
B
R

IC
S

R
S

-98-17
B

runietal.:
P

etriN
ets

and
the

C
ollective

Token
P

hilosophy

BRICS
Basic Research in Computer Science

A Comparison of Petri Net Semantics under
the Collective Token Philosophy

Roberto Bruni
Jośe Meseguer
Ugo Montanari
Vladimiro Sassone

BRICS Report Series RS-98-17

ISSN 0909-0878 September 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/17/



A Comparison of Petri Net Semantics under the
Collective Token Philosophy

Roberto Bruni Jos´e Meseguer Ugo Montanari
Vladimiro Sassone

Abstract

In recent years, several semantics forplace/transition Petri netshave been pro-
posed that adopt thecollective token philosophy. We investigate distinctions and
similarities between three such models, namelyconfiguration structures, concur-
rent transition systems, and(strictly) symmetric (strict) monoidal categories. We
use the notion of adjunction to express each connection. We also present a purely
logical description of the collective token interpretation of net behaviours in terms
of theories and theory morphisms inpartial membership equational logic.

Introduction

Petri nets, introduced by Petri in [17] (see also [18]), are one of the most widely used
and representativemodels for concurrency, because of the simple formal description of
the net model, and of its natural characterisation ofconcurrentanddistributed systems.
The extensive use of Petri nets has given rise to different schools of thought concerning
the semantical interpretation of nets, with each view justified either by the theoretical
characterisation of different properties of the modelled systems, or by the architecture
of possible implementations.

A real dichotomy runs on the distinction betweencollectiveand individual token
philosophiesnoticed, e.g., in [6]. According to the collective token philosophy, net
semantics should not distinguish among different instances of the idealised resources
(the so-called ‘tokens’) that rule the basics of net behaviour. The rationale for this being,
of course, that any such instance isoperationallyequivalent to all the others. As obvious
as this is, it disregards that operationally equivalent resources may have different origins
and histories, and may, therefore, carry differentcausalityinformation. Selecting one

The first and fourth author thank the support byBRICS — BasicResearchin ComputerScience,Centre of
the Danish National Research Foundation.

The first three authors have been partly supported by Office of Naval Research Contracts N00014-95-C-0225
and N00014-96-C-0114, by National Science Foundation Grant CCR-9633363, and by the Information Tech-
nology Promotion Agency, Japan, as part of the Industrial Science and Technology Frontier Program ‘New
Models for Software Architecture’ sponsored by NEDO (New Energy and Industrial Technology Develop-
ment Organization). Also supported in part by US Army contract DABT63-96-C-0096 (DARPA); CNR Inte-
grated ProjectMetodi e Strumenti per la Progettazione e la Verifica di Sistemi Eterogenei Connessi mediante
Reti di Comunicazione; and Esprit Working GroupsCONFER2andCOORDINA.

1



instance of a resource rather than the other, may be as different as being or not being
causally dependent on some previous event. And this may well be an information one
is not ready to discard, which is the point of view of the individual token philosophy.

In this paper, however, we focus on the collective token interpretation as the first
step of a wider programme aimed at investigating the two approaches and their mutual
relationships in terms of the behavioural, algebraic, and logical structures that can give
adequate semantics account of each of them.

Starting with the classical ‘token-game’ semantics, many behavioural models for
Petri nets have been proposed that follow the collective token philosophy. In fact, too
many to be systematically reviewed here. Among all these, however, a relatively recent
proposal of van Glabbeek and Plotkin is that ofconfiguration structures[6]. Clearly
inspired by the domains of configurations ofevent structures[22], these are simply col-
lections of (multi)sets that, at the same time, represent the legitimate system states and
the system dynamics, i.e., the transitions between such states. One of the themes of this
paper is to compare configuration structure with the algebraic model based onmonoidal
categories[11], which also adopts the collective token philosophy and which provides
a precise algebraic reinterpretation [5] of yet another model, namely thecommutative
processesof Best and Devillers [1]. In particular, we shall observe that configuration
structures aretoo abstracta model, i.e., that they make undesirable identifications of
nets, and conclude that monoidal categories provide a superior model of net behaviour.

To illustrate better the differences between the two semantic frameworks above, we
adoptconcurrent transition systemsas a bridge-model. These are a much simplified,
deterministic version ofhigher dimensional transition systems[3] that we select as the
simplest one able to convey our ideas. Concurrent transition systems resemble config-
uration structures, but are more expressive. They also draw on earlier very significant
models, such asdistributed transition systems[9], stepandPN transition systems[16],
andlocal event structures[8]. Moreover, the equivalence of the behavioural semantics
of concurrent transition systems and the algebraic semantics of monoidal categories can
be stated very concisely. As we explain also in this paper, the algebraic semantics is it-
self amenable to a purely logical description in terms of theories inpartial membership
equational logic[10].

The main result of this research is a new precise characterisation of the relation-
ships between all these behavioural, algebraic, and logical models within the collective
token philosophy. We show that Best-Devillers commutative processes, the algebraic
monoidal category model, and the concurrent transition system behavioural model all
coincide in the precise sense of being related by equivalences of categories. And we
also show how the behavioural model afforded by configuration structures is too ab-
stract, but is precisely related to all the above models by a natural transformation that
characterises the identification of inequivalent nets and behaviours caused by configu-
ration structures.

The structure of the paper is as follows. In Section 1 we recall the basic definitions
about PT Petri nets, remarking the distinction between the collective and individual
token philosophies, and we introduce the frameworks under comparison, i.e., configu-
ration structures, concurrent transition systems, and monoidal categories (also in their
membership equational logic ), discussing for each of them the corresponding models

2



that they associate to a Petri net. Section 2 and Section 3 compare concurrent transition
systems with, respectively, monoidal categories and configuration structures. Finally,
the concluding section describes related work on the individual token philosophy.

1 Background

1.1 Petri Nets and the Collective Token Philosophy

Place/transition nets, the most widespread flavour of Petri nets, are graphs with dis-
tributed states described by (finite) distributions of resources (‘tokens’) in ‘places’.
These are usually calledmarkingsand represented as multisetsu : S → N, whereu(a)
indicates the number of tokens that placea carries inu. We shall useµ(S) to indicate
the set offinite multisets onS, i.e., multiset that yield a zero on all but finitely many
a ∈ S. Multiset union makesµ(S) a free commutative monoid onS.

DEFINITION 1. A place/transition(PT for short)Petri netN is a tuple(∂0, ∂1, S, T ),
whereS is a set ofplaces, T is a set oftransitions, ∂0, ∂1 : T → µ(S) are functions
assigning, respectively, source and target to each transition.

Informally, ∂0(t) prescribes the minimum amount of resources needed to enablet,
whilst ∂1(t) describe the resources that the occurrence oft contributes to the global
state. This is made explicit in the following definition, where we shall indicate multiset
inclusion, union, and difference by, respectively,⊆, +, and−.

DEFINITION 2. Let u andv be markings andX a finite multiset of transitions of a
netN . We say thatu evolves tov under thestepX , in symbolsu [X〉 v, if the
transitions inX are concurrently enabled atu i.e.,

∑
t∈TN X(t) · ∂0(t) ⊆ u, and

v = u+
∑
t∈TN X(t) · (∂1(t)− ∂0(t)).

A step sequencefrom u0 to un is a sequenceu0 [X1〉 u1...un−1 [Xn〉 un.

PT nets are often considered together with a state: amarkedPT netN is a PT net
(∂0, ∂1, S, T ) together with aninitial marking u0 ∈ µ(S). In order to equip PT nets
with a natural notion of morphism, since thatµ(S) is a monoid under+ with unit∅,
we consider maps of transition systems that preserve the additional structure.

DEFINITION 3. A morphismof nets fromN = (∂0, ∂1, S, T ) toN ′ = (∂′0, ∂
′
1, S
′, T ′)

is a pair〈ft, fp〉 whereft : T → T ′ is function,fp : µ(S) → µ(S′) is homomorphism
of monoids such that∂′i ◦ ft = fp ◦ ∂i, for i = 0, 1. A morphism of marked nets is a
morphism of nets such thatfp(u0) = u′0.
We shall usePetri (respectivelyPetri∗) to indicate the category of (marked) PT nets
and their morphisms with the obvious componentwise composition of arrows.

To compare the effects of the collective and of the individual token philosophy
on observing causal relations between fired transitions, let us consider the example in
Figure 1 that we adapt from [6]. (As usual, boxes stand for transitions, circles for places,
dots for tokens, and oriented arcs represent∂0 and∂1.)

3



•(/).*-+, //

a

t // •(/).*-+, //

b

t′ •(/).*-+,oo

FIGURE 1

Observe that the firing oft produces a second token in placeb. According to the
individual token philosophy, it makes a difference whethert′ consumes the tokenb
originated from the firing oft, or the one coming from the initial marking. In the
first case the occurrence oft′ causally depends on that oft, and in the second the two
firings are independent. In the collective token philosophy, instead, the two firings are
always considered to be concurrent, because the firing oft does not change the enabling
condition oft′.

1.2 Configuration Structures

In the same paper where they introduce the distinction between collective token and in-
dividual token philosophy, van Glabbeek and Plotkin proposeconfiguration structures
to represent the behaviour of nets according to the collective token philosophy. These
are structures inspired by event structures [22] whose dynamics is uniquely determined
by an explicitly-given set of possible configurations of the system. However, the struc-
tures they end up associating to nets are not exactly configuration structures. They en-
rich them in two ways: firstly, by consideringmultisets instead of sets of occurrences,
and secondly, by using an explicit transition relation between configurations. While the
first point can be handled easily, as we do below, the second one seems to compromise
the basic ideas underlying the framework and to show that configuration structures do
not offer a faithful representation of the behaviour of nets under the collective token
philosophy.

DEFINITION 4. A configuration structureis given by a setE and a collectionC of
finite multisets over the setE. The elements ofE are calledevents, and the elements of
C configurations.

The idea is that an event is an occurrence of an action the system may perform,
and that a configurationX represents a state of the system, which is determined by
the collectionX of occurred events. The setC of admissible configurations yields a
relation representing how the system can evolve from one state to another.

DEFINITION 5. Let (E,C) be a configuration structure. ForX , Y in C we write
X −→ Y if

(1) X ⊂ Y ,

(2) Y −X is finite,

(3) for any multisetZ such thatX ⊂ Z ⊂ Y , we haveZ ∈ C.

The relation−→ is called thestep transition relation.

4



•(/).*-+,
��

a •(/).*-+,
��

b •(/).*-+,
��

a •(/).*-+,
��

b

t0

��

t1

��

t0

��

:: •(/).*-+,
77

ww
e

t1

��

zz

(/).*-+,c
N

(/).*-+, d (/).*-+,c
M

(/).*-+, d

FIGURE 2. The netsN andM of our running example.

Intuitively, X −→ Y means that the system can evolve from stateX to stateY
by performing the events inY − X concurrently. To stress this we shall occasionally

write X
L−→ Y , with L = Y − X . Observe that the last condition states that the

events inY − X can be performed concurrently if and only if they can be performed
in any order. In our opinion, this requirement embodies aninterleaving-oriented view,
as it reduces concurrency to nondeterminism. As we explain below, we view this as the
main weakness of configuration structures.

In the following definition we slightly refine the notion of net configuration pro-
posed in [6], as this may improperly include multisets of transitions that cannot be fired
from the initial marking.

DEFINITION 6 (From PT Nets to Config. Structures [6]). Let N = (∂0, ∂1, S, T, u0),
be amarkedPT net. A finite multisetX of transitions is calledfireableif there exists a
partitionX1, ..., Xn of X such thatu0 [X1〉 u1...un−1 [Xn〉 un is a step sequence. A
configurationof N is a fireable multisetX of transitions. The configuration structure
associated toN is cs(N) = (T,CN ), whereCN is the set of configurations ofN .

It follows that for each configurationX the functionuX : S → Z given by

uX = u0 +
∑
t∈T

X(t) · (∂0(t)− ∂1(t))

is a (reachable) marking, i.e.,0 ≤ uX(a) for all a ∈ S. Moreover, ifX is a configura-
tion anduX [U〉 v, thenX + U is also a configuration andv = uX+U .

Generally speaking, ifN is a pure net, i.e., a net with noself-loops, cs(N) can
be considered a reasonable semantics forN . Otherwise, as observed also in [6], it is
not a good idea to reduceN to cs(N). Consider for example, the marked netsN and
M of Figure 2. They have very different behaviours, indeed: inN the actionst0 and
t1 are concurrent, whereas inM they are mutually exclusive. However, since inM
any interleaving oft0 andt1 is possible, the diagonal∅ −→ {t0, t1} sneaks into the
structure by definition. As a result, bothN andM yield the configuration structure
represented in Figure 3, even though{t0, t1} is not an admissible step forM . The
limit case is the marked net consisting of a single self-loop: the readers can check for
themselves that, according tocs( ), it can fire arbitrarily large steps.

These problems have prompted us to look for a semantic framework that represents
net behaviours more faithfully than configuration structures. The key observation is that

5



{t0, t1}

{t0}

{t1} ::uuuuuu
{t1}

{t0}ddIIIIII

∅
{t0}

eeKKKKKKK

{t0,t1}

OO

{t1}

99sssssss

FIGURE 3. The configuration structurecs(N) = cs(M) for the netsN andM .

there is nothing wrong with the assumption that if a step involving many parallel actions
can occur in a certain state, then all the possible interleaving sequences of those action
can also occur from that state. The problematic bit is assuming the inverse implication,
because, as a matter of fact, it reduces concurrency to nondeterminism and makes the
set of configurations determine uniquely the transition relation. Our proposed solution
is concurrent transition systems.

1.3 Concurrent Transition Systems

The analysis of the previous section suggests seeking a model that enforces the exis-
tence of all appropriate interleavings of steps, without allowing this to determine the set
of transitions completely. Several such models appear in the literature. Among those
that inspired us most, we recalldistributed transition systems[9], step transition sys-
tems[16], PN transition systems[16], andhigher dimensional transition systems[3].
Also closely related are thelocal event structuresof [8], a model that extends event
structures (rather than transition systems) by allowing the firing of sets (butnot multi-
sets) of events. Drawing on all these, we have here chosen the simplest definition that
suits our current aim.

DEFINITION 7. A concurrent transition system(CTS for short) is a structureH =
(S,L, trans, s0), whereS is a set ofstates, L is a set ofactions, s0 ∈ S is the initial
state, andtrans ⊆ S × (µ(L)− {∅})× S is a set oftransitions, such that:

(1) if (s, U, s1), (s, U, s2) ∈ trans, thens1 = s2,

(2) if (s, U, s′) ∈ trans andU1, U2 is a partition ofU , then there existv1, v2 ∈ S
such that(s, U1, v1), (s, U2, v2), (v1, U2, s

′), (v2, U1, s
′) ∈ trans.

Condition (1) above states that the execution of a multiset of labelsU in a states
deterministically leads to a different state. The second condition guarantees that all the
possible interleavings of the actions inU are possible paths froms to s′ if (s, U, s′) ∈
trans. Notice that, by (1), the statesv1 andv2 of (2) are uniquely determined.

We formalise the idea that different paths which are different interleavings of the
same concurrent step can be considered equivalent.

DEFINITION 8. A path in a CTS is a sequence of contiguous transitions

(s, U1, s1)(s1, U2, s2) · · · (sn−1, Un, sn).

A run is a path that originates from the initial state.

6



DEFINITION 9. Given a CTSH , adjacencyis the least reflexive, symmetric, binary
relation↔H on the paths ofH which is closed under path concatenation and such that

(s, U1, s1)(s1, U2, s2)↔H (s, U1 + U2, s2).

Then, thehomotopyrelation↔−H on the paths ofH is the transitive closure of↔H .
The equivalence classes of runs ofH with respect to the homotopy relation are called
computations.

In order to simplify our exposition, we now refine the notion of concurrent transition
system so as to be able to associate to each path between two states the same multiset
of actions. As we shall see, such transition systems enjoy interesting properties.

DEFINITION 10. A CTS isuniform if all its states arereachablefrom the initial state,
and the union of the actions along any twocofinalruns yield the same multiset, where
cofinal means ending in the same state.

In a uniform CTSH = (S,L, trans, s0) each states can be associated with the
multiset of actions on any run tos. Precisely, we shall useςs to indicate

∑n
i=1 Ui,

for (s0, U1, s1)(s1, U2, s2)...(sn−1, Un, s) a run ofH . Observe also that uniform CTS
are necessarily acyclic, because any cycle(s, U0, s1) . . . (sn, Un, s) would imply the
existence of runs tos carrying different actions. In the rest of the paper, we shall
consideronlyuniform concurrent transition systems.

Introducing the natural notion of computation-preserving morphism for CTS, we
define a category of uniform concurrent transition systems. In the following, for func-
tionsf : A → B, we denote byfµ : µ(A) → µ(B) the obvious multiset extension of
f , i.e.,

fµ(X)(b) =
∑

a∈f−1(b)

X(a).

DEFINITION 11. ForH1 andH2 CTS, amorphismfromH1 toH2 consists of a map
f : S1 → S2 that preserves the initial state and a functionα : L1 → L2 and such that
(s, U, s′) ∈ trans1 implies(f(s), αµ(U), f(s′)) ∈ trans2.

We denote byCTS the category of uniform CTS and their morphisms.

DEFINITION 12 (From PT Nets to CTS). LetN = (∂0, ∂1, S, T, u0) be a marked PT
Petri net. The concurrent transition system associated toN is

ct(N) = (MN , T, transN ,∅),

whereMN is the set offireablemultisets of transitions ofN , and(X,U,X ′) ∈ transN
if and only if uX [U〉 uX′ . (Recall thatuX : S → Z is by definition a reachable
marking.)

Although this construction is formally very close to that proposed for configuration
structures, the difference is that CTS do not enforce diagonals to fill the squares: these
are introduced if and only if the associated step is actually possible (see Figure 4). We
shall give a precise categorical characterisation of the representations of nets in the CTS
framework in Section 2. For the time being, we notice the following.

7



{t0, t1}

{t0}

{t1} ::uuuuuu
{t1}

{t0}ddIIIIII

∅
{t0}

eeKKKKKKK

{t0,t1}

OO

{t1}

99sssssss

ct(N)

{t0, t1}

{t0}

{t1} ::uuuuuu
{t1}

{t0}ddIIIIII

∅
{t0}

eeKKKKKKK {t1}

99sssssss

ct(M)

FIGURE 4. The CTSct(N) andct(M) for the netsN andM of Figure 2.

PROPOSITION 1. ct(N) is a functor fromPetri∗ to CTS.

Although all cofinal runs of a CTS carry the same multiset of actions, it is not the
case that all such runs are homotopic, i.e., they do not necessarily represent the same
computation. Enforcing this is the purpose of the next definition.

DEFINITION 13. An occurrenceconcurrent transition system is a concurrent transition
systemH in which all pairs ofcofinal transitions(s1, U1, s), (s2, U2, s) ∈ transH are
the final steps ofhomotopicpaths.

It can be shown that the previous definition implies the following property.

PROPOSITION 2. All cofinal paths of an occurrence CTS are homotopic.

We shall useoCTS to indicate the full subcategory ofCTS consisting of occur-
rence CTS. Clearly, a uniform CTS can be unfolded into an occurrence CTS.

DEFINITION 14 (From CTS to Occurrence CTS). LetH = (S,L, trans, s0) be a con-
current transition system. Itsunfoldingis the occurrence concurrent transition system
O(H) = (S′, L, trans′, ε), whereS′ is the collection of computations ofH , and

trans ′ =
{

([π]↔− , U, [π
′]↔− )

∣∣ ∃s, s′ ∈ S, [π′]↔− ∈ S
′, π′ ↔−H π(s, U, s′)

}
.

PROPOSITION 3. O( ) extends to a right adjoint to the inclusion ofoCTS in CTS.

Proof. ForH a concurrent transition system, considerεH : O(H)→ H that maps each
[π]↔− ∈ SO(H) to its final states ∈ SH . It is easy to verify that this forms the counit of
the adjunction.

1.4 Monoidal Categories

Several interesting aspects of Petri net theory can be profitably developed within cat-
egory theory, see e.g. [21, 11, 2]. Here we focus on the approach initiated in [11]
(other relevant references are [5, 13, 19, 15, 20]) which exposes the monoidal structure
of Petri nets under the operation of parallel composition. In [11, 5] it is shown that
the sets of transitions can be endowed with appropriate algebraic structures in order to
capture some basic constructions on nets. In particular, thecommutative processesby
Best and Devillers [1], which represent the natural behavioural model for PT nets un-
der the collective token philosophy, can be characterised adding a functorialsequential

8



composition on themonoidof steps, thus yielding a strictly symmetric strict monoidal
categoryT (N).

DEFINITION 15. ForN a PT net, letT (N) be the strictly symmetric strict monoidal
category freely generated byN .

UsingCMonCat to denote the category of strictly symmetric strict monoidal cat-
egories and strict monoidal functors,T ( ) is a functor fromPetri to CMonCat. The
categoryT (N) can be inductively defined by the following inference rules and axioms.

u ∈ µ(SN )

idu : u→ u ∈ T (N)

t ∈ TN , ∂0(t) = u, ∂1(t) = v

t : u→ v ∈ T (N)

α : u→ v, β : u′ → v′ ∈ T (N)

α⊕ β : u+ u′ → v + v′ ∈ T (N)

α : u→ v, β : v → w ∈ T (N)

α;β : u→ w ∈ T (N)

where the following equations, stating thatT (N) is a strictly symmetric strict monoidal
category, are satisfied by all arrowsα, α′, β, β′, γ, δ and all multisetsu andv:

neutral: id∅ ⊕ α = α,
commutativity: α⊕ β = β ⊕ α,
associativity: (α⊕ β) ⊕ δ = α⊕ (β ⊕ δ), (α;β); γ = α; (β; γ),
identities: α; idu = α = idv;α, idu ⊕ idv = idu+v,
functoriality: (α;β) ⊕ (α′;β′) = (α⊕ α′); (β ⊕ β′).

The intuition here is that arrows are step sequences and arrow composition is their
concatenation, whereas the monoidal operator⊕ allows for parallel composition. It
turns out that this algebraic structure describes precisely the processes `a la Best and
Devillers.

PROPOSITION 4 (cf. [11]). The presentation ofT (N) given above provides a com-
plete and sound axiomatisation of the algebra of the commutative processes ofN .

By analogy withPetri∗, we take a pointed category(C, c0) to be a categoryC
together with a distinguished objectc0 ∈ C. Similarly, a pointed functor from(C, c0)
to (D, d0) is a functorF : C → D that maps the distinguished objectc0 to the distin-
guished objectd0. Then, usingCMonCat∗ to denote the category of pointed strictly
symmetric strict monoidal categories and their pointed functors, the previous construc-
tion extends immediately to a functorT∗(N) : Petri∗ → CMonCat∗, such that for
N = (∂0, ∂1, S, T, u0) a marked PT net, then

T∗(N) = (T (∂0, ∂1, S, T ), u0).

1.5 A Logical Characterisation of the Algebraic Model

The algebraic semantics of PT Petri nets can be expressed very compactly by means of
a morphism between theories inpartial membership equational logic(PMEqtl ) [10], a
logic of partial algebras with subsorts and subsort polymorphism whosesentencesare

9



Horn clauses on equationst = t′ and membership assertionst : s. Such a charac-
terisation can have also practical applications, as there are tools available that support
executable specifications in partial algebras. This section and the Appendix provide an
informal introduction to the main ideas ofPMEqtl . The interested reader is referred to
[10, 12] for self-contained presentations.

A theory in PMEqtl is a pairT = (Ω,Γ), whereΩ is a signature over aposetof
sorts andΓ is a set ofPMEqtl -sentences in the language ofΩ. We denote byPAlgΩ

the category of partialΩ-algebras, and byPAlgT its full subcategory consisting of
T -algebras, i.e., those partialΩ-algebras that satisfy all the sentences inΓ.

The features ofPMEqtl (partiality, poset of sorts, membership assertions) offer a
natural framework for the specification of categorical structures. For instance, a notion
of tensor productfor partial algebraic theories is used in [12] to obtain, among other
things, a very elegant definition of the theory of monoidal categories that we recall in
the Appendix. More precisely, we define the theoriesPETRI of PT nets andCMONCAT
of strictly symmetric strict monoidal categories, using a self-explanatory Maude-like
notation (Maude [4] is a language recently developed at SRI International; it is based
on rewriting logic and supports the execution of membership equational logic specifi-
cations).

To study the relationships betweenPETRI and CMONCAT, the Appendix defines
also an intermediate theoryCMON-AUT of automata whose states form a commutative
monoid. Our main result is then that the composition of the obvious inclusion functor of
Petri into PAlgCMON−AUT and the free functorFV from PAlgCMON−AUT to PAlgCMONCAT

associated to the theory morphismV from CMON-AUT to CMONCAT corresponds exactly
to the functorT ( ) : Petri→ CMonCat.

PROPOSITION 5. The functorT ( ) : Petri→ CMonCat is the composition

Petri � � // PAlgCMON−AUT
FV // PAlgCMONCAT

2 Concurrent Transition Systems and Monoidal Cate-
gories

In this section we state the faithfulness of the CTS representation of nets, as given in
Definition 12, with respect to the collective token philosophy. To accomplish this aim,
we show that both thect( ) and theT ( ) constructions yield two equivalent categories
of net behaviours.

Regarding the monoidal approach, the obvious choice consists in taking the comma
category ofT (N) with respect to the initial marking, thus yielding a category whose
objects are the commutative processes ofN from its initial marking. An arrow from
processp to processq is then theuniquecommutative processr such thatp; r = q in
T (N). We denote the resulting category by(u0 ↓ T (N)).

An analogous construction can be defined starting fromct(N). The first step is to
observe that the paths of a generic CTS under the homotopy relation define a category.

DEFINITION 16. ForH = (S,L, trans, s0) a CTS, we define thecategory of compu-
tationsofH to be the categoryC(H) whose

10



. objectsare computations[π]↔− of H ,

. arrowsare the homotopy equivalence classes of paths inH such that

[ψ]↔− : [π]↔− → [π′]↔− iff π′ ↔−H πψ,

. arrow compositionis defined as the homotopy class of path concatenation, i.e.,

[ψ]↔− ; [ψ′]↔− = [ψψ′]↔− ,

. identity arrowat [π]↔− is ε[π]↔− , the homotopy class of the empty path at the final
state ofπ.

This construction extends easily to a functorC( ) from CTS to Cat, the category
of (small) categories and functors, yielding a functorC(ct( )) from Petri∗ to Cat.
Observe also thatC( ) factors throughO : CTS → oCTS via the obvious path con-
struction.

THEOREM 1. LetN be marked PT net with initial markingu0. Then, the categories
C(ct(N)) and(u0 ↓ T (N)) are isomorphic.

Proof. We sketch the definition of functors

F : (u0 ↓ T (N))→ C(ct(N)) and G : C(ct(N))→ (u0 ↓ T (N))

inverses to each other. The functorF maps an object of the comma category to the
homotopy class of any of the object’s interleaving (which is well-defined because of the
diamond equivalence of [1]). Its action on morphisms is analogous.

On the other hand, for a computation[π]↔− in C(ct(N)), starting from the initial
marking we can determine uniquely the corresponding arrow onT (N), and therefore
define the action ofG on both objects and arrows.

The categories of computations for the concurrent transition systems associated to
netsN andM of Figure 2 are shown in Figure 5, where we usec0 andc1 to denote,
respectively, the computations[(∅, {t0}, {t0})]↔− , and[(∅, {t1}, {t1})]↔− in both of
ct(N) andct(M). Analogously,p1 andp0 indicate the homotopy classes of the paths
[({t0}, {t1}, {t0, t1})]↔− and [({t1}, {t0}, {t0, t1})]↔− , respectively. However,c0; p1

andc1; p0 yield the same resultc = [(∅, {t0, t1}, {t0, t1})]↔− in C(ct(N)), whereas in
C(ct(M)) they denote different objects:c′ = [(∅, {t0}, {t0})({t0}, {t1}, {t0, t1})]↔−
andc′′ = [(∅, {t1}, {t1})({t1}, {t0}, {t0, t1})]↔− .

3 Configuration Structures and Concurrent Transition
Systems

In this section we first give a categorical structure to the class of configuration struc-
tures, and then show that the obvious injection of configuration structures into CTS
yields a reflection.

11



c

c0

p1
>>}}}}}

c1

p0
``AAAAA

ε
c0

``AAAAA

c

OO

c1

>>}}}}}

C(ct(N))

c′ c′′

c0

p1

OO

c1

p0

OO

ε
c0

``AAAAA c1

>>}}}}}

C(ct(M))

FIGURE 5. The categoriesC(ct(N)) andC(ct(M)) for the nets of Figure 2.

DEFINITION 17. For (E1, C1) and(E2, C2) configuration structures, acs-morphism
from (E1, C1) to (E2, C2) is a functiong : E1 → E2 such that for each configuration
X ∈ C1, thengµ(X) ∈ C2. We denote byCSCat the category of configuration
structures and cs-morphisms.

The obvious injection functorI( ) from CSCat to CTS maps a configuration
structureCS = (E,C) into the concurrent transition system

I(CS ) = (C,E, transCS , s0),

wheretransCS = {(X,L, Y ) | X L−→ Y }, and maps a cs-morphismg : E1 → E2 to
the morphism(g′, g), whereg′ : C1 → C2 is the obvious extensiongµ of g to multisets,
with domain restricted toC1.

THEOREM 2. The functorI( ) : CSCat → CTS is the right adjoint of a functor
R( ) : CTS → CSCat. Moreover, since the counit of the adjunction is the identity,
I( ) andR( ) define a full reflection.

Proof. We sketch the proof, giving the precise definition of the reflection functor. The
reflection functorR( ) maps a uniform CTSH = (S,L, trans, s0) into the configu-
ration structureR(H) = (L,CS) such thatCS = {ςs | s ∈ S} (recall thatςs is the
multiset union of the actions of any run leading tos).

We denote the component atH of the unit of the adjunction byρH : H → I(R(H)).

THEOREM 3 (Configuration Structures via CTS). Let N be a marked PT net. Then
cs(N) = R(ct(N)).

Proof. The events ofcs(N), the actions ofct(N) and, thus, the events ofR(ct(N)) are
the transitions ofN . The statesS of the uniform CTSct(N) are exactly the configura-
tions ofcs(N), and for eachs ∈ S, we haveςs = s. This suffices, since a configuration
structure is entirely determined by its set of configurations.

These results support our claim that configuration structures do not offer a faithful
representation of net behaviours. In fact,R( ) clearly collapses the structure exces-
sively, as the natural transformation associated to the reflection mapρ can identify non
homotopic runs (e.g.,c′ andc′′ of Figure 5).

12



Concluding Remarks and Future Work

We have investigated the expressiveness of some ‘collective-token’ semantics for PT
nets. In particular, to remedy the weakness of configuration structures, we have in-
troducedconcurrent transition systems— a version of higher dimensional transition
system [3] more suited to the collective token philosophy, as they do not assign individ-
ual identities to multiple action occurrences in a multiset — and have shown that they
can provide a faithful description of net behaviours.

'
Petri∗

CP( )

��T∗( )
//

ct( ) ++WWWWWWWWWWWWWWWWWW

cs( )

��
============ CMonCat∗

u0↓ //

'
Cat

=
CTS

R( )

vvmmmmmmmm
PPPPPPP

PPPPPPP
ρ⇐=

C( )

33hhhhhhhhhhhhhhhh

=

CSCat
� �

I( )
// CTS

C( )

CC�����������

FIGURE 6

The diagram of functors, equivalences and natural transformations in Figure 6 sum-
marises the relationships between all these models. In the diagram, commutation on the
nose (resp. natural equivalence) is represented by= (resp.'), andρ denotes the unit
of the reflection into the subcategory of configuration structures. The functorCP( )
gives the category of Best-Devillers commutative processes. The functorct( ) corre-
sponds to the construction of the CTS for a given net, as defined in Section 1.3. The
functor C( ) yields the construction of the category of computations (i.e., homotopy
equivalence classes of paths beginning in the initial state) of a CTS. The equivalence'
betweenC(ct( )) and(uin ↓ T ( )) is shown in Section 2, providing the faithfulness of
the construction. The functorcs( ) represents the abstraction from nets to configuration
structure, defined in Section 1.2. Unfortunately,CSCat is a reflective subcategory of
CTS, as shown in Section 3 via the adjunctionR( ) a I( ). The reflection functorR( )
identifies too many things, so that the natural transformation associated to the reflection
mapρ can identify non homotopic runs. Our running example shows that causality in-
formations can get lost when using configuration structures, because homotopic paths
are mapped into the same equivalence class.

The conceptual framework of this paper is summarised in Table 1, which makes
explicit our research programme on thebehavioural, algebraicand logical aspects of
the two computational interpretations of PT nets, namely thecollective tokenand the
individual tokenphilosophies, from the viewpoints of the structures suited to each of
them and their mutual relationships.

The first row of Table 1 has been treated in this paper. As for the individual token in-
terpretation, obvious candidates for suitable behavioural structures areevent structures,
concatenable pomsetsand, especially, various kinds ofconcatenable processes[5, 20].

13



Structures
Computation Model Behavioural Algebraic Logical
Nets and Collective
Token Philosophy

Conf. structures, CTS,
Commutative processes

T (N) CAT⊗CMON

Nets and Individual
Token Philosophy

Conc. Pomsets, Event
Struct., Processes

P(N),Q(N)
Z(N)?

CAT ⊗ MON

+ SYM

TABLE 1

From the logical viewpoint, it is not difficult to formulate a theorySYM of permutations
and symmetries (cf. [19]) bridging the gap from strictly symmetric categories to cate-
gories symmetric only up to coherent isomorphism. On the other hand, the investigation
of suitable algebraic models is still open, as our current best candidates, the symmetric
strict monoidal categoriesP(N) of concatenable processes[5] andQ(N) of strongly
concatenable processes[20], are both somehow unsatisfactory:P( ) is anon-functorial
construction, a drawback that inhibits many of the applications we have in mind, whilst
Q( ) solves the problem at the price of complicating the construction and relying on a
non commutative monoid of objects.

We are currently searching for a better categorical construction, sayZ(N), based
on a suitable notion ofpre-netthat may subsume and underly the theory of PT nets and
allow us to complete our programme.

Also, the complete analysis and comparison of bisimulation related issues in the
various models considered in the paper (as in [6] for configuration structures) deserve
further work that we leave for a future paper.

14



References

[1] E. BEST AND R. DEVILLERS (), Sequential and Concurrent Behaviour in
Petri Net Theory.Theoretical Computer Science, –, Elsevier.

[2] C. BROWN AND D. GURR (), A Categorical Linear Framework for Petri
Nets, inProceedings of the 5th Symposium on Logics in Computer Science, –
, IEEE Press.

[3] G.L. CATTANI AND V. SASSONE(), Higher Dimensional Transition Sys-
tems, inProceedings of the 11th Symposium on Logics in Computer Science,
–, IEEE Press.

[4] M. CLAVEL , S. EKER, P. LINCOLN, AND J. MESEGUER(), Principles of
Maude, inProceedings First Intl. Workshop on Rewriting Logic and its Appli-
cations, J. Meseguer (Ed.),Electronic Notes in Theoretical Computer Science,
http://www.elsevier.nl/locate/tcs, Elsevier.

[5] P. DEGANO, J. MESEGUER, AND U. MONTANARI (), Axiomatizing the
Algebra of Net Computations and Processes.Acta Informatica(), –,
Springer-Verlag.

[6] R.J. VAN GLABBEEK AND G.D. PLOTKIN (), Configuration Structures,
in Proceedings of the 10th Symposium on Logics in Computer Science, –,
IEEE Press.

[7] U. GOLTZ AND W. REISIG (), The Non-Sequential Behaviour of Petri Nets.
Information and Computation, –, Academic Press.

[8] P.W. HOOGERS, H.C.M. KLEIJN, AND P.S. THIAGARAJAN (), An Event
Structure Semantics for General Petri Nets.Theoretical Computer Science(-
), –, Elsevier.

[9] K. L ODAYA , R. RAMANUJAM , AND P.S. THIAGARAJAN (), A Logic for
Distributed Transition Systems, inLinear time, branching time, and partial order
in logics and models for concurrency, J.W. de Bakkeret al. (Eds.),Lecture Notes
in Computer Science, –, Springer-Verlag.

[10] J. MESEGUER(), Membership Equational Logic as a Logical Framework
for Equational Specification, inProceedings of the 12th WADT Workshop on Al-
gebraic Development Techniques, F. Parisi-Presicce (Ed.),Lecture Notes in Com-
puter Science, –, Springer-Verlag.

[11] J. MESEGUER ANDU. MONTANARI (), Petri Nets are Monoids.Informa-
tion and Computation(), –, Academic Press.

[12] J. MESEGUER ANDU. MONTANARI (), Mapping Tile Logic into Rewriting
Logic. in Proceedings of the 12th WADT Workshop on Algebraic Development
Techniques, F. Parisi-Presicce (Ed.),Lecture Notes in Computer Science,
–, Springer-Verlag.

15



[13] J. MESEGUER, U. MONTANARI, AND V. SASSONE(), Process versus Un-
folding Semantics for Place/Transition Petri Nets.Theoretical Computer Science
(-), –, Elsevier.

[14] J. MESEGUER, U. MONTANARI, AND V. SASSONE(), On the Semantics
of Place/Transition Petri Nets.Mathematical Structures in Computer Science,
–, Cambridge University Press.

[15] J. MESEGUER, U. MONTANARI, AND V. SASSONE(), Representation The-
orems for Petri Nets, inFoundations of Computer Science, C. Freskaet al.(Eds.),
Lecture Notes in Computer Science, –, Springer-Verlag.

[16] M. M UKUND (), Petri Nets and Step Transition Systems.International
Journal of Foundations of Computer Science, (), –, World Scientific.

[17] C.A. PETRI (), Kommunikation mit Automaten. PhD thesis, Institut f¨ur In-
strumentelle Mathematik, Bonn.

[18] W. REISIG (), Petri Nets (an Introduction). EATCS Monographs on Theo-
retical Computer Science, Springer-Verlag.

[19] V. SASSONE (), An Axiomatization of the Algebra of Petri Net Concaten-
able Processes.Theoretical Computer Science, –, Elsevier.

[20] V. SASSONE (), An Axiomatization of the Category of Petri Net Compu-
tations. Mathematical Structures in Computer Science, –, Cambridge
University Press.

[21] G. WINSKEL (), Petri Nets, Algebras, Morphisms and Compositionality.
Information and Computation, - , Academic Press.

[22] G. WINSKEL (), An Introduction to Event Structures, inLinear time,
branching time, and partial order in logics and models for concurrency, J.W. de
Bakkeret al.(Eds.),Lecture Notes in Computer Science, –, Springer-
Verlag.

16



Appendix. Recovering the Algebraic Semantics of Nets
via Theory Morphisms

In order to define the theory of strictly symmetric strict monoidal categories, we first
recall the definition of the theory of categories from [12].

The poset of sorts of thePMEqtl -theory of categories isObject ≤ Arrow. There
are two unary operationsd(_) andc(_), for domainandcodomain, and a binary com-
position operation_;_ defined if and only if the codomain of the first argument is equal
to the domain of the second argument. Functions with explicitly given domain and
codomain are alwaystotal.

fth CAT is

sorts Object Arrow.

subsort Object < Arrow.

ops d(_) c(_) : Arrow -> Object.

op _;_.

var a : Object.

vars f g h : Arrow.

eq d(a) = a.
eq c(a) = a.
ceq a;f = f if d(f) == a.
ceq f;a = f if c(f) == a.
cmb f;g : Arrow iff c(f) == d(g).
ceq d(f;g) = d(f) if c(f) == d(g).
ceq c(f;g) = c(g) if c(f) == d(g).
ceq (f;g);h = f;(g;h) if c(f) == d(g) and c(g) == d(h).

endfth

The extension of the theoryCAT to the theory of monoidal categories is almost
effortless thanks to the tensor product construction of theories, which is informally
defined as follows.

Let T = (Ω,Γ) andT ′ = (Ω′,Γ′) be theories in partial membership equational
logic, with Ω = (S,≤,Σ) andΩ′ = (S′,≤′,Σ′). Their tensor productT ⊗ T ′ is the
theory with signatureΩ ⊗ Ω′ having: poset of sorts(S,≤) × (S′,≤′), and signature
Σ ⊗ Σ′, with operatorsfl ∈ (Σ ⊗ Σ′)n andgr ∈ (Σ ⊗ Σ′)m for eachf ∈ Σn and
g ∈ Σ′m (indicesl andr stand respectively forleft andright and witness whether
the operator is inherited from the left or from the right component). The axioms of
T ⊗ T ′ are the determined from those ofT andT ′ as explained in [12].

The essential property of the tensor product of theories is expressed in the following
theorem, wherePAlgT (C) indicates the category ofT -algebras taken over the base
categoryC rather than overSet, the category of small sets and function.

THEOREM 4. LetT , T ′ be theories in partial membership equational logic. Then, we
have the following isomorphisms of categories:

PAlgT (PAlgT ′) ' PAlgT⊗T ′ ' PAlgT ′(PAlgT ).

17



To define the theory of monoidal categories, we introduce a theoryCMON of com-
mutative monoids and apply the tensor product construction. Here we exploit the pos-
sibility given by Maude of declaring the associativity, commutativity and unit element
as attributes of the monoidal operator.

fth CMON is

sort Monoid.

op 0 : -> Monoid.

op _⊕_ : Monoid Monoid -> Monoid [assoc comm id: 0].

endfth

The theory of strictly symmetric strict monoidal categories is then defined as fol-
lows. Notice also the use ofleft andright corresponding to the indicesl and r
discussed above.

fth CMONCAT is CMON ⊗ CAT renamed by (

sort (Monoid,Object) to Object.

sort (Monoid,Arrow) to Arrow.

op 0 left to 0.

op _⊕_ left to _⊕_.
op _;_ right to _;_.

op d(_) right to d(_).

op c(_) right to c(_).).

endfth

In order to define a theory inPMEqtl that represents PT Petri nets and their mor-
phisms, we first introduce a theory whose models are automata whose states form a
commutative monoid.

fth CMON-AUT is

sorts State Transition.

op 0 : -> State.

op _⊗_ : State State -> State [assoc comm id: 0].

ops origin(_) destination(_) : Transition -> State.

endfth

PROPOSITION 6. The categoryPetri is a full subcategory ofPAlgCMON−AUT.

Proof. It is immediate to check that each PT net is just a model ofCMON-AUT whose
states are the object of the commutative monoid freely generated by the set of places.

Exploiting the modularity features of Maude, we can characterisePetri as a sub-
category ofPAlgCMON−AUT. We import a functional moduleMSET[E :: TRIV] of mul-
tisets, parametrised on a functional theory ofTRIV of elements, whose models are sets
corresponding to the places of the net.

18



fth TRIV is sort Element.

endfth

fmod MSET[E :: TRIV] is

sort MSet.

subsort Element < MSet.

op ∅ : -> MSet.

op _+_ : MSet MSet -> MSet [assoc comm id: ∅].
endfm

fth PETRI[S :: TRIV] is

protecting MSET[S] renamed by (sort MSet to Marking.).

sort Transition.

ops pre(_) post(_) : Transition -> Marking.

endfth

A theory morphismH from T to T ′, also called aview in Maude, is a mapping
of the operators and sorts ofT into T ′, preserving domain, codomain and subsort-
ing, and such that the translation of the axioms ofT are entailed by those ofT ′. It
originates a forgetful functorUH : PAlgT ′ → PAlgT that — forT andT ′ theories
without freeness constraints, such as those required inPETRI[S] — admits a left ad-
joint FH : PAlgT → PAlgT ′ whose effect is to liftH to a free model construction in
PAlgT ′ . The inclusion functor fromPetri to PAlgCMON−AUT is induced as the forgetful
functor of a theory morphismI specified as aview in Maude as follows.

view I from CMON-AUT to PETRI[S :: TRIV] is

sort Marking to MSet.

op origin(_) to pre(_).

op destination(_) to post(_).

op 0 to ∅.
op _⊗_ to _+_.

endview

Finally, the algebraic semantics of PT nets under the collective token philosophy,
i.e., the constructionT ( ), can be easily recovered via a simple theory morphism spec-
ified in Maude-like notation as

view V from CMON-AUT to CMONCAT is

sort State to Object.

sort Transition to Arrow.

op origin(_) to d(_).

op destination(_) to c(_).

endview

As stated in Proposition 5, the constructionT ( ) : Petri → CMonCat is then
the following functor composition.

Petri � � // PAlgCMON−AUT
FV // PAlgCMONCAT

19



DIPARTIMENTO DI INFORMATICA, UNIVERSITÀ DI PISA, CORSOITALIA 40,
I-56125 PISA, ITALIA

bruni@di.unipi.it

COMPUTERSCIENCE LABORATORY, SRI INTERNATIONAL,
MENLO PARK, CA, USA
meseguer@csl.sri.com

DIPARTIMENTO DI INFORMATICA, UNIVERSITÀ DI PISA, CORSOITALIA 40,
I-56125 PISA, ITALIA

ugo@di.unipi.it

QUEEN MARY AND WESTFIELDCOLLEGE, UNIVERSITY OF LONDON,
LONDON E1 4NS, UNITED KINGDOM,
vs@dcs.qmw.ac.uk

AND

BRICS, COMPUTERSCIENCE DEPT., UNIVERSITY OF AARHUS, NY MUNKEGADE 540
8000 AARHUS C, DENMARK

vs@brics.dk

20



Recent BRICS Report Series Publications

RS-98-17 Roberto Bruni, Jośe Meseguer, Ugo Montanari, and Vladimiro
Sassone.A Comparison of Petri Net Semantics under the Collec-
tive Token Philosophy. September 1998. 20 pp. To appear in4th
Asian Computing Science Conference, ASIAN ’98 Proceedings,
LNCS, 1998.

RS-98-16 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems. September 1998.

RS-98-15 Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing
the Overhead of ML Exceptions by Selective CPS Transforma-
tion. September 1998. 31 pp. To appear in the proceedings of
the 1998 ACM SIGPLAN Workshop on ML, Baltimore, Mary-
land, September 26, 1998.

RS-98-14 Sandeep Sen.The Hardness of Speeding-up Knapsack. August
1998. 6 pp.

RS-98-13 Olivier Danvy and Morten Rhiger.Compiling Actions by Partial
Evaluation, Revisited. June 1998. 25 pp.

RS-98-12 Olivier Danvy. Functional Unparsing. May 1998. 7 pp. This
report supersedes the earlier report BRICS RS-98-5. Extended
version of an article to appear in Journal of Functional Pro-
gramming.

RS-98-11 Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Pe-
ter Bro Miltersen. Lower Bounds for Dynamic Algebraic Prob-
lems. May 1998. 30 pp.

RS-98-10 Jakob Pagter and Theis Rauhe.Optimal Time-Space Trade-Offs
for Sorting. May 1998. 12 pp.

RS-98-9 Zhe Yang.Encoding Types in ML-like Languages (Preliminary
Version). April 1998. 32 pp.

RS-98-8 P. S. Thiagarajan and Jesper G. Henriksen.Distributed Ver-
sions of Linear Time Temporal Logic: A Trace Perspective. April
1998. 49 pp. To appear in3rd Advanced Course on Petri Nets,
ACPN ’96 Proceedings, LNCS, 1998.

RS-98-7 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems (Preliminary Version). April 1998. 36 pp.


