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Optimal Time-Space Trade-Offs for Sorting
(extended abstract)

Jakob Pagter ∗ Theis Rauhe∗†

BRICS‡

Department of Computer Science
University of Aarhus

Denmark

Abstract

We study the fundamental problem of sorting in a sequential model
of computation and in particular consider the time-space trade-off
(product of time and space) for this problem.

Beame has shown a lower bound of Ω(n2) for this product leaving
a gap of a logarithmic factor up to the previously best known upper
bound of O(n2 log n) due to Frederickson. Since then, no progress has
been made towards tightening this gap.

The main contribution of this paper is a comparison based sorting
algorithm which closes this gap by meeting the lower bound of Beame.
The time-space product O(n2) upper bound holds for the full range
of space bounds between log n and n/ log n. Hence in this range our
algorithm is optimal for comparison based models as well as for the
very powerful general models considered by Beame.

∗Supported by the ESPRIT Long Term Research Programme of the EU under project
number 20244 (ALCOM-IT). E-mail: {pagter,theis}@brics.dk.
†Part of this work was done while the author was visiting the Fields Institute, Toronto,

Canada.
‡Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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1 Introduction

Motivation and results. The complexity of sorting is a classical problem
in computer science which has provided a wide scope of both algorithms and
lower bounds (see Knuth [1] and Andersson [2] for an overview of classical
as well as more recent work in the area). One fruitful line of research has
been the investigation of the trade-off between the two most fundamental
complexity measures; time and space — pioneered by Cobham [3].

Accordingly, time-space trade-offs for sorting is a much studied prob-
lem [4, 5, 6, 7, 8, 9]. Despite the successes of this work, a discrepancy of at
least a logarithmic factor (referred to in [4, 6, 7, 10, 11]) between the best
known upper bound — O(n2 log n) [5], and the best known lower bound —
Ω(n2) [4] — remained. The main contribution of this paper is an algorithm
which closes this gap:

Theorem 1 There exists positive constants c1 and c2 such that for any S in
the interval c1 log n ≤ S ≤ c2n/ logn, there is a comparison based algorithm
sorting n keys in time T and space S, with T · S = O(n2).

Hence by Beame’s result [4] we obtain as a corollary that the time-space
trade-off complexity is Θ(n2) for the full range of space bounds between
logn and n/ log n in general sequential models of computation. Clearly this
range is maximal for comparison based sorting.

Our result involves a new technique for sorting based on Tree Selection
(see [1]). Our algorithm is relatively simple, and involves only small con-
stants, hence it is our opinion that it is of practical as well as theoretical
relevance.

Related work. A general survey of time-space trade-offs is given by
Borodin in [12]. An introduction to the area is given by Savage [13].

Upper bounds. Classical sorting algorithms like QuickSort and MergeSort,
have T ·S = O(n2 log2 n). This stems from the fact that space is measured in
bits, and these algorithm use O(n) log-sized words and O(n logn) compar-
isons. With respect to trade-offs, these algorithms have the weakness that
time cannot be traded for space or vice versa; i.e., the time-space product
only holds for “fixed” functions T and S of n.

Munro and Paterson [14] gave the first time-space focused algorithm,
realising T ·S = O(n2 log n), but still the time-space product is only realisable
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for S = Θ(log n). The first fully scalable, and till now the best upper bound
for the time-space trade-off was given by Frederickson [5], who showed that
for 4 logn ≤ S = O(n) there exists a comparison based RAM algorithm
sorting n keys in time T , and space S, such that T · S = O(n2 log n).

Of course, these upper bounds also hold in models more general than
the comparison based one, but in such stronger models other algorithms are
also possible. An example of a non-comparison based algorithm realising
T · S = O(n2 logn) is radix-sorting (for keys of size O(nk)).

With the strong restriction that all keys to be sorted are between 1 and
n, Beame [4] exhibits a general branching program realising T · S = O(n2).
Besides restricting the key-size, this algorithm has the problem that it is not
clear how to construct a uniform (e.g. RAM) version. On the other hand, it
shows optimality (for restricted keys) of the Ω(n2) lower bound.

Lower bounds. The first non-trivial lower bound for non-oblivious sorting
was given by Borodin et al. [7], who showed that any comparison based
branching program (see Section 2) sorting n keys has T · S = Ω(n2). This
was followed by a result of Borodin and Cook, showing that any general
branching program sorting n keys has T · S = Ω(n2/ logn). Their result was
improved by Beame [4], who showed that any general branching program
sorting n keys in time T , and space S, has T · S = Ω(n2).

Set problems. Beame’s result is actually obtained by a simple reduction from
the unique elements problem (given n keys, output all those that appear
exactly once). For keys between 1 and n Beame gives a matching upper
bound. Our result implies optimality without this restriction on the range
of the keys.

Another set problem is element distinctness (given n keys, output “1”
iff they are all distinct, otherwise output “0”.) Yao [11] has shown that
any comparison based branching program solving the element distinctness
problem on n keys, must have T ·S = Ω(n2−ε(n)), where ε(n) is decreasing in
n.

Patt-Shamir and Peleg [15] studies a number of other set problems, in-
cluding: set complementation (given a set X from some finite subset of an
ordered universe U , output XC), set subtraction (given X and Y , output
X \ Y ), symmetric difference (given X and Y , output (X ∪ Y ) \ (X ∩ Y )).
For these problems they give a lower bound of Ω(n2) on general branching
programs. For sets containing only elements between 1 and n, they show that
these results are optimal. Our result implies optimality without restriction
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on the range of the keys.
Notice that of all the set problems mentioned, only element distinctness

and set disjointness are decision problems, and for these problems trade-off
results have only been shown in the comparison based model.

Outline of paper. Section 2 contains some preliminaries including a def-
inition of the computational model used. In Section 3 we state our formal
result and describe our algorithm. We finish with some concluding remarks
in Section 4.

2 Preliminaries

Computational Models. The model used to show our upper bounds is
the comparison based RAM. For completeness, we also comment briefly on
branching programs.

Comparison based RAM. One model which can be used for showing upper
bounds is a purely combinatorial one like branching programs, described
below, but describing algorithms in such an abstract manner can be both
troublesome and non-constructive; instead more constructive models like the
RAM are normally used for showing upper bounds.

A comparison based RAM is a unit-cost RAM with word-size Θ(log n),
read-only random access to the input, and write-only access to the output
(allowing for a fair space analysis); the registers which are not used for input
nor output, are called workspace. The input can only be accessed through
unit-cost comparisons of two elements xi and xj (this could be regarded as
input represented as an n × n-matrix A, such that A(i, j) = 1 if and only if
xi > xj).

As usual the time used by a comparison based RAM algorithm is the
number of operations executed and the space usage is the maximal number of
bits used, i.e., the number of necessary registers in the algorithms workspace
times the word size.

Branching programs. Most time-space trade-offs lower bounds for sorting and
similar problems are proved for the non-uniform branching program model [4,
6, 7, 8, 9, 10, 11, 15, 16]. Branching programs are mainly used in two variants:
1. Comparison based branching programs (also known as decision branching
programs); this is a comparison based model strong enough to real-time
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simulate (i.e., adding only constant factors on time and space requirements)
comparison based RAMs. 2. General branching programs (also known as
R-way branching programs); this is a general model of computation with the
only restriction that at most one out of the n input values may be accessed per
“time-step”. General branching programs can real-time simulate a unit-cost
RAM with any instruction set. A thorough account of branching programs
is given by Savage [13].

Notation. Throughout the paper, we assume that n and m are integer
powers of two to ease exposition.

Consider a vector x = (x1, . . . , xn) ∈ Un for some universe U . We denote
the set {x1, . . . , xn} by {x}.

An m-division of x is a division of x into m consecutive sub-vectors each
of length n/m; sub-vector bi consists of (xin/m, . . . , x((i+1)n/m)−1). An m-tree
related to an m-division of x, is a complete rooted binary tree with m leaves
(i.e., of height logm+ 1 and with 2m− 1 nodes).

Each leaf, li (0 ≤ i < n/m), is associated with sub-vector bi of the division
of x; the root is called r. For a non-leaf node, v, we denote its left and right
child vL and vR respectively. For each node v define:

x(v) =

{
bi if v = li

x(vL) ◦ x(vR) otherwise

where x ◦ y means x concatenated with y. In words, x(v) is the sub-vector
“dominated” by v.

An m-tree can be represented by an array, where information in nodes is
explicitly represented, whereas the edges are given implicitly (like the classi-
cal implementation of a heap).

Consider a vector x ∈ Un with associated m-tree, and let Ψ be some
subset of {x}. For each node v define:

Ψ(v) = {x(v)} ∩Ψ.

Notice that Ψ(r) = Ψ.

3 Main result

Our main result is derived from a time-space efficient data structure for
the following problem (the model is a comparison based RAM). Given x =
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(x1, . . . , xn) ∈ Un from an ordered universe U we want to construct a data
structure, DΨ, that maintains a set Ψ ⊆ U under the following operations:

Init(x): Ψ← {x}.

Pop: report the index in x of element y = min Ψ and assign Ψ← Ψ \ y.

Lemma 1 For m ≥ logn there exists a comparison based RAM algorithm
which supports the operation Init(x) in time O(n+m logm), the operation
Pop in time O(n/m+ log2m), and whose space usage is O(m) bits.

Our data structure consists of a new technique for Tree Selection [1]
(similar to HeapSort). The basic idea of Tree Selection is to maintain a
binary tree with n leaves (a 1-tree), such that each node, v, contains the
smallest key of x(v) not yet reported; instead one can also represent the
keys by their indices which means that each element can be represented by
O(logn) bits. The time usage of this approach is O(logn) to report an
element, and the space usage is O(n logn). Hence, the time-space product
for sorting using this Tree Selection becomes O(n2 log2 n).

Proof of Lemma 1. The first step of the proof will be the description of a
data structure, DΨ, which almost does the job. The second step will describe
an extension of this data structure, which gives the desired result. Finally a
formal analysis of time and space requirements will be given.

We assume without loss of generality that the elements in x are distinct.
That is, for a pair of elements where xi = xj for some i < j, we consider xi
to be “less than” xj , i.e., our sorting algorithm performs stable sorting.

Step 1: The initial data structure.DΨ consists of anm-tree, TΨ, and an index
λ between 1 and n. With each node v ∈ TΨ we associate a bit state(v) ∈
{L,R} such that the following invariant is satisfied:

state(v) =

{
L if min Ψ(v) ∈ Ψ(vL)

R otherwise.
(1)

Clearly, for any node v, we can find the sub-vector bi containing min Ψ(v) by
simply following the path from v going left or right depending upon whether
state(v) is L or R. We call this path the selection path from v.
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Besides the tree we keep the index λ of most recently reported element
in x. Hence λ satisfies the invariant:

Ψ(v) = { xi ∈ {x(v)} | xi > xλ}. (2)

For any node v, the index λ implicitly allows us to distinguish between
whether a specified element in x(v) has been reported or not.

Suppose the invariants (1) and (2) are satisfied for DΨ. Then the oper-
ation Pop can be implemented as follows. Follow the selection path to the
sub-vector bi, and then perform a brute-force (linear) search in bi in order
to find the smallest xj such that xj > xλ. Report j and assign λ← j. Now
(2) holds, but the state information along the processed selection path may
no longer be correct i.e., we need to reestablish (1). This is done simply
by finding the new minimum of Ψ(v) for each node v along the processed
selection path, using the information from the selection paths of the children
of v.

Consider the space cost of the above approach. For each node we only
need to represent a single bit. Using standard RAM techniques we can repre-
sent the tree in an array using O(m/w) machine words of w bits. In addition
to this array we only need a constant number of registers for local compu-
tation and the representation of λ. Hence the space cost is O(m + logn),
which is the allowed O(m) when m = Ω(log n); unfortunately the time cost is
O((n/m) logm) per Pop operation (for each of the logm nodes on the selec-
tion path we perform a brute-force search taking worst-case time O(n/m)).
Our goal is to improve the data structure, DΨ, in order to get rid of the
multiplicative logm factor for time cost, while keeping space cost O(m).

Step 2: The extended data structure. Intuitively speaking the key idea is to
associate an additional amount of extra information to each node in the tree.
The purpose of this information is to obtain an exponential decrease of the
size of the sub-vectors in which the brute-force search is performed. Summing
the time costs along the selection path, this exponential speed-up along the
path leads to the claimed time bound. The exponential decrease of the search
domains, is obtained by using some additional bits within each node. The
necessary number of such bits in a node will be proportional to the level of
the node, i.e., a constant number of bits for nodes near the leaf level and up
to logm bits for nodes near the root. The final analysis shows that such a
scheme still allows total space cost to be bounded by O(m).

Formally we extend DΨ as follows to obtain the improvement. For each
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node v on level t (the root having level 0) maintain an integer, sb(v), between
0 and m/2t (using logm − t bits). Suppose min Ψ(v) is in sub-vector bi;
consider an m/2t-division of bi into m/2t sub-vectors, denoted bi,j (0 ≤ j <
m/2t) of length (n/m2)2t. Then sb(v) satisfies the following invariant

min Ψ(v) ∈ bi,sb(v). (3)

Indeed given sb(v), a brute-force search for the minimal element in only needs
to be concerned with the “small” sub-vector bi,sb(v).

With this additional information in DΨ, Pop behaves as follows: first it
follows the selection path from the root to the relevant sub-vector bi of x; it
then performs brute-force search in the sub-vector bi,sb(r) (of length n/m2)
and obtain the next minimum to be reported; then λ is updated accordingly
to reestablish (2) and finally invariants (1) and (3) are reestablished level by
level along the way back to the root. To reestablish (1) and (3) for a given
node v, we compute the indices l and r of min Ψ(vL) and min Ψ(vR) using
the information of the sub-trees rooted by vL and vR (both with invariants
established since we are going bottom up). Let p be the index of min(xl, xr)
and set sb(v) ← (p − i(n/m)) div m/2t assuming xp is from sub-vector bi.
Finally we set state(v)← L if xl < xr and state(v)← R otherwise.

Init(x) behaves as follows. First (1) is established by assigning λ = 0
(assume x0 to be some special value such that xi > x0 for 1 ≤ i ≤ n).
Afterwards TΨ is built bottom-up, one level at a time, establishing (2) and
(3).

Time and space complexity. As before we note that using standard RAM
techniques, we may pack the tree into a compact array such that the total
number of bits needed in all nodes of the tree amounts to the space cost of
this array (i.e., for a tree consuming m bits, we only use O(m/w) registers
with several “small” words with respect to different nodes packed into a single
register). With this in mind, all we need is to count the number of bits used.

The total number of bits needed is then the sum of the number of bits used
per node plus the small amount of at most O(log n) additional bits used to
keep λ and temporary work space used for computation along the selection
path (i.e., keeping information such as current level, constant number of
indices in input etc.). The total number of bits used for nodes at level t is
bounded by: ∑

v at level t

(log(m/2t) + 1) = 2t(logm− t+ 1)
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and hence the total number of bits used for maintaining information in all
nodes of our tree is bounded by

logm∑
t=0

2t(logm− t+ 1) =

logm∑
t=0

2t +

logm∑
t=0

2t(logm− t) < 4m.

Hence in total, the space cost is O(m) bits as desired.
In order to bound the time cost we consider the work done at each level

of the selection path. At level t the brute-force computations need to make
comparisons of a total of (n/m2)2t elements in {x} together with at most
O(logm) additional work used to follow the selection path to appropriate
sub-vector. The rest of the computation at the level has constant time cost.
Hence the total time cost is bounded by

O

( logm∑
t=1

((n/m2)2t + logm)

)
= O(n/m+ log2m)

as desired.
With respect to Init(x), we use no more space than the rest of the algo-

rithm, since we only use a constant number of O(log n) sized words besides
the data structure we are building. The time spent building one level, t, is
O(2t(logm+ (n/m2)2t)), yielding a total initialisation time of

O

( logm∑
t=1

2t((n/m2)2t + logm)

)
= O(n+m logm)

as desired. 2

Calling Init(x) followed by n sub-sequent calls to Pop, will report the
elements of x in sorted order. If m = O(n/ log2 n), certainly initialisation
time will be O(n). Thus, if we let m = S we can sort n keys on a comparison
based RAM in time T , and space S, with T · S = O(n2), for c1 logn ≤ S ≤
c2n/ log2 n, for appropriate positive constants c1 and c2.

The range in which we can realise this trade-off is not maximal — a factor
logn is missing. Combining our ideas with those of Frederickson [5] we can
remove this logarithmic factor, and obtain the trade-off in the maximal range:

Theorem 1 There exists positive constants c1 and c2 such that for any S in
the interval c1 log n ≤ S ≤ c2n/ logn, there is a comparison based algorithm
sorting n keys in time T and space S, with T · S = O(n2).
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Proof. The idea is to use Lemma 1 as subroutine in Frederickson’s algo-
rithm [5]. We will employ an extra space measure Sw, for the number of
Θ(logn)-sized words used, because Frederickson only uses words of this size.
This implies S = Θ(Sw logn).

The idea behind Frederickson’s algorithm is to split the input into Sw sub-
vectors, each consisting of n/Sw elements. A heap is maintained based on
the current minima of each sub-vector. This algorithm uses time O(n/Sw) to
report an element and update the heap with the reported element’s successor
(from the relevant sub-vector). The heap uses space O((n/Sw) · log n), since
we have n/Sw pointers to elements in the queue and each take logn bits.

For a suitable size n/Sw of sub-vectors in Frederickson’s algorithm, use
our algorithm as a sub-routine on each of these sub-vectors with m = logn.
This will decrease the asymptotic running time with a factor O(logn). The
asymptotic space usage will be the same, since O(logn) is exactly the amount
of space already used per sub-vector in Frederickson’s algorithm. This will
work for log2 n ≤ n/Sw = O(n), i.e., c1 logn ≤ S ≤ c2n/ logn, for appropri-
ate positive constants c1 and c2. 2

The following corollary is immediate from Theorem 1 and the result of
Beame [4].

Corollary 1 The time-space trade-off for sorting n keys using time T and
space S, in a general sequential model of computation, is T · S = Θ(n2), for
c1 logn ≤ S ≤ c2n/ logn, for appropriate positive constants c1 and c2.

4 Conclusions

In this paper we have proved that the sequential time-space complexity of
sorting is Θ(n2), for time in Ω(n log n). It is worth noting that in the specified
range, this complexity is optimal for comparison based as well as general
models. This means, perhaps surprisingly, that with respect to the time-
space product for sorting, comparison based models are as strong as more
general models.
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