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A Comparison of Petri Net Semantics under the
Collective Token Philosophy

Roberto Bruni Jos Meseguer Ugo Montanari
Vladimiro Sassone

Abstract

In recent years, several semanticsgtace/transition Petri nethave been pro-
posed that adopt theollective token philosophyWe investigate distinctions and
similarities between three such models, nanwwfiguration structurgsconcur-
rent transition systemsand (strictly) symmetric (strict) monoidal categorie8Ve
use the notion of adjunction to express each connection. We also present a purely
logical description of the collective token interpretation of net behaviours in terms
of theories and theory morphismspartial membership equational logic

Introduction

Petri nets introduced by Petri in [17] (see also [18]), are one of the most widely used
and representativaodels for concurrengyecause of the simple formal description of

the net model, and of its natural characterisation@mfcurrentanddistributed systems

The extensive use of Petri nets has given rise to different schools of thought concerning
the semantical interpretation of nets, with each view justified either by the theoretical
characterisation of different properties of the modelled systems, or by the architecture
of possible implementations.

A real dichotomy runs on the distinction betweanllectiveandindividual token
philosophiesoticed, e.g., in [6]. According to the collective token philosophy, net
semantics should not distinguish among different instances of the idealised resources
(the so-called ‘tokens’) that rule the basics of net behaviour. The rationale for this being,
of course, that any such instanceperationallyequivalent to all the others. As obvious
as thisis, it disregards that operationally equivalent resources may have different origins
and histories, and may, therefore, carry differestisalityinformation. Selecting one
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instance of a resource rather than the other, may be as different as being or not being
causally dependent on some previous event. And this may well be an information one
is not ready to discard, which is the point of view of the individual token philosophy.

In this paper, however, we focus on the collective token interpretation as the first
step of a wider programme aimed at investigating the two approaches and their mutual
relationships in terms of the behavioural, algebraic, and logical structures that can give
adequate semantics account of each of them.

Starting with the classical ‘token-game’ semantics, many behavioural models for
Petri nets have been proposed that follow the collective token philosophy. In fact, too
many to be systematically reviewed here. Among all these, however, a relatively recent
proposal of van Glabbeek and Plotkin is thatcohfiguration structure$6]. Clearly
inspired by the domains of configurationsesent structuref22], these are simply col-
lections of (multi)sets that, at the same time, represent the legitimate system states and
the system dynamics, i.e., the transitions between such states. One of the themes of this
paper is to compare configuration structure with the algebraic model basedraidal
categorieq11], which also adopts the collective token philosophy and which provides
a precise algebraic reinterpretation [5] of yet another model, namelyatimenutative
processe®f Best and Devillers [1]. In particular, we shall observe that configuration
structures aréoo abstracta model, i.e., that they make undesirable identifications of
nets, and conclude that monoidal categories provide a superior model of net behaviour.

To illustrate better the differences between the two semantic frameworks above, we
adoptconcurrent transition systenas a bridge-model. These are a much simplified,
deterministic version dfigher dimensional transition systeif3 that we select as the
simplest one able to convey our ideas. Concurrent transition systems resemble config-
uration structures, but are more expressive. They also draw on earlier very significant
models, such adistributed transition systenj8], stepandPN transition systemid.6],
andlocal event structuref8]. Moreover, the equivalence of the behavioural semantics
of concurrent transition systems and the algebraic semantics of monoidal categories can
be stated very concisely. As we explain also in this paper, the algebraic semantics is it-
self amenable to a purely logical description in terms of theorigsitial membership
equational logid10].

The main result of this research is a new precise characterisation of the relation-
ships between all these behavioural, algebraic, and logical models within the collective
token philosophy. We show that Best-Devillers commutative processes, the algebraic
monoidal category model, and the concurrent transition system behavioural model all
coincide in the precise sense of being related by equivalences of categories. And we
also show how the behavioural model afforded by configuration structures is too ab-
stract, but is precisely related to all the above models by a natural transformation that
characterises the identification of inequivalent nets and behaviours caused by configu-
ration structures.

The structure of the paper is as follows. In Section 1 we recall the basic definitions
about PT Petri nets, remarking the distinction between the collective and individual
token philosophies, and we introduce the frameworks under comparison, i.e., configu-
ration structures, concurrent transition systems, and monoidal categories (also in their
membership equational logic ), discussing for each of them the corresponding models



that they associate to a Petri net. Section 2 and Section 3 compare concurrent transition
systems with, respectively, monoidal categories and configuration structures. Finally,
the concluding section describes related work on the individual token philosophy.

1 Background
1.1 Petri Nets and the Collective Token Philosophy

Place/transition nets, the most widespread flavour of Petri nets, are graphs with dis-
tributed states described by (finite) distributions of resources (‘tokens’) in ‘places’.
These are usually calledarkingsand represented as multisetsS — N, whereu(a)
indicates the number of tokens that placearries inu. We shall use.(S) to indicate

the set offinite multisets onS, i.e., multiset that yield a zero on all but finitely many

a € S. Multiset union makeg(S) a free commutative monoid af.

DerINITION 1. A place/transition(PT for short)Petri netNV is a tuple(do, 01, S, T),
whereS is a set ofplaces T' is a set oftransitions 0y, 01 : T — u(S) are functions
assigning, respectively, source and target to each transition.

Informally, 9y (t) prescribes the minimum amount of resources needed to ehable
whilst 9, (¢) describe the resources that the occurrence antributes to the global
state. This is made explicit in the following definition, where we shall indicate multiset
inclusion, union, and difference by, respectively,+, and—.

DEFINITION 2. Letu andv be markings and{ a finite multiset of transitions of a
net N. We say thatu evolves tov under thestep X, in symbolsu [X) v, if the
transitions inX are concurrently enabled ati.e.,> ", ., X(t) - do(t) C u, and

v=u+ Y er, X(8) - (01(t) — 0o(2)).
A step sequendeom ug to u,, is a sequencey [X1) u1...un—1 [Xn) Un.

PT nets are often considered together with a stateagkedPT netN is a PT net
(0o, 01,5, T) together with arinitial marking uo € ©(S). In order to equip PT nets
with a natural notion of morphism, since thatS) is a monoid unde# with unit &,
we consider maps of transition systems that preserve the additional structure.

DerINITION 3. A morphisnof nets fromN = (9,1, 5,T)to N’ = (9}, 01,5, T")

is a pair(f:, fp) wheref,: T'— T" is function, f, : p(S) — wu(S’) is homomorphism
of monoids such that; o f, = f, 0 9;, fori = 0,1. A morphism of marked nets is a
morphism of nets such théif (ug) = wuy.

We shall uséPetri (respectivelyPetri,) to indicate the category of (marked) PT nets
and their morphisms with the obvious componentwise composition of arrows.

To compare the effects of the collective and of the individual token philosophy
on observing causal relations between fired transitions, let us consider the example in
Figure 1 that we adapt from [6]. (As usual, boxes stand for transitions, circles for places,
dots for tokens, and oriented arcs repreggrando; .)
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FIGURE 1

Observe that the firing of produces a second token in placeAccording to the
individual token philosophy, it makes a difference whettleconsumes the tokeh
originated from the firing o, or the one coming from the initial marking. In the
first case the occurrence tffcausally depends on that fand in the second the two
firings are independent. In the collective token philosophy, instead, the two firings are
always considered to be concurrent, because the firinda#s not change the enabling
condition oft’.

1.2 Configuration Structures

In the same paper where they introduce the distinction between collective token and in-
dividual token philosophy, van Glabbeek and Plotkin propasaiguration structures

to represent the behaviour of nets according to the collective token philosophy. These
are structures inspired by event structures [22] whose dynamics is uniquely determined
by an explicitly-given set of possible configurations of the system. However, the struc-
tures they end up associating to nets are not exactly configuration structures. They en-
rich them in two ways: firstly, by considerimgultisets instead of sets of occurrences,
and secondly, by using an explicit transition relation between configurations. While the
first point can be handled easily, as we do below, the second one seems to compromise
the basic ideas underlying the framework and to show that configuration structures do
not offer a faithful representation of the behaviour of nets under the collective token
philosophy.

DEFINITION 4. A configuration structurgs given by a sefy and a collectiorC' of
finite multisets over the séf. The elements oF are calleceventsand the elements of
C configurations

The idea is that an event is an occurrence of an action the system may perform,
and that a configuratioX represents a state of the system, which is determined by
the collectionX of occurred events. The sét of admissible configurations yields a
relation representing how the system can evolve from one state to another.

DerINITION 5. Let (E,C) be a configuration structure. Fdf, Y in C we write
X —Yif

1) X vy,
(2) Y — X is finite,
(3) for any multisetZ such thatX ¢ Z C Y, we haveZ € C.

The relation— is called thestep transition relation



FIGURE 2. The netsV andM of our running example.

Intuitively, X — Y means that the system can evolve from st¥téo state}”
by performing the events il — X concurrently To stress this we shall occasionally

write X -2 Y, with L = Y — X. Observe that the last condition states that the
events inY — X can be performed concurrently if and only if they can be performed
in any order. In our opinion, this requirement embodie$a@rleavingoriented view,
as it reduces concurrency to nondeterminism. As we explain below, we view this as the
main weakness of configuration structures.

In the following definition we slightly refine the notion of net configuration pro-
posed in [6], as this may improperly include multisets of transitions that cannot be fired
from the initial marking.

DEFINITION 6 (From PT Nets to Config. Structures [6]het N = (9o, 01, S, T, ug),
be amarkedPT net. A finite multisetX of transitions is calledireableif there exists a
partition X1, ..., X, of X such thatu [X1) u1...un—1 [X,) uy, iS a step sequence. A
configurationof NV is a fireable multise of transitions. The configuration structure
associated tvV is cs(N) = (T, Cn ), whereCly is the set of configurations df.

It follows that for each configuratioX the functionux : S — Z given by

wx = uo+ S X (1) (Do(t) — D1 (1))

teT

is a (reachable) marking, i.8,< ux (a) for all « € S. Moreover, ifX is a configura-
tion andux [U) v, thenX + U is also a configuration and= ux ;¢ .

Generally speaking, ifV is apure net i.e., a net with ncself-loops c¢s(N) can
be considered a reasonable semanticsNforOtherwise, as observed also in [6], it is
not a good idea to redud¥ to cs(IN). Consider for example, the marked néfsand
M of Figure 2. They have very different behaviours, indeedNirthe actiong, and
t, are concurrent, whereas M they are mutually exclusive. However, sinceifi
any interleaving of, andt; is possible, the diagona — {to, t1} sneaks into the
structure by definition. As a result, bof¥i and M vyield the configuration structure
represented in Figure 3, even thouff, ¢1 } is not an admissible step fak/. The
limit case is the marked net consisting of a single self-loop: the readers can check for
themselves that, according ¢s(-), it can fire arbitrarily large steps.

These problems have prompted us to look for a semantic framework that represents
net behaviours more faithfully than configuration structures. The key observation is that
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FIGURE 3. The configuration structures(N) = c¢s(M) for the netsV and M.

there is nothing wrong with the assumption that if a step involving many parallel actions
can occur in a certain state, then all the possible interleaving sequences of those action
can also occur from that state. The problematic bit is assuming the inverse implication,
because, as a matter of fact, it reduces concurrency to nondeterminism and makes the
set of configurations determine uniquely the transition relation. Our proposed solution
is concurrent transition systems.

1.3 Concurrent Transition Systems

The analysis of the previous section suggests seeking a model that enforces the exis-
tence of all appropriate interleavings of steps, without allowing this to determine the set
of transitions completely. Several such models appear in the literature. Among those
that inspired us most, we recalistributed transition systeni9], step transition sys-
tems[16], PN transition systemfl6], andhigher dimensional transition systerfgj.

Also closely related are thiecal event structuresf [8], a model that extends event
structures (rather than transition systems) by allowing the firing of sets{utulti-

sets) of events. Drawing on all these, we have here chosen the simplest definition that
Suits our current aim.

DEFINITION 7. A concurrent transition systefCTS for short) is a structuré =
(S, L, trans, so), whereS is a set ofstates L is a set ofactions sy € S is the initial
state, andrans C S x (u(L) — {@}) x S is a set otransitions such that:

1) if (s,U,s1),(s,U, s2) € trans, thens; = sa,
(2) if (s,U,s") € trans andUy, Uy is a partition ofU, then there exist;, vy € S
such thai(s, Uy, v1), (s, Uz, v2), (v1, Ua, 8'), (v2, U1, 8') € trans.

Condition (1) above states that the execution of a multiset of ldldaisa states
deterministically leads to a different state. The second condition guarantees that all the
possible interleavings of the actionslihare possible paths fromto s’ if (s,U,s’) €
trans. Notice that, by (1), the states andv, of (2) are uniquely determined.

We formalise the idea that different paths which are different interleavings of the
same concurrent step can be considered equivalent.

DEFINITION 8. A pathina CTS is a sequence of contiguous transitions
(57 Ulv 81)(817 U27 52) e (snflv Un7 sn)'
A runis a path that originates from the initial state.



DEerINITION 9. Given a CTSH, adjacencyis the least reflexive, symmetric, binary
relation«s g on the paths oH which is closed under path concatenation and such that

(8, Ul,sl)(sl, UQ,SQ) o H (S,U1 + UQ,SQ).

Then, thehomotopyrelation< ; on the paths off is the transitive closure ofs .
The equivalence classes of runsifwith respect to the homotopy relation are called
computations

In order to simplify our exposition, we now refine the notion of concurrent transition
system so as to be able to associate to each path between two states the same multiset
of actions. As we shall see, such transition systems enjoy interesting properties.

DEerINITION 10. A CTS isuniformif all its states areeachablefrom the initial state,
and the union of the actions along any teafinalruns yield the same multiset, where
cofinal means ending in the same state.

In a uniform CTSH = (S, L, trans, s¢) each state can be associated with the
multiset of actions on any run ta. Precisely, we shall usg to indicateZ?=1 U;,
for (so, U1, 51)(s1, U2, 82)...($n—1,Un, s) @ run of H. Observe also that uniform CTS
are necessarily acyclic, because any cyeld/y, s1) ... (sn, Un, s) would imply the
existence of runs ta carrying different actions. In the rest of the paper, we shall
consideonly uniform concurrent transition systems.

Introducing the natural notion of computation-preserving morphism for CTS, we
define a category of uniform concurrent transition systems. In the following, for func-
tionsf: A — B, we denote byf*: u(4) — w(B) the obvious multiset extension of

frie,
X =Y X().
)

acf~1(b

DEFINITION 11. For H; andH, CTS, amorphismfrom H; to H, consists of a map
f:+S1 — S that preserves the initial state and a function.; — L, and such that
(s,U,s") € transy implies(f(s),a”(U), f(s')) € transa.

We denote byCT'S the category of uniform CTS and their morphisms.

DEFINITION 12(From PT Nets to CTS)Let N = (0o, 01,5, T, uo) be a marked PT
Petri net. The concurrent transition system associatéd i®

ct(N) = (Mp,T, transy, @),

whereMy is the set ofireablemultisets of transitions oV, and(X, U, X') € transy
if and only if ux [U) ux/. (Recall thatux: S — Z is by definition a reachable
marking.)

Although this construction is formally very close to that proposed for configuration
structures, the difference is that CTS do not enforce diagonals to fill the squares: these
are introduced if and only if the associated step is actually possible (see Figure 4). We
shall give a precise categorical characterisation of the representations of nets inthe CTS
framework in Section 2. For the time being, we notice the following.
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FIGURE 4. The CTSct(N) andct(M) for the netsV and M of Figure 2.

PROPOSITION 1. ct(N) is a functor fromPetri, to CTS.

Although all cofinal runs of a CTS carry the same multiset of actions, it is not the
case that all such runs are homotopic, i.e., they do not necessarily represent the same
computation. Enforcing this is the purpose of the next definition.

DEeFINITION 13. Anoccurrenceoncurrenttransition system is a concurrenttransition
systemH in which all pairs ofcofinaltransitions(sy, Ux, ), (s2, Ua, 8) € transy are
the final steps ofiomotopigaths.

It can be shown that the previous definition implies the following property.
PropPosITION 2. All cofinal paths of an occurrence CTS are homotopic.

We shall useoCTS to indicate the full subcategory @T'S consisting of occur-
rence CTS. Clearly, a uniform CTS can be unfolded into an occurrence CTS.

DEFINITION 14 (From CTS to Occurrence CTS)etH = (S, L, trans, so) be acon-
current transition system. Itanfoldingis the occurrence concurrent transition system
O(H) = (5, L, trans’, €), whereS"’ is the collection of computations éf, and

trans' = {([r]<,U, [r'|<) | 35,8’ € S, [r']< € 8, n’ @p n(s,U,s)}.
PrRoPoOSITION 3. O(-) extends to a right adjoint to the inclusion@€TS in CTS.

Proof. For H a concurrent transition system, considgr: O(H) — H that maps each
[Tl € Som) toits final states € Sy. Itis easy to verify that this forms the counit of
the adjunction. O

1.4 Monoidal Categories

Several interesting aspects of Petri net theory can be profitably developed within cat-
egory theory, see e.g. [21, 11, 2]. Here we focus on the approach initiated in [11]
(other relevant references are [5, 13, 19, 15, 20]) which exposes the monoidal structure
of Petri nets under the operation of parallel composition. In [11, 5] it is shown that
the sets of transitions can be endowed with appropriate algebraic structures in order to
capture some basic constructions on nets. In particulagdahemutative processéy

Best and Deuvillers [1], which represent the natural behavioural model for PT nets un-
der the collective token philosophy, can be characterised adding a funsexgjiadntial



composition on thenonoidof steps, thus yielding a strictly symmetric strict monoidal
category7 (N).

DEFINITION 15. For N a PT net, letT (N) be the strictly symmetric strict monoidal
category freely generated by.

UsingCMonCat to denote the category of strictly symmetric strict monoidal cat-
egories and strict monoidal functofg(_) is a functor fromPetri to CMonCat. The
category7 (N) can be inductively defined by the following inference rules and axioms.

u € ,u(SN) teTn, 80(t) =u, 81(15) =
idy:u—u € T(N) t:u—veT(N)

a:u—v, B:u =0 eT(N) a:u—wv, f:v—weT(N)
a®B:utu —v+v €T(N) a;f8:u—weT(N)

where the following equations, stating tlfat/V') is a strictly symmetric strict monoidal
category, are satisfied by all arrowsc’, 3, 3, v, § and all multisets: andv:

neutral: idg ®a = q,

commutativity: a®B=0Da

associativity: (a®B)®s=a® (BD0), (5 B);v = a; (B;7)s
identities: o idy = a = idy; o, idy, @ idy = idyt,

functoriality:  (a;8) @ (o/;8) = (a® a); (B ).

The intuition here is that arrows are step sequences and arrow composition is their
concatenation, whereas the monoidal operatallows for parallel composition. It
turns out that this algebraic structure describes precisely the proaessd3est and
Devillers.

PROPOSITION 4 (cf. [11]). The presentation of (N) given above provides a com-
plete and sound axiomatisation of the algebra of the commutative proces¥es of

By analogy withPetri., we take a pointed categof{, c¢y) to be a categor®C
together with a distinguished objegt € C. Similarly, a pointed functor frondC, co)
to (D, dp) is a functorF': C — D that maps the distinguished objesgtto the distin-
guished objectly. Then, usingCMonCat, to denote the category of pointed strictly
symmetric strict monoidal categories and their pointed functors, the previous construc-
tion extends immediately to a funct@t(N): Petri, — CMonCat,, such that for
N = (0, 01,5, T,up) a marked PT net, then

7:‘(N) = (T(aovalvsv T),U())c

1.5 A Logical Characterisation of the Algebraic Model

The algebraic semantics of PT Petri nets can be expressed very compactly by means of
a morphism between theoriespartial membership equational logi{®MEqtl) [10], a
logic of partial algebras with subsorts and subsort polymorphism wbersenceare



Horn clauses on equations= ¢’ and membership assertions s. Such a charac-
terisation can have also practical applications, as there are tools available that support
executable specifications in partial algebras. This section and the Appendix provide an
informal introduction to the main ideas BMEqtl. The interested reader is referred to

[10, 12] for self-contained presentations.

A theoryin PMEqtl is a pairT’ = (2,T"), wheref) is a signature over posetof
sorts and” is a set ofPMEQqtl -sentences in the languagef®f We denote byPAlg,
the category of partia2-algebras, and bPAlg, its full subcategory consisting of
T-algebras, i.e., those part@talgebras that satisfy all the sentencef'in

The features oPMEqtl (partiality, poset of sorts, membership assertions) offer a
natural framework for the specification of categorical structures. For instance, a notion
of tensor producfor partial algebraic theories is used in [12] to obtain, among other
things, a very elegant definition of the theory of monoidal categories that we recall in
the Appendix. More precisely, we define the theoBESRI of PT nets andCMONCAT
of strictly symmetric strict monoidal categories, using a self-explanatory Maude-like
notation (Maude [4] is a language recently developed at SRI International; it is based
on rewriting logic and supports the execution of membership equational logic specifi-
cations).

To study the relationships betwe®ETRI and CMONCAT, the Appendix defines
also an intermediate theoMON-AUT of automata whose states form a commutative
monoid. Our main resultis then that the composition of the obvious inclusion functor of
Petri into PAlgqyoy_aur @and the free functay from PAlgeyoy_aur 0 PALgvoncar
associated to the theory morphignfrom CMON-AUT to CMONCAT corresponds exactly
to the functor7 (_): Petri — CMonCat.

PrRoPOSITION 5. The functor7 (_): Petri — CMonCat is the composition

. F
Petri ——— PAlgy oy o1 — PAlgcuoncar

2 Concurrent Transition Systems and Monoidal Cate-
gories

In this section we state the faithfulness of the CTS representation of nets, as given in
Definition 12, with respect to the collective token philosophy. To accomplish this aim,
we show that both thet(_) and the7 (_) constructions yield two equivalent categories

of net behaviours.

Regarding the monoidal approach, the obvious choice consists in taking the comma
category of7 (V) with respect to the initial marking, thus yielding a category whose
objects are the commutative processegvofrom its initial marking. An arrow from
proces to procesg is then theuniqguecommutative processsuch that;r = ¢ in
T (N). We denote the resulting category | 7 (IV)).

An analogous construction can be defined starting feo(V). The first step is to
observe that the paths of a generic CTS under the homotopy relation define a category.

DEFINITION 16. ForH = (S, L, trans, sg) a CTS, we define theategory of compu-
tationsof H to be the categor¢(H) whose

10



> objectsare computationgr|« of H,

> arrowsare the homotopy equivalence classes of patt$ such that
We: [rle — [re if 7 epry,

> arrow compositions defined as the homotopy class of path concatenation, i.e.,
[Wle; e = [P']e,

> identity arrowat 7]« iS €[« , the homotopy class of the empty path at the final
state ofr.

This construction extends easily to a funafdr) from CTS to Cat, the category
of (small) categories and functors, yielding a funaf@et(-)) from Petri, to Cat.
Observe also thal(-) factors throughd: CTS — oCTS via the obvious path con-
struction.

THEOREM 1. Let N be marked PT net with initial marking,. Then, the categories
C(ct(N)) and(uo | T(N)) are isomorphic.

Proof. We sketch the definition of functors
F: (uoJ T(N)) = C(ct(N)) and G: C(ct(N)) — (uo 4 T(N))

inverses to each other. The functoimaps an object of the comma category to the
homotopy class of any of the object’s interleaving (which is well-defined because of the
diamond equivalence of [1]). Its action on morphisms is analogous.

On the other hand, for a computati@ti«< in C(ct(N)), starting from the initial
marking we can determine uniquely the corresponding arro® QN ), and therefore
define the action of on both objects and arrows. O

The categories of computations for the concurrent transition systems associated to
netsN and M of Figure 2 are shown in Figure 5, where we ugeandc; to denote,
respectively, the computatiof&z, {to}, {to})]<, and[(&, {t1}, {t1})]«< in both of
ct(N) andct(M). Analogouslyp; andp, indicate the homotopy classes of the paths
[({to}v {t1}7 {tov tl})]@ and [({tl}v {t0}7 {tov tl})]@! respectively. Howevek; p1
andcy; po yield the same resutt= [(&, {to, t1}, {to, t1})]< in C(ct(N)), whereas in
C(ct(M)) they denote different objects! = [(&, {to}, {to}) {to}, {t1}, {t0, t1})]
ande” = [(2, {t:}, {t1})({t2}, {to}, {to, 11 }) ] -

3 Configuration Structures and Concurrent Transition
Systems
In this section we first give a categorical structure to the class of configuration struc-

tures, and then show that the obvious injection of configuration structures into CTS
yields a reflection.

11



C, c//

VT\p n] o

(=]

Co c C1 co c1
CT)\ %1 c’;\ %‘1
€

C(ct(N)) C(ct(M))

FIGURE 5. The categorie€(ct(N)) andC(ct(M)) for the nets of Figure 2.

DEFINITION 17. For (E7,C1) and(Es, Cs) configuration structures, @-morphism
from (E1,C1) to (E9, Cs) is a functiong: E; — E, such that for each configuration
X € (4, theng#(X) € C2. We denote byCSCat the category of configuration
structures and cs-morphisms.

The obvious injection functo?(_) from CSCat to CTS maps a configuration
structureCS = (E, C) into the concurrent transition system

J(CS) = (C, E, trans cs, So),

wheretranscs = {(X,L,Y) | X N Y}, and maps a cs-morphisyn E; — Es to
the morphisnig’, g), whereg’: C; — Cs is the obvious extensiogt* of g to multisets,
with domain restricted t¢’;.

THEOREM 2. The functorJ(_): CSCat — CTS is the right adjoint of a functor
R(.): CTS — CSCat. Moreover, since the counit of the adjunction is the identity,
J(.) andR(.) define a full reflection.

Proof. We sketch the proof, giving the precise definition of the reflection functor. The
reflection functorR(-) maps a uniform CTS = (S, L, trans, so) into the configu-
ration structureéR(H) = (L,Cs) such thatCs = {¢; | s € S} (recall thats, is the
multiset union of the actions of any run leadingsjo O

We denote the componentAtof the unit of the adjunction byy : H — J(R(H)).

THEOREM 3 (Configuration Structures via CTS)et N be a marked PT net. Then
cs(N) = R(ct(N)).

Proof. The events ots(IV), the actions oft(N) and, thus, the events B ct(N)) are
the transitions ofV. The statess' of the uniform CTSct(V) are exactly the configura-
tions ofcs(INV), and for eacly € S, we have;, = s. This suffices, since a configuration
structure is entirely determined by its set of configurations. O

These results support our claim that configuration structures do not offer a faithful
representation of net behaviours. In fa®f,_) clearly collapses the structure exces-
sively, as the natural transformation associated to the reflectiorproap identify non
homotopic runs (e.gc¢/ andc” of Figure 5).
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Concluding Remarks and Future Work

We have investigated the expressiveness of some ‘collective-token’ semantics for PT
nets. In particular, to remedy the weakness of configuration structures, we have in-
troducedconcurrent transition systems- a version of higher dimensional transition
system [3] more suited to the collective token philosophy, as they do not assign individ-
ual identities to multiple action occurrences in a multiset — and have shown that they
can provide a faithful description of net behaviours.

CP(-)

~

Te(9) ug -

Petri, — CMOI’ICat*7 Cat

e = RO CTS — ()
TN
4

CSCat © CTS

)

FIGURE 6

The diagram of functors, equivalences and natural transformations in Figure 6 sum-
marises the relationships between all these models. In the diagram, commutation on the
nose (resp. natural equivalence) is represented ifsesp.~), andp denotes the unit
of the reflection into the subcategory of configuration structures. The fuG&6r)
gives the category of Best-Devillers commutative processes. The fusi€torcorre-
sponds to the construction of the CTS for a given net, as defined in Section 1.3. The
functor C(.) yields the construction of the category of computations (i.e., homotopy
equivalence classes of paths beginning in the initial state) of a CTS. The equivalence
betweerC(ct(-)) and(ui, J 7(-)) is shown in Section 2, providing the faithfulness of
the construction. The functes(-) represents the abstraction from nets to configuration
structure, defined in Section 1.2. Unfortunat€l{§Cat is a reflective subcategory of
CTS, as shown in Section 3 via the adjuncti®(.) 4 J(). The reflection functaR(-)
identifies too many things, so that the natural transformation associated to the reflection
mapp can identify non homotopic runs. Our running example shows that causality in-
formations can get lost when using configuration structures, because homotopic paths
are mapped into the same equivalence class.

The conceptual framework of this paper is summarised in Table 1, which makes
explicit our research programme on thehavioura) algebraicandlogical aspects of
the two computational interpretations of PT nets, namelyctiikective tokerand the
individual tokenphilosophies, from the viewpoints of the structures suited to each of
them and their mutual relationships.

The first row of Table 1 has been treated in this paper. As for the individual token in-
terpretation, obvious candidates for suitable behavioural structuresanéstructures
concatenable pomsetsid, especially, various kinds obncatenable processgs 20].
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Structures
Computation Model Behavioural Algebraic Logical
Nets and Collective | Conf. structures, CTS, | 7(NV) CAT®CMON
Token Philosophy Commutative processes
Nets and Individual | Conc. Pomsets, Event | P(N), Q(N) | CAT ® MON
Token Philosophy Struct., Processes Z(N)? + SYM
TABLE 1

From the logical viewpoint, it is not difficult to formulate a the@yM of permutations
and symmetries (cf. [19]) bridging the gap from strictly symmetric categories to cate-
gories symmetric only up to coherentisomorphism. On the other hand, the investigation
of suitable algebraic models is still open, as our current best candidates, the symmetric
strict monoidal categorieB (V) of concatenable processgs] and Q(V) of strongly
concatenable processp], are both somehow unsatisfacto®(.) is anon-functorial
construction, a drawback that inhibits many of the applications we have in mind, whilst
Q(.) solves the problem at the price of complicating the construction and relying on a
non commutative monoid of objects.

We are currently searching for a better categorical constructionZ$a¥), based
on a suitable notion gire-netthat may subsume and underly the theory of PT nets and
allow us to complete our programme.

Also, the complete analysis and comparison of bisimulation related issues in the
various models considered in the paper (as in [6] for configuration structures) deserve
further work that we leave for a future paper.
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Appendix. Recovering the Algebraic Semantics of Nets
via Theory Morphisms

In order to define the theory of strictly symmetric strict monoidal categories, we first
recall the definition of the theory of categories from [12].

The poset of sorts of theMEqtl -theory of categories i8bject < Arrow. There
are two unary operatiors(_) andc(_), for domainandcodomainand a binary com-
position operation ; _ defined if and only if the codomain of the first argument is equal
to the domain of the second argument. Functions with explicitly given domain and
codomain are alwayttal.

fth CAT is

sorts Object Arrow.

subsort Object < Arrow.

ops d(_) c(.) : Arrow -> Object.
op _;_-.

var a : Object.

vars f g h : Arrow.

eq d(a) = a.

eq c(a) = a.

ceq a;f = f if d(f) == a.

ceq f;a = f if c(f) == a.

cmb f;g : Arrow iff c(f) == d(g).
ceq d(f;g) = d(f) if c(f) == d(g).
ceq c(f;9) = c(g) if c(f) == d(g).
ceq (f;g);h = f;(g;h) if c(f) == d(g) and c(g) == d(h).
endfth

The extension of the theoryAT to the theory of monoidal categories is almost
effortless thanks to the tensor product construction of theories, which is informally
defined as follows.

LetT = (Q,T') andT’ = (,I") be theories in partial membership equational
logic, with Q = (5, <, %) and = (S’, <',%'). Theirtensor productl’ ® T" is the
theory with signatur€ ® Q' having: poset of sort§S, <) x (S, <’), and signature
¥ ® ¥/, with operatorsf; € (¥ ® ¥'),, andg, € (X ® ¥'),, for eachf € %, and
g € ¥/ (indices! andr stand respectively fareft andright and witness whether
the operator is inherited from the left or from the right component). The axioms of
T ® T' are the determined from those’Bfand7” as explained in [12].

The essential property of the tensor product of theories is expressed in the following
theorem, wherd@Alg.(C) indicates the category df-algebras taken over the base
categoryC rather than ove$et, the category of small sets and function.

THEOREM 4. LetT, T’ be theories in partial membership equational logic. Then, we
have the following isomorphisms of categories:

PAlg;(PAlgy/) ~ PAlgrgr ~ PAlgr (PAlgy).

17



To define the theory of monoidal categories, we introduce a thedy of com-
mutative monoids and apply the tensor product construction. Here we exploit the pos-
sibility given by Maude of declaring the associativity, commutativity and unit element
as attributes of the monoidal operator.

fth CMON is

sort Monoid.

op O : -> Monoid.

op _@_ : Monoid Monoid -> Monoid [assoc comm id: 0].
endfth

The theory of strictly symmetric strict monoidal categories is then defined as fol-
lows. Notice also the use dfeft andright corresponding to the indicdsand r
discussed above.

fth CMONCAT is CMON ® CAT renamed by (
sort (Monoid,Object) to Object.
sort (Monoid,Arrow) to Arrow.
op O left to O.
op _P_ left to _B_.
op _;_ right to _;_
op d(_) right to d(_).
op c(_) right to c(L).).
endfth

In order to define a theory iRMEQqtl that represents PT Petri nets and their mor-
phisms, we first introduce a theory whose models are automata whose states form a
commutative monoid.

fth CMON-AUT is

sorts State Transition.

op 0 : -> State.

op _®_ : State State -> State [assoc comm id: 0].
ops origin(_) destination(_) : Transition -> State.
endfth

PROPOSITION 6. The categoryPetri is a full subcategory oPAlg oy _ aut-

Proof. It is immediate to check that each PT net is just a mod&MiN-AUT whose
states are the object of the commutative monoid freely generated by the set of places.
O

Exploiting the modularity features of Maude, we can charact®iseri as a sub-
category ofPAlgqyon_aur- We import a functional moduléSET [E :: TRIV] of mul-
tisets, parametrised on a functional theoryTBIV of elements, whose models are sets
corresponding to the places of the net.

18



fth TRIV is sort Element.
endfth

fmod MSET[E :: TRIV] is

sort MSet.

subsort Element < MSet.

op & : —-> MSet.

op _+_ : MSet MSet -> MSet [assoc comm id: @].
endfm

fth PETRI[S :: TRIV] is

protecting MSET[S] renamed by (sort MSet to Marking.).
sort Transition.

ops pre(_) post(_) : Tramsition -> Marking.

endfth

A theory morphismH from T to 7', also called aviewin Maude, is a mapping
of the operators and sorts @f into 77, preserving domain, codomain and subsort-
ing, and such that the translation of the axiomgloére entailed by those &f. It
originates a forgetful functotly : PAlg,, — PAlg,. that — forT andT’ theories
without freeness constraints, such as those requiredTRI [S] — admits a left ad-
joint ¥ : PAlg, — PAlg,, whose effect is to lift to a free model construction in
PAlg;.. The inclusion functor froriPetri to PAlgq,oy_aur IS iNduced as the forgetful
functor of a theory morphisr specified as aiew in Maude as follows.

view I from CMON-AUT to PETRI[S :: TRIV] is
sort Marking to MSet.
op origin(_) to pre(_).
op destination(_) to post(_).

op 0 to &.
op _®_ to _+_.
endview

Finally, the algebraic semantics of PT nets under the collective token philosophy,
i.e., the constructioff (), can be easily recovered via a simple theory morphism spec-
ified in Maude-like notation as

view V from CMON-AUT to CMONCAT is
sort State to Object.
sort Transition to Arrow.
op origin(_) to d(.).
op destination(_) to c(.).
endview

As stated in Proposition 5, the constructidii-) : Petri — CMonCat is then
the following functor composition.

. F
Petri ——— PAlgyoy_sur — PAlgcuoncar

19



DIPARTIMENTO DI INFORMATICA, UNIVERSITA DI PiSA, CORSOITALIA 40,
1-56125 RsA, ITALIA

bruni@di.unipi.it

COMPUTERSCIENCELABORATORY, SRI INTERNATIONAL,

MENLO PARK, CA, USA
meseguer@csl.sri.com

DIPARTIMENTO DI INFORMATICA, UNIVERSITA DI PisA, CORSOITALIA 40,
1-56125 RsA, ITALIA
ugo@di.unipi.it

QUEEN MARY AND WESTFIELD COLLEGE, UNIVERSITY OF LONDON,

LONDONE1 4NS, WNITED KINGDOM,

vs@dcs.qmw.ac.uk

AND

BRICS, COMPUTERSCIENCEDEPT., UNIVERSITY OF AARHUS, NY MUNKEGADE 540
8000 AARHUS C, DENMARK

vs@brics.dk

20



Recent BRICS Report Series Publications

RS-98-17 Roberto Bruni, Jog& Meseguer, Ugo Montanari, and Vladimiro
SassoneA Comparison of Petri Net Semantics under the Collec-
tive Token PhilosophySeptember 1998. 20 pp. To appear idth
Asian Computing Science ConferencASIAN '98 Proceedings,
LNCS, 1998.

RS-98-16 Stephen Alstrup, Thore Husfeldt, and Theis RauheMarked
Ancestor ProblemsSeptember 1998.

RS-98-15 Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing
the Overhead of ML Exceptions by Selective CPS Transforma-
tion. September 1998. 31 pp. To appear in the proceedings of
the 1998 ACM SIGPLAN Workshop on MI_Baltimore, Mary-
land, September 26, 1998.

RS-98-14 Sandeep SerThe Hardness of Speeding-up Knapsackugust
1998. 6 pp.

RS-98-13 Olivier Danvy and Morten Rhiger.Compiling Actions by Partial
Evaluation, Revisited June 1998. 25 pp.

RS-98-12 Olivier Danvy. Functional Unparsing May 1998. 7 pp. This
report supersedes the earlier report BRICS RS-98-5. Extended
version of an article to appear inJournal of Functional Pro-
gramming

RS-98-11 Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Pe-
ter Bro Miltersen. Lower Bounds for Dynamic Algebraic Prob-
lems May 1998. 30 pp.

RS-98-10 Jakob Pagter and Theis Rauh@®ptimal Time-Space Trade-Offs
for Sorting. May 1998. 12 pp.

RS-98-9 Zhe Yang.Encoding Types in ML-like Languages (Preliminary
Version). April 1998. 32 pp.

RS-98-8 P. S. Thiagarajan and Jesper G. HenriksenDistributed Ver-
sions of Linear Time Temporal Logic: A Trace Perspectiv&pril
1998. 49 pp. To appear in3rd Advanced Course on Petri Nets
ACPN '96 Proceedings, LNCS, 1998.

RS-98-7 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe Marked
Ancestor Problems (Preliminary Version)April 1998. 36 pp.



