
B
R

IC
S

R
S

-98-15
K

im
etal.:

A
ssessing

the
O

verhead
ofM

L
E

xceptions

BRICS
Basic Research in Computer Science

Assessing the Overhead of ML Exceptions
by Selective CPS Transformation

Jung-taek Kim
Kwangkeun Yi
Olivier Danvy

BRICS Report Series RS-98-15

ISSN 0909-0878 September 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/15/

Assessing the Overhead of ML Exceptions

by Selective CPS Transformation ∗

Jung-taek Kim, Kwangkeun Yi

Programming Languages Lab. †

Dept. of Computer Science
KAIST ‡

Olivier Danvy

BRICS §

Dept. of Computer Science
University of Aarhus ¶

September 7, 1998

Abstract

ML’s exception handling makes it possible to describe exceptional
execution flows conveniently, but it also forms a performance bottle-
neck. Our goal is to reduce this overhead by source-level transforma-
tion.

To this end, we transform source programs into continuation-pass-
ing style (CPS), replacing handle and raise expressions by continuation-
catching and throwing expressions, respectively. CPS-transforming ev-
ery expression, however, introduces a new cost. We therefore use an ex-
ception analysis to transform expressions selectively: if an expression is
statically determined to involve exceptions then it is CPS-transformed;
otherwise, it is left in direct style.

In this article, we formalize this selective CPS transformation, prove
its correctness, and present early experimental data indicating its effect
on ML programs.

∗To appear in the proceedings of the 1998 ACM SIGPLAN Workshop on ML, Septem-
ber 26, 1998, Baltimore, Maryland.
†http://pllab.kaist.ac.kr

This work is supported in part by Korea Science and Engineering Foundation grant
KOSEF 961-0100-001-2 and by Korea Ministry of Information and Communication grant
96151-IT2-12.
‡Department of Computer Science (http://cs.kaist.ac.kr),
Korea Advanced Institute of Science & Technology,
Taejon 305-701, Korea.
E-mail: {judaigi,kwang}@cs.kaist.ac.kr
§Basic Research in Computer Science (http://www.brics.dk),
Centre of the Danish National Research Foundation.
¶Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.

E-mail: danvy@brics.dk

1

1 Introduction

Programming with exceptions is an expensive affair in ML, since it involves
installing and uninstalling exceptions handlers at run time. This dynamic
nesting of handlers can be a performance bottleneck if it is frequent, e.g.,
when the handler exists in the body of a recursive function.

1.1 An example

For example, let us consider the problem of substituting a closed expression
for a variable in another expression. The expression is either a variable, a
lambda abstraction, or an application (see Figure 1). In a näıve implemen-
tation of substitution, the source expression is entirely copied. In an eco-
nomical implementation, the subexpressions unaffected by the substitution
(i.e., those where the variable to substitute does not occur free) are shared
between the source expression and the resulting expression. This economical
implementation is an instance of what Gérard Huet, in the mid-80’s, called
“sharing transducers.”

We measured the performances of two sharing transducers: one using
exceptions (Figure 2) and the other using continuations (Figure 3). Figure 4
displays two extreme cases: (a) one where the source expression yields much
exception raising and handling; and (b) one where the source expression
yields no exception raising and handling at all. In Case (a), the continuation-
based version is about twice as fast as the exception-based version.1 In
Case (b), the continuation-based version runs in about the same time as the
exception-based version.

We also implemented a third sharing transducer, using a disjoint sum
instead of an exception or two continuations. In performance, it matches the
continuation-based one, thus showing that at least for sharing transducers,
continuations form a viable alternative solution to disjoint sums.

Figure 4 shows that there is considerable room for improvement, par-
ticularly when the input program uses exceptions frequently. Our goal is
to achieve this optimization by source-level transformation(s). Since excep-
tions affect the control flow of programs, we choose to translate the raise

and handle constructs into continuation-based idioms.

1The peaks in the graph reflect the situations where the programs hit the memory
thresholds that make the garbage collector increase its heap size (which causes some
overhead).

2

structure Exp

= struct

datatype exp = VAR of string

| LAM of string * exp

| APP of exp * exp

end

Figure 1: A sample definition of expressions

structure Subst_exn

= struct

local open Exp

exception same

in fun subst (x, e, b)

= let fun walk (VAR x’)

= if x’ = x

then e

else raise same

| walk (LAM (x’, b’))

= if x’ = x

then raise same

else LAM (x’, walk b’)

| walk (APP (e0, e1))

= let val e0’ = walk e0

in APP (e0’, walk e1

handle same => e1)

end

handle same => APP (e0, walk e1)

in walk b

handle same => b

end

end

end

Figure 2: Economical substitution using exceptions

3

structure Subst_cps

= struct

local open Exp

in fun subst (x, e, b)

= let fun walk (VAR x’) k h

= if x’ = x

then k e

else h ()

| walk (LAM (x’, b’)) k h

= if x’ = x

then h ()

else walk b’

(fn b’’

=> k (LAM (x’, b’’)))

h

| walk (APP (e0, e1)) k h

= walk e0

(fn e0’

=> walk e1

(fn e1’

=> k (APP (e0’, e1’)))

(fn ()

=> k (APP (e0’, e1))))

(fn ()

=> walk e1

(fn e1’

=> k (APP (e0, e1’)))

h)

in walk b (fn b’ => b’) (fn () => b)

end

end

end

Figure 3: Economical substitution using continuations

4

X coordinate: the input expression size.
Y coordinate: execution time in ms, using SML/NJ 110 on a Sun Ultra-
SPARC 2 (user time + system time + gc time).

0

50

100

150

200

250

300

350

400

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS

(a) Exceptions are frequently raised.

0

100

200

300

400

500

600

700

800

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS

(b) No exceptions are raised.

Figure 4: Performance difference: exception-based (Figure 2) versus
continuation-based (Figure 3) versions

5

1.2 This work

We remove raise and handle from ML programs by transforming them into
continuation-passing style (CPS). Specifically, we pass two continuations:
one for the normal course of execution, and one for exceptional situations.

Passing two continuations to process exceptions is not a new idea: for
example, Appel mentions it in his book on compiling with continuations
[App92]. However, and even though his ML compiler uses a CPS transfor-
mation, it does not remove raise and handle: these two constructs remain
as primitive operators (sethdlr and gethdlr). We conjecture that it was not
cost-effective to pass two continuations to every function as specified, e.g.,
by Biagioni et al. [BCL+98, Figure 2].

The new idea here is a cost-effective CPS transformation using two con-
tinuations: we exploit the static information from Yi and Ryu’s exception
analysis [YR97] to reduce the continuation-passing traffic to where it is ac-
tually needed. To this end, we present a selective CPS transformation that
only introduces continuations where they are needed, based on the static
information gathered by the exception analysis. Our selective CPS trans-
formation thus generalizes both the CPS transformation with two continua-
tions (for expressions using exceptions) and the identity transformation (for
exception-free expressions).

We prove that this selective CPS transformation is correct, and present
some early experimental data that show its effectiveness for exception-intens-
ive programs.

1.3 Related work

We know of three earlier works using the idea of exploiting static information
to perform a selective CPS transformation. This has been done for strict-
ness analysis [DH93a], for totality analysis [DH93b], and for binding-time
analysis [DD95]. None of these selective CPS transformations, however, has
been integrated in an actual compiler. Only the latter transformation has
been integrated in a partial evaluator [Dus97]. In their work on “selective
thunkification,” Steckler and Wand use a similar idea to reduce the num-
ber of thunks when converting a call-by-name program into a call-by-value
program, after strictness analysis [HD97, SW94].

6

1.4 Overview

The rest of this article is organized as follows. Section 2 defines the syntax
and semantics of our source language, a subset of the ML’s core. Section
3 presents a näıve CPS transformation that blindly passes continuations
to every expression. Section 4 defines the annotation process of selecting
candidate expressions for our selective transformation. Section 5 formalizes
our selective transformation and proves its correctness. Section 6 shows our
preliminary experimental data and discusses some more selective transfor-
mations which we will consider if the ongoing experiments with the selective
transformation turn out to be not economical enough.

2 Source Language

2.1 Abstract syntax

We consider ML’s core language, which is call-by-value and higher-order.
Its abstract syntax reads as follows. (κ denotes a constructor.)

e ::= 1 unit
| x variable
| λx. e function
| fix f λx. e recursive function
| e1 e2 application
| con κ e exception construction
| decon e deconstruction
| case e1 κ e2 e3 switch
| handle e1 κ λx. e2 handle expression
| raise e raise exception

An exception value κ·v is constructed by “con κ e” where evaluating e yields
v. Symmetrically, an exception value κ ·v denoted by e is deconstructed into
v by evaluating “decon e.” Evaluating the case expression “case e1 κ e2 e3”
yields the value of e2 if the value of e1 is κ·v; otherwise, it yields the value
of e3. When evaluating the raise expression “raise e” e is first evaluated,
yielding an exception value κ·v. The exception associated to κ is then raised.
The handle expression “handle e1 κ λx.e2” evaluates e1 first. If e1 yields an
exception value κ·v, this exception value is passed to λx.e2. Otherwise, the
value of the handle expression is the value yielded by e1.

7

For brevity, we omit datatype values, strings, and memory operations
(assignment, reference, and dereference) here. In reality, we work on the
complete core language of Standard ML.

2.2 Operational semantics

We define the semantics of expressions with a structural operational seman-
tics [Plo81] using Felleisen’s evaluation contexts [Fel87]. In doing so, we need
to extend the expressions to contain a set of values v and raised exceptions
p that represent terminated computations:

v ::= 1 unit
| λx. e function
| fix f λx. e recursive function
| κ·v exception value with argument v

p ::= κ·v raised exception

The evaluation context C is defined by

C ::= [] hole
| con κ C

| deconC

| C e

| v C

| caseC κ e1 e2

| handleC κ λx. e

| raiseC

This context defines a left-to-right, call-by-value reduction. As usual, we
write C[e] if the hole in context C is filled with e. We use this context to
define the reduction rule for arbitrary expressions:

e→ e′

C[e]→ C[e′]

The single reduction step e→ e′ for a redex e is defined in Figure 5. As usual,
the notation [v/x]e denotes the new expression that results from substituting
v for every free occurrence of x in e.

Definition 1 The semantics of a closed expression e is defined to be the
sequence of reduction steps

e→ e1 → e2 → · · · .

8

Normal reduction steps: con κ v → κ·v
decon κ·v → v

(λx. e) v → [v/x]e
(fix f λx. e) v → [v/x][fix f λx. e/f]e

case κ·v κ e1 e2 → e1

case κ·v κ′ e1 e2 → e2 (κ′ 6= κ)
handle v κ λx. e → v

Exceptional reduction steps: raise κ·v → κ·v
raise κ·v → κ·v

handle κ·v κ λx. e → (λx. e) κ·v
handle κ·v κ′ λx. e → κ·v (κ′ 6= κ)

con κ κ·v → κ·v
decon κ·v → κ·v

case κ·v κ′ e1 e2 → κ·v
κ·v e → κ·v

(λx. e) κ·v → κ·v
(fix f λx. e) κ·v → κ·v

Figure 5: Reduction steps

9

If the sequence terminates with a value v (with an uncaught exception κ·v,
respectively) after zero or more reductions, we write

e
∗→ v (e

∗→ κ·v, respectively)

3 Näıve CPS Transformation

We can remove the raise and handle expressions by passing two continuations
to each expression. Consider, for example, the following handle expression

handle e1 κ λx. e2.

The handler λx. e2 is installed prior to evaluating e1. Therefore, if an ex-
ception κ·v is raised during this evaluation, then it is caught by the handler
and λx. e2 is applied to κ·v, yielding the value of the handle expression.

The CPS transformation encodes both how to handle a raised exception
and how to proceed thereafter, with a handler continuation. This handler
continuation is passed to the sub-expressions of e1. Accordingly, a raise ex-
pression is CPS-transformed with the current handler continuation in place
of the current continuation. Note that, because a handler continuation needs
to encode how to continue after the handling, we also have to make the nor-
mal continuation ready to be captured by a handler continuation. Thus we
keep passing two continuations (normal and handler continuations) to every
expression.

Figure 6 shows the definition of this CPS-transformation function T .
The T function transforms expressions of type τ to expressions of type
(τ → Ans)× (Exn → Ans)→ Ans.

Theorem 1 (Correctness of T) For any program ℘

℘
∗→ v =⇒ T (℘) 〈K,H〉 ∗→ K(Ψ(v))

℘
∗→ κ·v =⇒ T (℘) 〈K,H〉 ∗→ H(Ψ(κ·v))

where the auxiliary function Ψ coerces direct-style values to CPS values:

Ψ(1) = 1

Ψ(λx. e) = λx. T (e)
Ψ(fix f λx. e) = fix f λx. T (e)

Ψ(κ·v) = κ·Ψ(v)

10

T (1)
= λ〈K,H〉. K(1)

T (x)
= λ〈K,H〉. K(x)

T (con κ e)
= λ〈K,H〉. T (e) 〈λv. K (con κ v),H〉

T (decon e)
= λ〈K,H〉. T (e) 〈λv. K (decon v),H〉

T (λx. e)
= λ〈K,H〉. K(λx. T (e))

T (fix f λx. e)
= λ〈K,H〉. K(fix f λx. T (e))

T (e1 e2)
= λ〈K,H〉. T (e1) 〈λf. T (e2) 〈λv. f v 〈K,H〉,H〉,H〉

T (case e1 κ e2 e3)
= λ〈K,H〉. T (e1) 〈λv. case v κ (T (e2)〈K,H〉) (T (e3)〈K,H〉),H〉

T (handle e1 κ λx. e2)
= λ〈K,H〉. T (e1) 〈K,λv. case v κ ((λx. T (e2)) v 〈K,H〉) (H v)〉

T (raise e)
= λ〈K,H〉. T (e) 〈H,H〉

Figure 6: Näıve CPS transformation T

11

Proof. Analogous to the proof of Plotkin’s simulation theorem [Plo75]. In
the proof we need to extend T to be defined for values and raised exceptions:

T (v) = λ〈K,H〉. K(Ψ(v))
T (κ·v) = λ〈K,H〉. H(Ψ(κ·v))

2

Transforming every expression into this CPS-form, as done by T , how-
ever, offsets the benefit of removing raise-handle expressions. Indeed, every
expression becomes a higher-order function application that receives two
functions (continuations).

At this stage, two orthogonal optimizations can take place:

• We can perform administrative reductions, e.g., during the CPS trans-
formation [DF92].

• We can selectively apply the CPS transformation by exploiting the re-
sults of Yi and Ryu’s exception analysis [YR97]. The point is that
an exception analysis tells us a conservative approximation of which
expressions may raise an uncaught exception when they are evaluated
and of which functions may raise an uncaught exception when they are
applied. Therefore, such an analysis also tells us a safe approximation
of which expressions do not raise any uncaught exceptions when they
are evaluated and of which functions do not raise any uncaught excep-
tions when they are applied. These latter expressions and functions
need not be CPS-transformed.

4 Annotation

We pass two continuations to an expression e to cater for the case where
uncaught exceptions raised while evaluating e (in the future) are caught by
a surrounding handler (that was installed in the past). The raise expression
will call a handler continuation that was passed to it from the outer context.
If we know that evaluating an expression will not yield an uncaught excep-
tion, there is no need to pass it any continuations since we know statically
that these continuations would be of no use. Three cases occur:

• If evaluating e cannot yield any uncaught exceptions (i.e., it can only
yield normal values), then e needs no continuations.

12

• If evaluating e may yield an uncaught exception which is not handled
in the complete program, then e needs no continuations either: we can
just call an abort function instead of raising this uncaught exception.

• If evaluating e may yield an uncaught exception which is handled in
the complete program, then e needs two continuations.

The expressions of the third kind are candidates to our selective CPS trans-
formation. The other ones can be kept in direct style.

Our selective CPS transformation therefore needs two pieces of informa-
tion per source expression: whether the expression is protected by a handler
and which exceptions, if any, may be raised when the expression is evalu-
ated. The first condition deeκ is checked by scanning the sub-expressions in
the scope of a handler (i.e., sub-expressions of e in “handle e κ λx. e′”), ref-
erencing a safe closure analysis [YR97].2 The second condition becκ checks
whether evaluating e raises an exception κ. It is based on Yi and Ryu’s
exception analysis [YR97].

If both the conditions deeκ and becκ, for the same exception κ, hold for
an expression e, the exceptional expression e becomes the candidate ĕ of our
CPS transformation. Otherwise, the expression e is marked ė as normal.

Figure 7 displays the rules

R(Exn analysis℘,Closure analysis℘)

for determining which expressions are exceptional in program ℘. The first
analysis, Exn analysis℘, maps each expression of the program ℘ to the set
of exceptions that may be uncaught in the expression. The second analy-
sis, Closure analysis℘, maps each function expression to the set of lambda-
abstractions that can flow into it. These two auxiliary analyses are as-
sumed correct. In our implementation we use the ones developed by Yi and
Ryu [YR97].

Definition 2 The annotated version Annotate(℘) of a program ℘ is the
one resulting from marking each sub-expression e either as exceptional (ĕ)
or as normal (ė), based on the rules R(Exn analysis℘,Closure analysis℘) in
Figure 7.

2For languages with exceptions that can carry functions, existing works [Shi91, HM97,
JW96, Ses89] cannot be used because exception analysis and closure analysis are interde-
pendent in ML. We therefore had to devise our own closure analysis.

13

κ ∈ Exn analysis℘(e)

becκ

handle e1 κ λx. e2

de1eκ

dcon κ′ eeκ
deeκ

ddecon eeκ
deeκ

draise eeκ
deeκ

de1 e2eκ λx. e ∈ Closure analysis℘(e1)

de1eκ de2eκ deeκ

dcase e1 κ e2 e3eκ
de1eκ de2eκ de3eκ

deeκ becκ
ĕ

becκ is read as “evaluating e may raise a κ-exception.”
deeκ is read as “a κ-handler protects e.”
Once the analysis is completed,
any expression e that is not marked as exceptional ĕ
is marked as normal ė.

Figure 7: Rules R(Exn analysis℘,Closure analysis℘) for deciding whether
an expression e in a program ℘ is exceptional (ĕ) or normal (ė).

14

Annotated expressions: e ::= ė | ĕ

Normal expressions: ė ::= 1 | x
| λx. ė | λx. ĕ
| fix f λx. e

| ė1 ė2

| con κ ė | decon ė
| case ė1 κ ė2 ė3

| handle e1 κ λx. ė2

| handle ė1 κ λx. ĕ2

| raise ė

Exceptional expressions: ĕ ::= e1 e2

| con κ ĕ

| decon ĕ

| case ĕ1 κ e2 e3

| case e1 κ ĕ2 e3

| case e1 κ e2 ĕ3

| handle ĕ1 κ λx. e2

| raise e

Figure 8: Two classes of expressions: normal or exceptional

Theorem 2 (Safety of Annotation) If an expression e of a program is
marked normal ė, then evaluating it yields either a normal value or an un-
caught exception that aborts the program.

Proof. Assume for contradiction that an expression e evaluates into an un-
caught exception that will be handled inside the program. Then it must be
marked exceptional ĕ because becκ and deeκ hold and are based on annota-
tion rules that use Exn analysis℘ and Closure analysis℘, both of which are
safe. 2

Figure 8 shows the syntax of well-formed sets of normal expressions ė
and exceptional expressions ĕ, respectively. Let us list some noteworthy
cases:

• An application expression ė1 ė2 with all normal sub-expressions can be

15

exceptional if a function that flows into ė1 has an exceptional body.

• raise ė can be normal3 if no handler exists that catches the exception
ė.

• handle ĕ1 κλx. ė2 can be normal or exceptional depending on whether
an uncaught exception from ĕ1 is handled by λx. ė2 or not.

• The toplevel expression of the program is always marked normal be-
cause it evaluates either into a normal value or into an uncaught ex-
ception.

5 Selective CPS Transformation

Our selective CPS transformation is defined by two transformation func-
tions Ṫ and T̆ , which transform normal and exceptional expressions, respec-
tively. We transform a program ℘ by applying Ṫ to its annotated version
Annotate(℘):

Ṫ (Annotate(℘)).

Each sub-expression of ℘ is transformed by either Ṫ or T̆ , depending on its
annotation. Figures 9 and 10 display the definitions.

T̆ transforms exceptional expressions of type τ into expressions of type
(τ → α)× (Exn → α)→ α. The type α is determined by the context where
the transformation T̆ occurs. If T̆ (ĕ1) occurs where ĕ1 is a sub-expression of
a normal expression ė, then the result type α of the continuations becomes
the type of ė. If ĕ1 is a sub-expression of an exceptional expression ĕ, then
the α is determined by the context where T̆ (ĕ) occurs, and so on.

Ṫ transforms normal expressions of type τ into expressions of the same
type, except for one case: Ṫ always transform lambda-abstractions (λx. e
and fix f λx. e) to receive continuations. This coercion is necessary when
an exceptional application can execute a normal body, which is possible as
follows. For an application ė1 ė2, let us assume that two lambda-abstraction
λx. ĕ and λy. ė can flow into ė1. Because of the exceptional body ĕ the
application expression can be marked exceptional, hence is transformed by

3The word “normal” is slightly misleading here because such an expression aborts the
whole execution of the program—in fact, we replace it by an abort operation. But since
this operation does not need to be passed any continuation, we can mark the expression
as normal.

16

Define ⊥K = λx.x and ⊥H = λx.raise x.

Transformation Ṫ (ė) for normal expressions ė:

Ṫ (1) = 1

Ṫ (x) = x

Ṫ (λx. ė) = λx. (λ〈K,H〉. K(Ṫ (ė)))

Ṫ (λx. ĕ) = λx. T̆ (ĕ)

Ṫ (fix f λx. ė) = fix f λx. λ〈K,H〉. K(Ṫ (ė))

Ṫ (fix f λx. ĕ) = fix f λx. T̆ (ĕ)

Ṫ (ė1 ė2) = Ṫ (ė1) Ṫ (ė2) 〈⊥K ,⊥H〉
Ṫ (con κ ė) = con κ Ṫ (ė)

Ṫ (decon ė) = decon Ṫ (ė)

Ṫ (case ė1 κ ė2 ė3) = case Ṫ (ė1) κ Ṫ (ė2) Ṫ (ė3)

Ṫ (handle ė1 κ λx. ė2) = Ṫ (ė1)

Ṫ (handle ė1 κ λx. ĕ2) = Ṫ (ė1)

Ṫ (handle ĕ1 κ λx. ė2) = T̆ (ĕ1) 〈⊥K , λv. case v κ ((λx. Ṫ (ė2)) v) (⊥H v)〉
Ṫ (raise ė) = ⊥H(Ṫ (ė))

Figure 9: Selective CPS transformation (part 1/2)

17

Transformation T̆ (ĕ) for exceptional expressions ĕ:

T̆ (ė1 ė2) = λ〈K,H〉. Ṫ (ė1) Ṫ (ė2) 〈K,H〉
T̆ (ĕ1 ė2) = λ〈K,H〉. T̆ (ĕ1) 〈λf. (f Ṫ (ė2) 〈K,H〉),H〉
T̆ (ė1 ĕ2) = λ〈K,H〉. (λf. T̆ (ĕ2) 〈λv. (f v 〈K,H〉),H〉) Ṫ (ė1)

T̆ (ĕ1 ĕ2) = λ〈K,H〉. T̆ (ĕ1) 〈λf. T̆ (ĕ2) 〈λv. (f v 〈K,H〉),H〉,H〉
T̆ (con κ ĕ) = λ〈K,H〉. T̆ (ĕ)〈λv. K(κ·v),H〉
T̆ (decon ĕ) = λ〈K,H〉. T̆ (ĕ)〈λκ·v. K(v),H〉
T̆ (case ĕ1 κ ė2 ė3)

= λ〈K,H〉. T̆ (ĕ1) 〈λv. case v κ K(Ṫ (ė2))K(Ṫ (ė3)),H〉
T̆ (case ė1 κ ĕ2 ė3)

= λ〈K,H〉. case Ṫ (ė1) κ (T̆ (ĕ2)〈K,H〉) K(Ṫ (ė3))

T̆ (case ė1 κ ė2 ĕ3)

= λ〈K,H〉. case Ṫ (ė1) κ K(Ṫ (ė2)) (T̆ (ĕ3) 〈K,H〉)
T̆ (case ĕ1 κ ĕ2 ė3)

= λ〈K,H〉. T̆ (ĕ1) 〈λv. case v κ (T̆ (ĕ2) 〈K,H〉) K(Ṫ (ė3)),H〉
T̆ (case ĕ1 κ ė2 ĕ3)

= λ〈K,H〉. T̆ (ĕ1) 〈λv. case v κ K(Ṫ (ė2)) (T̆ (ĕ3) 〈K,H〉),H〉
T̆ (case ė1 κ ĕ2 ĕ3)

= λ〈K,H〉. case Ṫ (ė1) κ (T̆ (ĕ2) 〈K,H〉) (T̆ (ĕ3) 〈K,H〉)
T̆ (case ĕ1 κ ĕ2 ĕ3)

= λ〈K,H〉. T̆ (ĕ1) 〈λv. case v κ (T̆ (ĕ2)〈K,H〉) (T̆ (ĕ3)〈K,H〉),H〉
T̆ (handle ĕ1 κ λx. ė2)

= λ〈K,H〉. T̆ (ĕ1) 〈K,λv. case v κ K((λx. Ṫ (ė2)) v) (H v)〉
T̆ (handle ĕ1 κ λx. ĕ2)

= λ〈K,H〉. T̆ (ĕ1) 〈K,λv. case v κ ((λx. T̆ (ĕ2)) v 〈K,H〉) (H v)〉
T̆ (raise ė) = λ〈K,H〉. H(Ṫ (ė))

T̆ (raise ĕ) = λ〈K,H〉. T̆ (ĕ) 〈H,H〉

Figure 10: Selective CPS transformation (Part 2/2)

18

T̆ to
λ〈K,H〉. Ṫ (ė1) Ṫ (ė2) 〈K,H〉.

Then it is necessary to coerce the other function λy. ė to expect continua-
tions:

λy. λ〈K,H〉. K(Ṫ (ė)).

Because of this coercion, if an application e1 e2 is transformed we must
always pass two continuations. In case of the normal transformation Ṫ (e1 e2)
we pass a dummy pair 〈⊥K ,⊥H〉. In case of the exceptional transformation
T̆ (e1 e2) we pass the continuation pair 〈K,H〉 received from the context.

Note that even though the transformed program can still have raise
expressions because of (λx. raise x), which is our ⊥H function, such raise
expressions are evaluated if and only if the input program raises exceptions
that abort the program execution.

Let us consider several examples. Their basic theme is that an excep-
tional expression ĕ is transformed with T̆ to receive a pair of continuations,
whereas a normal expression ė is transformed with Ṫ to yield its value in
the usual direct style.

• Case of normal handle-expression whose first sub-expression is excep-
tional:

Ṫ (handle ĕ1 κ λx. ė2) =

T̆ (ĕ1) 〈⊥K , λv. case v κ ((λx. Ṫ (ė2)) v) (⊥H v)〉

The exceptional sub-expression ĕ1 is transformed with T̆ to receive two
continuations. The normal continuation is the identity function ⊥K ,
because the normal value of ĕ1 is the value of the handle expression.
The handler continuation is a case expression that, if the exception
v is unmatched, aborts the program by raising the exception (⊥H v),
and otherwise, handles it normally ((λx. Ṫ (ė2)) v). The abortion case
takes place when ĕ1 raises an exception the program cannot handle.

• Similar case, but when the handle-expression is exceptional:

T̆ (handle ĕ1 κ λx. ė2) =

λ〈K,H〉. T̆ (ĕ1) 〈K,λv. case v κ K((λx. Ṫ (ė2)) v) (H v)〉

The difference from the previous case is that the transformed expres-
sion expects continuations 〈K,H〉 from the context and uses them in
defining continuations to pass to subexpression T̆ (ĕ1). Continuations

19

to pass to T̆ (ĕ1) are defined using the continuations 〈K,H〉 passed
from the context.

• Case of exceptional application-expression whose second expression is
normal.

T̆ (ĕ1 ė2) = λ〈K,H〉. T̆ (ĕ1) 〈λf. (f Ṫ (ė2) 〈K,H〉),H〉

The exceptional sub-expression ĕ1 is transformed with T̆ to receive two
continuations. We pass two continuations to it: the normal continu-
ation part λf. (f ...) is to apply the resulting function f to argument
Ṫ (ė2) with the current continuations 〈K,H〉, and the handler contin-
uation part is the H from the context.

Theorem 3 (Correctness of Ṫ and T̆) For any program ℘,

℘
∗→ v =⇒ Ṫ (Annotate(℘))

∗→ Ψ̇(v)

℘
∗→ κ·v =⇒ Ṫ (Annotate(℘))

∗→ Ψ̇(κ·v)

where the auxiliary function Ψ̇ coerces direct-style values to selective-CPS
values:

Ψ̇(1) = 1

Ψ̇(κ·v) = κ·Ψ̇(v)

Ψ̇(λx. ė) = λx. λ〈K,H〉. K(Ṫ (e))

Ψ̇(λx. ĕ) = λx. T̆ (e)

Ψ̇(fix f λx. ė) = fix f λx. λ〈K,H〉. K(Ṫ (e))

Ψ̇(fix f λx. ĕ) = fix f λx. λ〈K,H〉. K(T̆ (e))

The proof uses the following three lemmas, which are analogous to those
used in Plotkin’s simulation theorem [Plo75].

Lemma 1 {
[Ψ̇(v)/x]Ṫ (ė) = Ṫ ([v/x]ė)

[Ψ̇(v)/x]T̆ (ĕ) = T̆ ([v/x]ĕ)

Proof. By induction on size of e. 2

Now the following two lemmas prove two vital properties about the infix
operator “:”, which is defined analogously to Plotkin’s one. (See Figures 13
and 14, in appendix, for the definition.) Particular to our case is the defini-
tion of e: Return, which denotes that the term e needs no continuations to
finish.

20

For the proofs, we need to extend the Ṫ and T̆ functions, which were
defined only for a program, to be defined also for all terms in the reduction
sequence of the program:

Ṫ (κ·v) = Ψ̇(κ·v)

Ṫ (κ·v) = Ψ̇(κ·v)

T̆ (v) = λ〈K,H〉. K(Ψ̇(v))

T̆ (κ·v) = λ〈K,H〉. H(Ψ̇(κ·v))

Although our annotation is defined only for programs not for the terms that
occur during reductions, we find it convenient in the proofs that the terms
also have annotations inherited from their original expressions:

ė1, e1 → e2

ė2

ĕ1, e1 → e2

ĕ2

Lemma 2 {
Ṫ (ė)

+→ ė : Return

T̆ (ĕ) 〈K,H〉 +→ ĕ : 〈K,H〉

Proof. By induction on size of e. 2

Lemma 3 {
ė → ė′ =⇒ e : Return

+→ e′ : Return

ĕ → ĕ′ =⇒ e : 〈K,H〉 +→ e′ : 〈K,H〉

Proof.

• ė = handle ˘κ·v1 κ ė2 → [˘κ·v1/x] ė2

handle ˘κ·v1 κ ė2 : Return

= case Ψ̇(˘κ·v1) κ (⊥K (λx. Ṫ (ė2) Ψ̇(˘κ·v1))) (⊥H Ψ̇(˘κ·v1))
(by def. of :)

+→ ⊥K (λx. Ṫ (ė2) Ψ̇(˘κ·v1))
+→ [Ψ̇(˘κ·v1)/x] Ṫ (ė2)(by reduction rule)

= Ṫ ([˘κ·v1/x] ė2)(by Lemma1)
= [˘κ·v1/x] ė2 : Return(by Lemma2)

21

• ĕ = raise ė1 → raise v̇1

raise ė1 : 〈K,H〉
= H (ė1 : Return)(by def. of :)
+→ H (v̇1 : Return)(by I.H.)

= H Ψ̇(v̇1)(by def. of :)
+→ Ψ̇(v̇1)(by reduction rule)

= raise v̇1 : 〈K,H〉(by def. of :)

• ė = handle ė1 κ λx. ė2 → handle ˙κ·v1 κ λx. ė2

Impossible by annotation rule.

Other cases are similarly treated. 2

It is now straightforward to prove Theorem 3:
Proof. If ℘

∗→ v, then

Ṫ (℘̇)
+→ ℘ : Return (by Lemma 2)
∗→ v (by Lemma 3)

→ Ψ̇(v) (by definition)

Similarly when ℘
∗→ κ·v. 2

6 Preliminary Experiments and Discussion

6.1 Sharing transducers

We tested our transformation for the subst function of Figure 2, i.e., a
sharing transducer implementing substitution with exceptions. Figure 11
displays the transformed program, which results from our one-pass selective
CPS transformer (à la Danvy and Filinski [DF92]).

Figure 12 shows (in solid line) that the transformed program can run with
almost twice the speed of the original exception-based substitution program.
As Graph (b) shows, if the program does not raise exceptions (hence handlers
are not used) then the transformed program and the exception-based code
run with about the same speed. Overall, the performance of the transformed
program is actually nearing the performance of the CPS version (in dotted
line) as specified in Figure 3, and which we consider as ideal.

22

exception same

fun subst_trans {1=x,2=e,3=body}

= let fun walk (VAR x’) (k_var1,h_var2)

= (case x’=x

of true => k_var1 e

| false => h_var2 same)

| walk (LAM {1=x’,2=body’}) (k_var1,h_var2)

= (case x’=x

of true => h_var2 same

| false => walk body’

((fn a_var5

=> k_var1 (LAM {2=a_var5,1=x’})),

(fn b_var6

=> h_var2 b_var6)))

| walk (APP {1=e0,2=e1}) (k_var1,h_var2)

= walk e0

((fn a_var14

=> walk e1

((fn a_var17

=> k_var1 (APP {2=a_var17,1=a_var14})),

(fn b_var18

=> ((fn same

=> k_var1 (APP {2=e1,1=a_var14})

| a_var16 => raise a_var16)

b_var18)))),

(fn b_var15

=> ((fn same

=> walk e1

((fn a_var10

=> k_var1 (APP {2=a_var10,1=e0})),

(fn b_var11 => h_var2 b_var11))

| a_var7 => h_var2 a_var7)

b_var15)))

in walk body ((fn a_var20 => a_var20),

(fn b_var21 => ((fn same => body

| a_var19 => raise a_var19)

b_var21)))

end

Figure 11: The exception-based substitution of Figure 2 after selective CPS
transformation

23

X coordinate: the input expression size.
Y coordinate: execution time in ms, using SML/NJ 110 on a Sun Ultra-
SPARC 2 (user time + system time + gc time).

0

50

100

150

200

250

300

350

400

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS
translation

(a) Exceptions are frequently raised.

0

100

200

300

400

500

600

700

800

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS
translation

(b) No exceptions are raised.

Figure 12: Experimental results for Figure 2 (−·−), Figure 3 (···), and Figure
11 (−−)

24

6.2 Non exception-intensive programs

Our transformation’s assumptions that all exceptions are explicitly raised
inside the program does not hold in reality because some exceptions (e.g.,
Overflow) can be raised from pre-defined functions (e.g., +). While the pro-
gram can handle such primitive exceptions, the transformed version misses
them because our transformer doesn’t see any raise expression which is trans-
formed to activate the handler continuation. Thus our transformation must
transform only such programs where uncaught exceptions from primitive
functions are uncaught also inside the program. Meanwhile, if the input
program has neither raise nor handle constructs, our transformation yields
the same program.

6.3 More selective CPS transformations

We can tune our CPS transformation further. Currently, we transform every
function (and application, respectively) to receive (to pass, respectively) two
continuations. This blind transformation provides a simple solution to the
“untypeful” flow situation where both normal and exceptional functions
may flow into exceptional applications. Because of this situation, we need
to coerce such normal functions to receive continuations. Since the coerced
functions are also called at normal applications, we also coerce the normal
applications to pass dummy continuations.

By classifying functions and applications more finely, we can reduce the
traffic of such dummy continuations. Two cases occur for functions:

• Pure normal functions: normal functions which are always called in
normal applications.

• Impure normal functions: normal functions which are called in excep-
tional applications.

Dually, two cases also occur for applications:

• Pure normal applications: all functions to call are pure normal func-
tions.

• Impure normal applications: some functions to call are coerced normal
functions.

Only impure normal functions must be coerced to receive continuations and
only impure normal applications must be coerced to send dummy continu-
ations.

25

The above finer classification is possible by adding the following two
annotation rules to Figure 7: let ė denote that ė is an impure normal ex-
pression.

λx.ė ∈ Closure analysis℘(e1) ĕ = e1 e2

λx.ė

λx.ė ∈ Closure analysis℘(e1) ė = ė1 ė2

ė1 ė2

A new transformation function can easily be defined to exploit this finer
annotation.

Depending on the source programs, however, this finer transformation
can offset the benefit of removing raise and handle expressions. In some
cases, it may actually be preferable to keep some of them. Indeed, if a
handler is installed long before a matching raise expression occurs, the CPS-
transformed intermediate expressions have the burden of carrying the two
continuations for a long time. For such cases, we would better leave the
handle and raise expressions intact. To this end, we are currently designing
a static analysis that estimates the interval between a handler installation
and its exception raise.

All such tunings of our selective CPS transformation are to be applied
based on our experiments with realistic application programs (e.g., Isabelle,
HOL, Knuth-bendix, etc.). Currently, our transformation is not compatible
with separate compilation.

7 Conclusion

Processing ML exceptions forms an overhead. In SML/NJ, the overhead
amounts to installing and uninstalling exception handlers in a global re-
source. In this work, we are exploring an alternative implementation based
on a selective source-level CPS transformation. Instead of relying on one
global stack of exception handlers, we pass to each function both its conven-
tional continuation and a handler continuation accounting for exceptions.
Furthermore, we reduce this continuation traffic using the static informa-
tion provided by Yi and Ryu’s exception analysis [YR97]. We have imple-
mented this selective CPS transformation for Standard ML’s core language
and have integrated it as a separate phase in the SML/NJ compiler. (Hence
our transformed programs are CPS-transformed yet again when they are
compiled.) Our selective CPS transformation has been observed to improve

26

the run times of exception-intensive programs by a factor of 2. As for pro-
grams where no exceptions are raised, it leaves them in direct style and their
performance is thus the same as with SML/NJ. The more usual programs
where exceptions are occasionally raised are the most challenging ones, since
carrying continuations de facto forms a new overhead which is sometimes
bigger than SML/NJ’s. We are currently investigating this last issue.

Acknowledgment

In a personal communication to the second author, Andrew Appel suggested
that the results of the exception analysis could be exploited in reducing the
overhead of raise/handle expressions. The present work originates from this
suggestion. Thanks are also due to the anonymous referees for perceptive
comments.

27

v : Return = Ψ̇(v)

v : 〈K,H〉 = K (Ψ̇(v))

v : Return = Ψ̇(v)

v : 〈K,H〉 = H (Ψ̇(v))

ė1 ė2 : Return = (e1 : Return) Ṫ (e2) 〈⊥K ,⊥H〉
ė1 ė2 : 〈K,H〉 = (e1 : Return) Ṫ (e2) 〈K,H〉
ĕ1 ė2 : 〈K,H〉 = e1 : 〈λf. f Ṫ (e2) 〈K,H〉,H〉
ė1 ĕ2 : 〈K,H〉 = (λf. T̆ (e2) 〈λv. f v 〈K,H〉,H〉)(e1 : Return)

ĕ1 ĕ2 : 〈K,H〉 = e1 : 〈λf. T̆ (e2) 〈λv. f v 〈K,H〉,H〉,H〉
v1 ė2 : Return = Ψ̇(v1) (e2 : Return) 〈⊥K ,⊥H〉
v1 ė2 : 〈K,H〉 = Ψ̇(v1) (e2 : Return) 〈K,H〉
v1 ĕ2 : 〈K,H〉 = e2 : 〈λv. Ψ̇(v1) v 〈K,H〉,H〉
v1 ė2 : Return = Ψ̇(v1)

v1 ė2 : 〈K,H〉 = H (Ψ̇(v1))

v1 ĕ2 : 〈K,H〉 = H (Ψ̇(v1))

v1 v2 : Return = Ψ̇(v1)Ψ̇(v2) 〈⊥K ,⊥H〉
v1 v2 : 〈K,H〉 = Ψ̇(v1)Ψ̇(v2) 〈K,H〉
v1 v2 : Return = Ψ̇(v2)

v1 v2 : 〈K,H〉 = H (Ψ̇(v2))
con κ ė : Return = con κ (e : Return)
con κ ĕ : 〈K,H〉 = e : 〈λv. K (κ·v),H〉
con κ v : Return = con κ Ψ̇(v)

con κ v : 〈K,H〉 = K (Ψ̇(κ·v))

con κ v : Return = Ψ̇(v)

con κ v : 〈K,H〉 = H (Ψ̇(v))
decon ė : Return = decon (e : Return)

decon ĕ : 〈K,H〉 = e : 〈λκ·v. K (Ψ̇(v)),H〉
decon κ·v : Return = Ψ̇(v)

decon κ·v : 〈K,H〉 = K (Ψ̇(v))

decon v : Return = Ψ̇(v)

decon v : 〈K,H〉 = H (Ψ̇(v))
raise ė : Return = ⊥H (e : Return)
raise ė : 〈K,H〉 = H (e : Return)
raise ĕ : 〈K,H〉 = e : 〈H,H〉
raise v : Return = ⊥H Ψ̇(v)

raise v : 〈K,H〉 = H (Ψ̇(v))

raise v : Return = Ψ̇(v)

raise v̆ : 〈K,H〉 = H (Ψ̇(v))

raise v̇ : 〈K,H〉 = Ψ̇(v)

Figure 13: Definition of the infix operator ‘:’ (Part 1/2)

28

handle ė1 κ λx. ė2 : Return = e1 : Return

handle ĕ1 κ λx. ė2 : Return = e1 : 〈⊥K , λv. case v κ (⊥K (λx. Ṫ (e2) v)) (⊥H v)〉
handle ĕ1 κ λx. ė2 : 〈K,H〉 = e1 : 〈K,λv. case v κ (K (λx. Ṫ (e2) v)) (H v)〉
handle ĕ1 κ λx. ĕ2 : 〈K,H〉 = e1 : 〈K,λv. case v κ (λx. T̆ (e2) v 〈K,H〉) (H v)〉
handle v1 κ λx. ė2 : Return = Ψ̇(v1)

handle v1 κ λx. ė2 : 〈K,H〉 = K (Ψ̇(v1))

handle κ·v1 κ λx. ė2 : Return = [Ψ̇(v1)/x]e2 : Return

handle κ′ ·v1 κ λx. ė2 : Return = ⊥H(Ψ̇(v1))

handle κ·v1 κ λx. ė2 : 〈K,H〉 = K([Ψ̇(v1)/x]e2 : Return)

handle κ′ ·v1 κ λx. ė2 : 〈K,H〉 = H(Ψ̇(v1))

handle κ·v1 κ λx. ĕ2 : 〈K,H〉 = K([Ψ̇(v1)/x]T̆ (e2) 〈K,H〉)
handle κ′ ·v1 κ λx. ĕ2 : Return = H(Ψ̇(v1))

case ė1 κ ė2 ė3 : Return = case (ė1 : Return) κ Ṫ (ė2) Ṫ (ė3)

case ė1 κ ė2 ĕ3 : 〈K,H〉 = case (ė1 : Return) κ Ṫ (ė2) T̆ (ė3) 〈K,H〉
case ė1 κ ĕ2 ė3 : 〈K,H〉 = case (ė1 : Return) κ T̆ (ė2) 〈K,H〉 Ṫ (ė3)

case ĕ1 κ ė2 ė3 : 〈K,H〉 = ĕ1 : 〈λv. case v κ Ṫ (ė2) Ṫ (ė3),H〉
case ė1 κ ĕ2 ĕ3 : 〈K,H〉 = case (ė1 : Return) κ T̆ (ė2) 〈K,H〉 T̆ (ė3) 〈K,H〉
case ĕ1 κ ė2 ĕ3 : 〈K,H〉 = ĕ1 : 〈λv. case v κ Ṫ (ė2) T̆ (ė3) 〈K,H〉,H〉
case ĕ1 κ ĕ2 ė3 : 〈K,H〉 = ĕ1 : 〈λv. case v κ T̆ (ė2) 〈K,H〉 Ṫ (ė3),H〉
case ĕ1 κ ĕ2 ĕ3 : 〈K,H〉 = eEo : 〈λv. case v κ T̆ (ė2) 〈K,H〉 T̆ (ė3) 〈K,H〉,H〉

case κ·v1 κ ė2 ė3 : Return = ė2 : Return
case κ·v1 κ ė2 ė3 : 〈K,H〉 = ė2 : 〈K,H〉
case κ·v1 κ ĕ2 ė3 : 〈K,H〉 = ė2 : 〈K,H〉
case κ·v1 κ ė2 ĕ3 : 〈K,H〉 = K(ė2 : Return)
case κ·v1 κ ĕ2 ĕ3 : 〈K,H〉 = ė2 : 〈K,H〉
case κ′ ·v1 κ ė2 ė3 : Return = ė3 : Return
case κ′ ·v1 κ ė2 ė3 : 〈K,H〉 = ė3 : 〈K,H〉
case κ′ ·v1 κ ĕ2 ė3 : 〈K,H〉 = K(ė3 : Return)
case κ′ ·v1 κ ė2 ĕ3 : 〈K,H〉 = ĕ3 : 〈K,H〉
case κ′ ·v1 κ ĕ2 ĕ3 : 〈K,H〉 = ĕ3 : 〈K,H〉
case κ′ ·v1 κ ė2 ė3 : Return = κ′ ·v1

case κ′ ·v1 κ e2 e3 : 〈K,H〉 = K(κ′ ·v1)

Figure 14: Definition of the infix operator ‘:’ (Part 2/2)

29

References

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge
University Press, New York, 1992.

[BCL+98] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and
Chris Stone. Safe-for-space threads in Standard ML. Higher-
Order and Symbolic Computation (née Lisp and Symbolic Com-
putation), 11(2), 1998.

[DD95] Olivier Danvy and Dirk Dussart. CPS transformation after
binding-time analysis. Unpublished note, Department of Com-
puter Science, University of Aarhus, April 1995.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control, a
study of the CPS transformation. Mathematical Structures in
Computer Science, 2(4):361–391, December 1992.

[DH93a] Olivier Danvy and John Hatcliff. CPS transformation after strict-
ness analysis. ACM Letters on Programming Languages and Sys-
tems, 1(3):195–212, 1993.

[DH93b] Olivier Danvy and John Hatcliff. On the transformation between
direct and continuation semantics. In Stephen Brookes, Michael
Main, Austin Melton, Michael Mislove, and David Schmidt, edi-
tors, Proceedings of the 9th Conference on Mathematical Founda-
tions of Programming Semantics, number 802 in Lecture Notes
in Computer Science, pages 627–648, New Orleans, Louisiana,
April 1993. Springer-Verlag.

[Dus97] Dirk Dussart. Topics in program specialization and analysis for
statically typed functional languages. PhD thesis, Katholieke Uni-
versiteit Leuven, Leuven, Belgium, May 1997.

[Fel87] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syn-
tactic Theory of Control and State in Imperative Higher-Order
Programming Languages. PhD thesis, Department of Computer
Science, Indiana University, Bloomington, Indiana, August 1987.

[HD97] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus.
Journal of Functional Programming, 7(2):303–319, 1997.

30

[HM97] Nevin Heintze and David McAllester. Linear-time subtransitive
control flow analysis. In Ron K. Cytron, editor, Proceedings of
the ACM SIGPLAN’97 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 32, No 5,
pages 261–272, Las Vegas, Nevada, June 1997. ACM Press.

[JW96] Suresh Jagannathan and Andrew Wright. Flow-directed inlin-
ing. In Proceedings of the ACM SIGPLAN’96 Conference on
Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 31, No 5, pages 192–205. ACM Press, May 1996.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-
calculus. Theoretical Computer Science, 1:125–159, 1975.

[Plo81] Gordon D. Plotkin. A structural approach to operational se-
mantics. Technical Report FN-19, DAIMI, Department of Com-
puter Science, University of Aarhus, Aarhus, Denmark, Septem-
ber 1981.

[Ses89] Peter Sestoft. Replacing function parameters by global variables.
In Joseph E. Stoy, editor, Proceedings of the Fourth International
Conference on Functional Programming and Computer Archi-
tecture, pages 39–53, London, England, September 1989. ACM
Press.

[Shi91] Olin Shivers. Control-Flow Analysis of Higher-Order Languages
or Taming Lambda. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1991.
Technical Report CMU-CS-91-145.

[SW94] Paul Steckler and Mitchell Wand. Selective thunkification. In
Baudouin Le Charlier, editor, Static Analysis, number 864 in
Lecture Notes in Computer Science, pages 162–178, Namur, Bel-
gium, September 1994. Springer-Verlag.

[YR97] Kwangkeun Yi and Sukyoung Ryu. Towards a cost-effective
estimation of uncaught exceptions in SML programs. In Pas-
cal Van Hentenryck, editor, Static Analysis, number 1302 in Lec-
ture Notes in Computer Science, pages 98–113, Paris, France,
September 1997. Springer-Verlag.

31

Recent BRICS Report Series Publications

RS-98-15 Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing
the Overhead of ML Exceptions by Selective CPS Transforma-
tion. September 1998. 31 pp. To appear in the proceedings of
the 1998 ACM SIGPLAN Workshop on ML, Baltimore, Mary-
land, September 26, 1998.

RS-98-14 Sandeep Sen.The Hardness of Speeding-up Knapsack. August
1998. 6 pp.

RS-98-13 Olivier Danvy and Morten Rhiger.Compiling Actions by Partial
Evaluation, Revisited. June 1998. 25 pp.

RS-98-12 Olivier Danvy. Functional Unparsing. May 1998. 7 pp. This
report supersedes the earlier report BRICS RS-98-5. Extended
version of an article to appear in Journal of Functional Pro-
gramming.

RS-98-11 Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Pe-
ter Bro Miltersen. Lower Bounds for Dynamic Algebraic Prob-
lems. May 1998. 30 pp.

RS-98-10 Jakob Pagter and Theis Rauhe.Optimal Time-Space Trade-Offs
for Sorting. May 1998. 12 pp.

RS-98-9 Zhe Yang.Encoding Types in ML-like Languages (Preliminary
Version). April 1998. 32 pp.

RS-98-8 P. S. Thiagarajan and Jesper G. Henriksen.Distributed Ver-
sions of Linear Time Temporal Logic: A Trace Perspective. April
1998. 49 pp. To appear in3rd Advanced Course on Petri Nets,
ACPN ’96 Proceedings, LNCS, 1998.

RS-98-7 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems (Preliminary Version). April 1998. 36 pp.

RS-98-6 Kim Sunesen.Further Results on Partial Order Equivalences
on Infinite Systems. March 1998. 48 pp.

RS-98-5 Olivier Danvy. Formatting Strings in ML. March 1998. 3 pp.
This report is superseded by the later report BRICS RS-98-12.

RS-98-4 Mogens Nielsen and Thomas S. Hune.Deciding Timed Bisimu-
lation through Open Maps. February 1998.

