ∀f, g(∀a, bG̃0 ∧ ∀a, x, y, zÃ0 → ∀x(g̃(a, x,Φfgax) = 0)),

hence PRA2 ` ∀f, g(∀a, bG̃0 ∧ ∀a, x, y, zÃ0 → ∀x∃y∀zA0(a, x, y, z)

and therefore PRA2 + Π0
1-ÂC

− ` ∀x∃y∀zA0(a, x, y, z).

2) follows from 1) using the result from [19] that PRA+Σ0
2-IR proves every Π0

3-theorem of

PRA+Π0
2-IA and the fact that PRA2 + Σ0

2-IR
− ⊇ PRA +Σ0

2-IR.

3) follows from 2) and the fact (see e.g. [18]) that the provably recursive functions of

PRA+Π0
2–IA are just the functions definable in T1 (i.e. the α(< ω(ωω))-recursive functions)

which includes the Ackermann function.
2

Remark 4.3 The only part of the proof of proposition 4.2 which cannot be carried out with

PRA2
− instead of PRA2 is the definition of Φ.

Proposition 4.4 PRA2+ AC0,0-qf +Π0
1-CA− contains PRA +Π0

2-IA (=PRA +Σ0
2-IA).

Proof: One easily shows that PRA2+ AC0,0-qf proves the second-order axiom of Σ0
1-

induction

∀f(∃y(f(0, y) = 0 ∧ ∀x(∃y(f(x, y) = 0)→ ∃y(f(x′, y) = 0))→ ∀x∃y(f(x, y) = 0)).

Together with Π0
1-CA− this yields every function parameter-free instance of Σ0

2-induction.
2

5 Where the convergence of bounded monotone sequences
of real numbers goes beyond PRA

We now determine the pointwise relationship of PCMar and PCM to Σ0
1-IA and Π0

1-ÂC and

use this to calibrate the strength of PCM− relative to PRA2.

13



We first show a result which in particular implies that, relatively to EA2, the principle

(PCMar) is equivalent to the axiom of Σ0
1-induction

Σ0
1-IA : ∀g000(∃y0(g0y =0 0)∧∀x0(∃y0(gxy =0 0)→ ∃y0(gx′y =0 0))→ ∀x0∃y0(gxy =0 0)).

Remark 5.1 This axiom is (relative to EA2) equivalent to the schema of induction for all

Σ0
1-formulas in L(EA2) : Let ∃y0A0(f, x, y) be a Σ0

1–formula (containing only f, x as free

function and number variables). There exists a term tA0 ∈ EA2 such that

EA2 ` ∀x(∃y0A0(f, x, y)↔ ∃y0(tA0f xy =0 0)).

Proposition 5.2 One can construct functionals Ψ1,Ψ2 ∈ EA2 such that:

1) EA2 proves

∀a1(0)
(
∀k0[∃y0(Ψ1ak0y =0 0) ∧ ∀x0(∃y0(Ψ1akxy =0 0)→ ∃y0(Ψ1akx

′y =0 0))→

∀x0∃y0(Ψ1akxy =0 0)]→ [∀n0(0 ≤IR a(n+ 1) ≤IR an)

→ ∀k0∃n0∀m, m̃ ≥0 n(|am−IR am̃| ≤IR
1
k+1)]

)
.

2) EA2 proves

∀g000
(
[∀n0(0 ≤Q Ψ2g(n + 1) ≤Q Ψ2gn ≤Q 1)→

∀k0∃n0∀m, m̃ ≥0 n(|Ψ2gm−Q Ψ2gm̃| ≤Q
1
k+1)]

→ [∃y0(g0y =0 0) ∧ ∀x0(∃y0(gxy =0 0)→ ∃y0(gx′y =0 0))→ ∀x0∃y0(gxy =0 0)]
)
.

Proof: 1) Assume that ∀n0(0 ≤IR a(n + 1) ≤IR an) and

∃k∀n∃m > n(|am−IR an| >IR
1

k+1). By Σ0
1–IA one proves that

(+) ∀n0∃i0(lth(i) = n∧∀j <0 n((i)j < (i)j+1∧ ̂(a((i)j)−IR a((i)j+1))(3(k+1)) >Q
2

3(k + 1)
)).

Let C ∈ IN be such that C ≥ a0. For n := 3C(k + 1), (+) yields an i ∈ IN such that

∀j < 3C(k + 1)((i)j < (i)j+1) and

∀j < 3C(k + 1)(a((i)j)−IR a((i)j+1) >IR
1

3(k+1)).

14



Hence a((i)0)−IR a((i)3C(k+1)) > C which contradicts the assumption ∀n(0 ≤IR an ≤IR C).

Define

Ψ1akni :=0 0, if lth(i) = n ∧ ∀j <0 n((i)j < (i)j+1 ∧ ̂(a((i)j)−IR a((i)j+1))(3(k + 1)) >Q
2

3(k+1))

1, otherwise.

2) Define Ψ2 ∈ EA2 such that Ψ2gn =Q 1−Q

n∑
i=1

χgni
i(i+1) , where χ ∈ EA2 such that

χgni =0

 1, if ∃l ≤0 n(gil =0 0)

0, otherwise.

Using
∞∑
i=1

1
i(i+1) = 1 (which is provable in EA2) it follows that

∀n0(0 ≤Q Ψ2g(n + 1) ≤Q Ψ2gn ≤Q 1).

By the assumption there exists an nx for every IN 3 x > 0 such that

∀m, m̃ ≥ nx(|Ψ2gm−Q Ψ2gm̃| <
1

x(x+ 1)
).

Claim: ∀x̃(0 < x̃ ≤0 x→ (∃y(gx̃y = 0)↔ ∃y ≤ nx(gx̃y = 0))):

Assume that ∃l0(gx̃l = 0) ∧ ∀l ≤ nx(gx̃l 6= 0) for some x̃ > 0 with x̃ ≤ x.
Subclaim: Let l0 be minimal such that gx̃l0 = 0. Then l0 > nx and

Ψ2g(max(l0, x̃)) ≤Q Ψ2g(max(l0, x̃)− 1)−Q
1

x̃(x̃+ 1)
.

Proof of the subclaim: i)
max(l0,x̃)∑

i=1

χg(max(l0,x̃))i
i(i+1) contains 1

x̃(x̃+1) as an element of the sum,

since gx̃l0 = 0 and therefore χg(max(l0, x̃))x̃ = 1.

ii)
max(l0,x̃)−1∑

i=1

χg(max(l0,x̃)−1)i
i(i+1) does not contain 1

x̃(x̃+1) as an element of the sum:

Case 1. x̃ ≥ l0: Then max(l0, x̃)− 1 = x̃− 1 < x̃.

Case 2. l0 > x̃: Then max(l0, x̃) − 1 = l0 − 1. Since l0 is the minimal l such that gx̃l = 0,
it follows that

∀i ≤ max(l0, x̃)− 1(gx̃i 6= 0) and thus χg(max(l0, x̃)− 1)x̃ = 0,
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which finishes case 2.
Because of

χg(max(l0, x̃)− 1)i 6= 0→ χg(max(l0, x̃))i 6= 0,

i) and ii) yield

max(l0,x̃)∑
i=1

χg(max(l0, x̃))i

i(i+ 1)
≥

max(l0,x̃)−1∑
i=1

χg(max(l0, x̃)− 1)i

i(i + 1)
+

1

x̃(x̃+ 1)
,

which concludes the proof of the subclaim.
The subclaim implies

max(l0, x̃)− 1 ≥ nx ∧ |Ψ2g(max(l0, x̃))−Q Ψ2g(max(l0, x̃)− 1)| ≥ 1

x(x+ 1)
.

However this contradicts the construction of nx and therefore concludes the proof of the
claim.
Assume

(a) ∃y0(g0y0 = 0).

Define Φ ∈ EA2 such that

Φgx̃y =

 min ỹ ≤0 y[gx̃ỹ =0 0], if ∃ỹ ≤0 y(gx̃ỹ =0 0)

00, otherwise.

By the claim above and (a) we obtain for y := max(nx, y0):

(b) ∀x̃ ≤0 x(∃ỹ(gx̃ỹ =0 0)↔ gx̃(Φgx̃y) =0 0).

QF–IA applied to A0(x) :≡ (gx(Φgxy) =0 0) yields

g0(Φg0y) = 0 ∧ ∀x̃ < x(gx̃(Φgx̃y) = 0→ gx̃′(Φgx̃′y) = 0)→ gx(Φgxy) = 0.

From this and (a), (b) we obtain

∃y0(g0y0 = 0) ∧ ∀x̃ < x(∃ỹ(gx̃ỹ = 0)→ ∃ỹ(gx̃′ỹ = 0))→ ∃ỹ(gxỹ = 0).

Corollary 5.3

EA2 ` Σ0
1-IA↔ PCMar.
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Remark 5.4 1) From the proof of proposition 5.2 it follows that 2) is already provable

in the intuitionistic variant EA2
i of EA2. In particular

EA2
i ` PCMar → Σ0

1-IA.

The other implication Σ0
1-IA → (PCMar) cannot be proved intuitionistically since

(PCMar) implies the non–constructive so–called ‘limited principle of omniscience’ (see

[15] for a discussion on this).

2) Proposition 5.2 provides much more information than corollary 5.3. In particular

one can compute (in EA2) uniformly in g a decreasing sequence of positive rational

numbers such that the Cauchy property of this sequence implies induction for the Σ0
1–

formula A(x) :≡ ∃y(gxy = 0). The converse is not that explicit but Ψ1 provides

an arithmetical family Ak(x) :≡ ∃y(Ψ1akxy = 0) of Σ0
1–formulas such that the

induction principle for these formulas implies the Cauchy property of the decreasing
sequence of positive reals a.

3) The proof of proposition 5.2.2) could be simplified a bit by using
∑∞
i=0 2−i instead

of
∑∞
i=1

1
i(i+1) . However an :=IR

∑n
i=1

1
i(i+1) as a sequence of real numbers (but not

as rational numbers) can be defined already at the second level of the Grzegorczyk

hierarchy so that the implication PCMar → Σ0
1-IA holds even in G2A

ω (see [14]).

We now show that Π0
1-ÂC(a) can be reduced to PCM(ξa) (for a suitable ξ ∈ EA2) relative

to EA2 and that PCM(a) can be reduced to Π0
1-AC(ζa).

Proposition 5.5 1) EA2 ` ∀f1(0)(PCM(λn0.Ψ2f
′n)→ Π0

1-ÂC(f)),11

where Ψ2 ∈ EA2 is the functional from prop. 5.2.2) such that Ψ2fn =Q 1−Q

n∑
i=1

χfni
i(i+1)

and χ ∈ EA2 such that

χfni =0

 10, if ∃l ≤0 n(fil =0 0)

00, otherwise, and

f ′ := λx, y.sg(fxy).

2) For a suitable closed term Φ of EA2 we have

EA2 ` ∀f1(Π0
1-AC(Φf)→ PCM(f)).

11Strictly speaking we refer here to the embedding λk.Ψ2f
′n of Q into IR instead of Ψ2f

′n.
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Proof: 1) From the proof of prop.5.2.2) we know

(1) ∀n0(0 ≤Q Ψ2f
′(n+ 1) ≤Q Ψ2f

′n)

and

(2)

 ∀x >0 0∀n
(
(∀m, m̃ ≥ n→ |Ψ2f

′m−Q Ψ2f
′m̃| <Q

1
x(x+1))→

∀x̃(0 <0 x̃ ≤0 x→ (∃y(f ′x̃y = 0)↔ ∃y ≤0 n(f ′x̃y = 0)))
)

By (1) and (PCM)(λn0.Ψ2f
′n) there exists a function h1 such that

∀x >0 0∀m, m̃ ≥0 hx(|Ψ2f
′m−Q Ψ2f

′m̃| <Q
1

x(x+ 1)
).

Hence by (2)

∀x >0 0(∃y(f ′xy = 0)↔ ∃y ≤0 hx(f
′xy = 0)).

Furthermore, classical logic yields ∃z0(f0z0 6=0 0∨∀y(f0y = 0)). One now easily concludes

that Π0
1-ÂC(f).

2) Let Ψ1 ∈ EA2 be as in proposition 5.2.1. By Π0
1-CA(Ψ̃1f), where

Ψ̃1fxy = Ψ1(f, j1x, j2x, y), there exists a function g such that

∀k0, x0(gkx = 0↔ ∃y(Ψ1(f, k, x, y) = 0)).

Hence (by applying QF-IA to ‘gkx = 0’) one gets

∀k0(∃y0(Ψ1fk0y =0 0) ∧ ∀x0(∃y0(Ψ1fkxy =0 0)→ ∃y0(Ψ1fkx
′y =0 0))

→ ∀x0∃y0(Ψ1fkxy =0 0))

and therefore (by proposition 5.2.1) PCMar(f). For a suitable Φ̃ ∈ EA2, Π0
1-AC(Φ̃f) allows

to derive PCM(f) from PCMar(f). Π0
1-CA(Ψ̃1f) follows from Π0

1-AC(Ψ̂1f) for a suitable

Ψ̂1 ∈ EA2. Finally both instances Π0
1-AC(Φ̃f) and Π0

1-AC(Ψ̂1f) can be coded together into

a single instance Π0
1-AC(Φf) for a suitable Φ ∈ EA2 (using that the universal closure w.r.t.

arithmetical parameters is incorporated into the definition of Π0
1-AC(f)). Hence

EA2 ` ∀f1(Π0
1-AC(Φf)→ PCM(f)).

2

Lemma 4.1.2) and proposition 5.5 imply
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Corollary 5.6 EA2+AC0,0-qf ` Π0
1-CA− ↔ PCM− and EA2 ` PCM− → Π0

1-ÂC
−
. Anal-

ogously for PRA2
−, PRA2 instead of EA2.

Theorem 3.1, remark 3.2.2) and corollary 5.6 yield theorem 1.2 from the introduction.

Remark 5.7 Proposition 5.5 in particular yields that relatively to EA2 the principle PCM:≡
∀f PCM(f) implies CAar. For RCA0 instead of EA2 this implication is stated in [4]. A

proof (which is different from our proof) can be found in [23].

Proposition 4.2 and proposition 5.5 together yield (using the fact that finitely many instances

of Π0
1-ÂC

−
can be coded into a single function and number parameter-free instance)

Theorem 5.8 Let A ∈ Π0
3-theorem of PRA +Π0

2-IA. Then one can construct a primitive

recursive sequence (qn)
1 of (codes of) rational numbers such that

PRA ` ∀n,m(n ≥0 m→ 0 ≤Q qn ≤Q qm ≤Q 1)

and
PRA2 + PCM(qn) ` A.

Corollary 5.9 PRA2+ PCM− proves every Π0
3-theorem of PRA+Π0

2-IA. In particular:

PRA2+ PCM− proves the totality of the Ackermann function (and more general of every

α(< ω(ωω))-recursive function, i.e. of every function definable in T1).

Theorem 5.10 Let P be PCM−, BW− or A-A−. Then PRA2+ AC0,0-qf +P contains

PRA +Π0
2-IA (=PRA +Σ0

2-IA).

Proof: For PCM− this follows from proposition 4.4, lemma 4.1 and proposition 5.5. BW−

and A-A− imply PCM− relative to PRA2+ AC0,0-qf. 2

6 Where the existence of the limit superior of bounded se-
quences goes beyond PRA

Theorem 6.1 PRA2
−+ Limsup− contains PRA +Σ0

2-IA.

Proof: Let f be a function IN → IN and define qfn := 1
f(n)+1 . Then obviously (qn)IN ⊂

[0, 1] ∩Q. Let a := lim sup
n→∞

qfn.

Claim 1: For k ∈ IN, k > 0 we have

a ≥IR
1

k
↔ a >IR

1

k + 1
↔ ∀n∃m ≥ n(f(m) < k).
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Proof of claim 1:
1→ is trivial.

2→: Assume ∃n∀m ≥ n(f(m) ≥ k). Then ∃n∀m ≥ n(qfm ≤Q
1

k+1) and hence (since a is a

limit point of (qfm)) a ≤IR
1

k+1 .

2←: ∀n∃m ≥ n(f(m) < k) implies ∀n∃m ≥ n(f(m) ≤ k − 1) and therefore

(1) ∀n∃m ≥ n(qfm ≥Q
1

k
=Q

1

k + 1
+

1

k(k + 1)
).

Since a is the maximal limit point of (qfn)nIN, we have

(2) ∃n∀m ≥ n(qfm <IR a+
1

k(k + 1)
).

(1) and (2) yield that a >IR
1

k+1 .

1←: We have already shown that a >IR
1

k+1 implies ∀n∃m ≥ n(f(m) ≤ k − 1) and so

∀n∃m ≥ n(qfm ≥ 1
k ) and hence a ≥IR

1
k .

Claim 2: Relative to PRA2
− we have

∀a1, k0(a =IR lim sup
n→∞

qfn ∧ ∀n∃m ≥ n(f(m) < k)

→ ∃k0 ≤ k(k0 minimal such that ∀n∃m ≥ n(f(m) < k0)).

Proof of claim 2: Assume a =IR lim sup
n→∞

qfn and ∀n∃m ≥ n(f(m) < k). Then, by claim 1,

a ≥IR
1
k . We now show that there exists a k0 such that 0 < k0 ≤ k and a =IR

1
k0

(it is

clear that k0 is minimal such that ∀n∃m ≥ n(f(m) < k0) since otherwise (by claim 1)

a ≥IR
1

k0−1). Let k0, 0 < k0 ≤ k, be such that | 1
k0
−Q a(2k(k + 1))| is minimal. Then

1
k0+1 <IR a and, if k0 − 1 > 0, a <IR

1
k0−1 , since

1

2k(k + 1)
≤ 1

2

(
1

k0
− 1

k0 + 1

)
if k0−1>0

<
1

2

(
1

k0 − 1
− 1

k0

)

and |a− a(2k(k + 1))| < 1
2k(k+1) .

Claim 1 now implies that a =IR
1
k0
.

Claim 3: Relative to PRA2
− we have

∀a1, k0(a =IR lim sup
n→∞

qfn ∧ ∀n∃m ≥ n(f(m) = k)

→ ∃k0 ≤ k(k0 minimal such that ∀n∃m ≥ n(f(m) = k0)).
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Proof of claim 3: Assume that ∃a1(a =IR lim sup
n→∞

qfn). Then

∃k∀n∃m ≥ n(fm = k) ⇒

∃k∀n∃m ≥ n(fm < k + 1)
Claim2⇒

∃k( k least such that ∀n∃m ≥ n(fm < k + 1)) ⇒

∃k( k least such that ∀n∃m ≥ n(fm = k)).

Claim 4: Let R(l0, k0,m0) be a primitive recursive predicate. Then there exists a primitive
recursive function f such that

PRA ` ∀l, k∀k̃ ≤ k(∀n∃m ≥ nR(l, k̃,m)↔ ∀n∃m ≥ n(flkm = k̃)).

Proof of Claim 4: Define (using the Cantor pairing function j and its projections ji)

t̃lkm :=

 j1m, if R(l, j1m, j2m)

k + 1, otherwise.

We show (for all l and all k̃ ≤ k)

∀n∃m ≥ n(t̃lkm = k̃)↔ ∀n∃m ≥ nR(l, k̃,m).

‘→’: Let n0 := max
i≤n

j(k̃, i) and m > n0 such that t̃lkm = k̃. Then j1m = k̃, R(l, k̃, j2m)

and j2m > n, since m = j(k̃, j2m) > n0. Hence ∃m ≥ nR(l, k̃,m).

‘←’: Let m ≥ n be such that R(l, k̃,m). Then t̃(l, k, j(k̃,m)) = k̃. Since j(k̃,m) ≥ m ≥ n,

we get ∃m ≥ n(t̃lkm = k̃).

Claim 5: Let R(k, n,m) be primitive recursive and

R̃(k, n,m) :≡ R(k, n,m) ∧ ∀m̃ < m¬R(k, n, m̃). Then PRA +Σ0
1-IA proves

∀k(∀n∃mR(k, n,m)↔ ∀n∃m ≥ n(lth(j2m) = j1m+ 1 ∧ ∀ñ ≤ j1mR̃(k, ñ, (j2m)ñ))).

Proof of Claim 5:
‘→’: Assume ∀n∃mR(k, n,m) and hence ∀n∃mR̃(k, n,m). By the principle of finite choice

for Σ0
1-formulas (which follows from Σ0

1-IA, see [17]) we obtain

∃m̃(lth(m̃) = n+ 1∧∀ñ ≤ n R̃(k, ñ, (m̃)ñ)). So m := j(n, m̃) satisfies the right-hand side of
the equivalence.
‘←’: Assume

(+) ∀n∃m ≥ n(lth(j2m) = j1m+ 1 ∧ ∀ñ ≤ j1mR̃(k, ñ, (j2m)ñ))
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and suppose that ∃n∀m¬R(k, n,m) and hence ∃n∀m¬R̃(k, n,m). By the least number prin-

ciple for Π0
1-formulas (which easily follows from Σ0

1-IA) we get a least such n, call it n0.
Hence

∀n < n0∃mR̃(k, n,m).

Again by finite Σ0
1-choice we obtain

(++) ∃m0(lth(m0) = n0 ∧ ∀n < n0R̃(k, n, (m0)n)).

By (+) there exists an m > j(n0−· 1,m0) such that

(+ + +) lth(j2m) = j1m+ 1 ∧ ∀ñ ≤ j1mR̃(k, ñ, (j2m)ñ).

Then either j1m ≥ n0 or j1m < n0 ∧ j2m > m0. The first case yields a contradiction to

∀m¬ R̃(k, n0,m) and the second case contradicts the fact that (by R̃-definition) (++) and

(+ + +) imply

∀ñ < lth(j2m)((j2m)ñ = (m0)ñ).

We now finish the proof of the theorem. By the claims 3-5 and the fact that PRA2
−+

Limsup− ` PCM−ar (which in turn yields Σ0
1-IA

− by proposition 5.2.2, so that PRA +Σ0
1-

IA is a subsystem of PRA2
−+ Limsup−), we obtain in PRA2

−+ Limsup− the least number

principle instance

∃k∀n∃mR(l, k, n,m)→ ∃k( k minimal such that ∀n∃mR(l, k, n,m)).

Hence PRA2
−+ Limsup− proves every function parameter-free Π0

2-instance of the least num-

ber principle, i.e. Π0
2-LNP−. It is an easy exercise to show that this in turn implies Σ0

2-IA
−

which concludes the proof of the theorem since PRA+Σ0
2-IA is a pure first-order theory. 2

As an immediate corollary of the theorems 3.4 and 6.1 we get theorem 1.4 from the intro-

duction. Corollary 1.5 follows from theorem 1.4 using the fact that PRA+Σ0
2-IA has via

negative translation a Gödel functional interpretation in T1 (see [19]) and that the functions

definable in T1 are exactly the α(< ω(ωω))-recursive ones (see [18]).
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