
B
R

IC
S

R
S

-98-3
P

edersen
etal.:

C
om

parison
ofC

oding
D

N
A

BRICS
Basic Research in Computer Science

Comparison of Coding DNA

Christian N. S. Pedersen
Rune B. Lyngsø
Jotun Hein

BRICS Report Series RS-98-3

ISSN 0909-0878 January 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/3/

Comparison of coding DNA

Christian N. S. Pedersen1∗ Rune Lyngsø1∗ Jotun Hein2∗

1 BRICS †, Department of Computer Science, University of Aarhus
2 Institute of Biological Sciences, University of Aarhus

Abstract

We discuss a model for the evolutionary distance between two cod-
ing DNA sequences which specializes to the DNA/protein model pro-
posed in Hein [3]. We discuss the DNA/protein model in details and
present a quadratic time algorithm that computes an optimal align-
ment of two coding DNA sequences in the model under the assump-
tion of affine gap cost. The algorithm solves a conjecture in [3] and
we believe that the constant factor of the running time is sufficiently
small to make the algorithm feasible in practice.

1 Introduction

A straightforward model of the evolutionary distance between two coding
DNA sequences is to ignore the encoded proteins and compute the distance
in some evolutionary model of DNA. We say that such a model is a DNA level
model. The evolutionary distance between two sequences in a DNA level
model can most often be formulated as a classical alignment problem and be
efficiently computed using a dynamic programming approach [7, 9, 10, 11].

It is well known that proteins evolve slower than its coding DNA, so
it is usually more reliable to describe the evolutionary distance based on
a comparison of the encoded proteins rather than on a comparison of the
coding DNA itself. Hence, most often the evolutionary distance between
two coding DNA sequences is modeled in terms of amino acid events, such
as substitution of a single amino acid and insertion-deletion of consecutive
amino acids, necessary to transform the one encoded protein into the other
encoded protein. We say that such a model is a protein level model. The
evolutionary distance between two coding DNA sequences in a protein level
model can most often be formulated as a classical alignment problem of the
two encoded proteins. Even though a protein level model is usually more

∗E-mail: cstorm@brics.dk, rlyngsoe@brics.dk and jotun@pop.bio.aau.dk
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

reliable than a DNA level model, it falls short because it postulates that all
insertions and deletions on the underlying DNA occur at codon boundaries
and because it ignores similarities on the DNA level.

In this paper we present a model of the evolutionary distance between
two coding DNA sequences in which a nucleotide event is penalized by the
change it induces on the DNA as well as on the encoded protein. The model
is a natural combination of a DNA level model and a protein level model.
The DNA/protein model introduced in Hein [3, 5] is a biological reasonable
instance of the general model in which the evolution of coding DNA is ideal-
ized to involve only substitution of a single nucleotide and insertion-deletion
of a multiple of three nucleotides. Hein [3, 5] presents an O(n2m2) time al-
gorithm for computing the evolutionary distance in the DNA/protein model
between two sequences of length n and m. This algorithm assumes certain
properties of the cost function. We discuss these properties and present an
O(nm) time algorithm that solves the same problem under the assumption
of affine gap cost. The practicality of an algorithm not only depends on the
asymptotic running time but also on the constant factor hidden by the use
of O-notation. To determine the distance between two sequences of length
n and m our algorithm computes 400nm table entries. Each computation
involves a few additions, table lookups and comparisons. We believe the
constant factor is sufficiently small to make the algorithm feasible in prac-
tice.

The problem of comparing coding DNA is also discussed by Arvestad [1]
and Hua, Jiang and Wu [6]. The models discussed in these papers are
inspired by the DNA/protein model in Hein [3, 5] but differs in the interpre-
tation of gap cost. A heuristic algorithm for solving the alignment problem
in the DNA/protein model is described In Hein [4]. A related problem of
how to compare a coding DNA sequence with a protein has been discussed
in [8, 12].

The rest of this paper is organized as follows: In section 2 we introduce
and discuss the DNA/protein model. In section 3 we present a simple align-
ment algorithm. In section 4 we present quadratic time alignment algorithm.
In section 5 we discuss improvements and future work.

2 The DNA/protein model

Let a = a1a2a3 . . . a3n−2a3n−1a3n be a coding sequence of DNA of length 3n
with a reading frame starting at a1. We introduce the notation ai1a

i
2a
i
3 to

denote the ith codon a3i−2a3i−1a3i and the notation Ai to describe the amino
acid coded by the ith codon. The amino acid sequence A = A1A2 . . . An
describes the protein coded by a. An evolutionary event e on the DNA that
transforms a to a′ will also change the encoded protein from A to A′. Since
amino acids are coded by several codons, the proteins A and A′ might be

2

identical. The cost of e should reflect the changes on the DNA as well as
the changes on the encoded protein.

cost(a
e→ a′) = costd(a

e→ a′) + costp(A
e→ A′) (1)

We say that costd(a
e→ a′) is the cost of e on the DNA level and that

costp(A
e→ A′) is the cost of e on the protein level. In this paper we assume

that the DNA level cost and the protein level cost are combined by addition
but other combination functions f : R × R → R could of course also be
considered. The cost of a sequence E of evolutionary events e1, e2, . . . , ek
transforming a(0) to a(k) as a(0) e1→ a(1) e2→ a(2) e3→ · · · ek→ a(k) is defined as
some function of the costs of each event. In the rest of this paper we will
assume that this function is the sum of the costs of each event.

cost(a(0) E→ a(k)) =
k∑
i=1

cost(a(i−1) ei→ a(i)) (2)

We define the distance between two coding sequences of DNA a and b ac-
cording to the parsimony principle as the minimum cost of a sequence of
evolutionary events which transforms a to b.

dist(a, b) = min{cost(a E→ b) | E is a sequence of events} (3)

In order to compute dist(a, b) we have to specify the set of allowed evolu-
tionary events and define the cost of each event on the DNA level as well
as on the protein level. The choice of evolutionary events and cost func-
tion influences both the biological relevance of the distance measure and the
computational complexity of computing the distance.

The DNA/protein model introduced in [3] can be described as an in-
stance of the above model where we idealize the evolution of a coding se-
quence of DNA to involve only substitution of a single nucleotide and inser-
tion or deletion of a multiple of three consecutive nucleotides. The reason
why gap lengths are restricted to a multiple of three is because an inser-
tion or deletion of length not divisible by three changes the reading frame.
This is called a frame shift and it may change the entire remaining amino
acid sequence as illustrated in figure 1. Frame shifts are believed to be rare
biological events, so it is not unreasonable to leave them out of the model.

The DNA level cost in the DNA/protein model is defined in the classical
way by specifying a substitution cost and a gap cost. The cost of substituting
a nucleotide σ with σ′ is cd(σ, σ

′) for some metric cd on nucleotides and
the cost of inserting or deleting 3k consecutive nucleotides is gd(3k) for
some convex1 function gd : N → R+. We note that costd(a

e→ a′) in the

1A convex function fulfills that f(i + j) ≤ f(i) + f(j). A convex gap cost function
implies that an insertion-deletion of a consecutive block of nucleotides is best explained
as a single event.

3

Thr

A C G
Val

G T G
Thr

A C G
Gln

C A A
Ile

A T T · · ·

A C G
Thr

G A T
Gly

G A C
Asp

G C A
Ala

A A T
Asn

T · · ·

Figure 1: An insertion or deletion of length not divisible by three changes
the reading frame.

DNA/protein model only depends on e (and not a and a′), so the order of
events is irrelevant on the DNA level. The protein level cost of a nucleotide
event which changes the encoded protein from A to A′ should somehow
reflect the difference between protein A and protein A′. Hence, costp(A

e→
A′) is defined as the minimum cost of a distance alignment of A and A′

where we allow substitution of a single amino acid and insertion-deletion of
consecutive amino acids. The substitution cost is given by a metric cp on
amino acids and the gap cost is given by a convex function gp : N → R+

fulfilling that gp(0) = 0. We use distp(A,A
′) to denote the minimum cost of

such an alignment of A and A′ and note that distp is commutative.
Except for the restriction on the length of an insertion or a deletion the

DNA/protein model allows the traditional set of symbol based nucleotide
events. An alignment of two sequences describes a set of substitution or
insertion-deletion events necessary to transform the one sequence into the
other sequence. The set of events is usually described by a matrix or a path
in a graph as illustrated in figure 2.

[
T T G C T − − − C
T − − − C A T G C

]
T TGC T C

T
C
A
T
G
C

Figure 2: An alignment can be described by a matrix or a path in the
alignment graph. The above alignment describes three matches and two
gaps of combined length six.

The cost of an alignment is the optimal cost of any sequence of the
events described by the alignment. Hence, the evolutionary distance in
the DNA/protein model between two coding DNA sequences is the cost of
an optimal alignment in the model. If the cost of any sequence of events
is independent of the order but only depends on the set of events, then
an optimal alignment can be computed efficiently using dynamic program-
ming [7, 9, 10, 11]. The protein level cost in the DNA/protein model however
depends on the order of events, so we cannot use a classical alignment algo-

4

rithm to compute an optimal alignment in the DNA/protein model. In the
rest of this section we will examine the protein level cost further in order to
be able to formulate restrictions that allow an efficient alignment algorithm
in the DNA/protein model.

A nucleotide event affects nucleotides in one or more consecutive codons.
Since a nucleotide event in the DNA/protein model is assumed not to change
the reading frame, then only the amino acids encoded by the affected codons
are affected by the nucleotide event. A nucleotide event thus changes protein
A = UXV to protein A′ = UX ′V where X and X ′ are the amino acids
affected by nucleotide event. Hein [3] implicitly assumes that distp(A,A

′)
is the cost of an alignment of X and X ′ describing the minimum number
of insertions or deletions. This property is essential to the formulation of
alignment algorithms but it inflicts some restrictions on the substitution cost
cp and the gap cost gp as summarized in lemma 1.

[
A1A2 · · ·Ai−1

A1A2 · · ·Ai−1

Ai
A′i

Ai+1 · · · An
Ai+1 · · · An

]
(a) A substitution in the ith codon.

[
A1A2 · · ·Ai−1Ai
A1A2 · · ·Ai−1Ai

Ai+1 · · ·Ai+k
− · · · −

Ai+k+1 · · ·An
Ai+k+1 · · ·An

]

(b) An insertion-deletion of 3k nucleotides affecting ex-
actly k codons.

[
A1A2 · · ·Ai−1

A1A2 · · ·Ai−1

Ai · · ·Aj−1AjAj+1 · · ·Ai+k
− · · · − υ − · · · −

Ai+k+1 · · ·An
Ai+k+1 · · ·An

]

(c) An insertion-deletion of 3k nucleotides affecting k + 1 codons.
The remaining amino acid υ is matched with one of the amino acids
affected by the deletion.

Figure 3: The protein level cost of a nucleotide event can be determined by
considering only the amino acids affected by the event.

Lemma 1 Assume a nucleotide event changes A = UXV to A′ = UX ′V .
Let n = |A| and k = ||A| − |A′||. If there for any amino acids σ, τ and for
all 0 < l ≤ n − k exists 0 ≤ j ≤ k such that cp(σ, τ) + gp(j) + gp(k − j) ≤
gp(l) + gp(l + k), then distp(A,A

′) is the cost of an alignment describing
exactly k insertions or deletions. Furthermore distp(A,A

′) only depends on
X and X ′.

5

Proof. We will argue that the assumption stated in the lemma implies that
distp(A,A

′) is the cost of one of the alignments illustrated in figure 3. These
alignments all describe the minimum number of insertions or deletions and
only the sub-alignment of X and X ′, as illustrated by the shaded parts, con-
tributes to the cost. We split the argumentation depending on the event.
Since distp(A,A

′) is equal to distp(A
′, A) then the cost of an insertion trans-

forming A to A′ is equal to the cost of a deletion transforming A′ to A. We
thus only consider substitutions and deletions.

A substitution of a nucleotide in the ith codon of A transforms Ai to
A′i. The alignment in figure 3(a) describes no insertion-deletions and has
cost cp(Ai, A

′
i). Any other alignment of A and A′ must describe an equal

number of insertions and deletions, so by convexity of gp the cost is at least
2 · gp(l) for some 0 < l ≤ n. The assumption in the lemma implies that
cp(Ai, A

′
i) ≤ 2 · gp(l) for any 0 < l ≤ n, so the protein level cost of the

substitution is cp(Ai, A
′
i).

A deletion of 3k nucleotides affects k or k + 1 consecutive codons. If
the deletion affects exactly k codons then it transforms A = A1A2 · · ·An
to A′ = A1A2 · · ·AiAi+k+1Ai+k+2 · · ·An. Any alignment of A and A′ must
describe l insertions and l+k deletions for some 0 ≤ l ≤ n−k, so the cost is
at least gp(l) + gp(l+ k). The alignment in figure 3(b) describes k deletions
and has cost gp(k). The assumption in the lemma and the convexity of gp
implies that gp(k) ≤ gp(j) + gp(k− j) ≤ gp(l) + gp(l+ k) for all l > 0, so the
protein level cost of a deletion affecting k codons is gp(k).

If the deletion affects k + 1 codons, say by deleting the 3k nucleotides
ai3a

i+1
1 ai+1

2 ai+1
3 · · · ai+k1 ai+k2 , then it transforms A = A1A2 · · ·An to A′ =

A1A2 · · ·Ai−1υAi+k+1 · · ·An where υ is the amino acid coded by ai1a
i
2a
i+k
3 .

We say that υ is the remaining amino acid and ai1a
i
2a
i+k
3 is the remaining

codon. Any alignment of A and A′ describing exactly k deletions must
align υ with Ai+j for some 0 ≤ j ≤ k, so by convexity of gp the cost is at
least gp(j) + cp(Ai+j , σ) + gp(k− j). The alignment in figure 3(c) illustrates
one of the k+ 1 alignments of A and A′ where υ is aligned with an affected
amino acids and all non-affected amino acids are aligned. Such an alignment
describes exactly k deletions and the cost of the optimal alignment among
them has cost

min
j=0,1,... ,k

{gp(j) + cp(Ai+j , σ) + gp(k − j)}, (4)

and is thus optimal for any alignment describing exactly k deletions. Any
other alignment of A and A′ must describe l insertions and l+k deletions for
some 0 < l ≤ n− k, so the cost is at least gp(l) + gp(l+ k). The assumption
in the lemma implies that the cost given by expression (4) is less than or
equal to gp(l)+gp(l+k), so that the protein level cost of a deletion affecting
k + 1 codons is given expression (4). 2

6

The assumption in lemma 1 is sufficient to ensure that we can compute
the protein level cost of a nucleotide event efficiently, but the formulation of
the lemma it is to general to make the assumption necessary. The following
example however suggests when the assumption is necessary. Consider a
deletion of three nucleotides that transforms the six amino acids ABEFCD
to ABGCD, i.e. X = EF and X ′ = G. If we assume that cp(E,G) ≤ cp(F,G)
then the cost of the alignment in figure 4 (left) is cp(E,G) + gp(1) while the
cost of the alignment in figure 4 (right) is gp(2)+gp(1). If the assumption in
lemma 1 does not hold then gp(2)+gp(1) might be less than cp(E,G)+gp(1)
because cp(E,G) can be arbitrary large. Hence, the protein level cost of
the deletion would not be the cost of an alignment describing the minimum
number of insertion-deletions.[

A B E F C D
A B G − C D

] [
A B E F − C D
A B − − G C D

]
Figure 4: Two alignments of the amino acids ABEFCD and ABGCD.

An often used gap cost is the affine gap cost function gp(k) = αp+βpk for
some αp, βp ≥ 0. With affine gap cost the assumption in lemma 1 becomes
cp(σ, τ) + αp + βpk ≤ 2 · αp + βp(k + 2l) for any amino acids σ, τ and all
lengths 0 < l ≤ n − k. This simplifies to cp(σ, τ) ≤ αp + 2βp for all amino
acids σ, τ . This is a biological reasonable assumption since it reflects that
insertions and deletions are rare compared to substitutions.

3 A simple alignment algorithm

Let a1a2 · · · a3n and b1b2 · · · b3m be two coding sequences of DNA. We want
to compute an optimal alignment of a and b in the DNA/protein model. An
alignment of a and b describes a set of events between a and b but not the
order of the events. The DNA level cost of an alignment is easy to determine
as it is independent of the order, so it is just the sum of the cost of all the
events described by the alignment. The protein level cost however depends
on the order of the events. An obvious way to determine the protein level
cost of an alignment is to minimize over all possible sequences of the events
described by the alignment. This method is, however, not feasible in practice
due to the factorial number of possible sequences one has to consider. If the
substitution cost cp and gap cost gp fulfill lemma 1, then the protein level
cost of a nucleotide event only depends on the affected codons. We can use
this property to decompose the computation of the protein level cost of an
alignment into smaller subproblems.

We decompose the alignment into codon alignments. A codon alignment
is a minimal part of the alignment that corresponds to a path connecting

7

two nodes (3i′, 3j′) and (3i, 3j) in the alignment graph. The alignment in
figure 2 is a codon alignment. We can decompose any alignment uniquely
into codon alignments as illustrated in figure 6. The assumption that an
insertion or deletion has length a multiple of three implies that there are
eleven distinct types of codon alignments as illustrated in figure 5.

Type 1:

�
�

Type 2: Type 3: Type 4:

��

Type 5:

��

Type 6:

��

Type 7:

��

Type 8:

Type 9:

Type 10: Type 11:

Figure 5: The eleven types of codon alignments. The length of an insertion
or deletion is a multiple of three.

We observe that nucleotide events described by two different codon align-
ment in the decomposition of an alignment do not affect the same codons.
Hence, the protein level cost of the alignment is the sum of the protein level
cost of each of the codon alignments in the decomposition. The protein
level cost of a codon alignment can be determined by minimizing over the
possible sequences of the up to five nucleotide events described by the codon
alignment. Hein [3] describes how the decomposition into codon alignments
makes it possible to compute the optimal alignment of a and b in time
O(n2m2). The algorithm can be summarized as follows.

Let D(i, j) denote the cost of an optimal alignment of a1a2 · · · a3i and
b1b2 · · · b3j . If i ≤ 0 or j ≤ 0 then we define D(i, j) to be infinity. An opti-
mal alignment of a1a2 · · · a3i and b1b2 · · · b3j can be decomposed into codon
alignments ca1, ca2, . . . , cak. If the last codon alignment cak is an align-
ment of a3i′+1a3i′+2 · · · a3i and b3j′+1b3j′+2 · · · b3j for some (i′, j′) < (i, j)2,
then D(i, j) is equal to D(i′, j′) + cost(cak). We can thus compute D(i, j)
by minimizing the expression D(i′, j′) + cost(ca) over all (i′, j′) < (i, j)
and the up to four possible codon alignments ca of a3i′+1a3i′+2 · · · a3i and

2We say that (i′, j′) < (i, j) iff i′ ≤ i ∧ j′ ≤ j ∧ (i′ 6= i ∨ j′ 6= j).

8

b3j′+1b3j′+2 · · · b3j . If we assume that D(i′, j′) is known for all (i′, j′) < (i, j),
then Hein [3] argues that we can compute D(i, j) in time O(ij). By dynamic
programming this implies that we can compute D(n,m) in time O(n2m2).

��

�
�

Figure 6: An alignment of two sequences decomposed into codon alignments.

4 An improved algorithm

The improved algorithm is similar to the simple algorithm in the sense that
we compute the cost of an optimal alignment by minimizing over all possible
last codon alignments. We define Dt(i, j) to be the cost of an optimal
alignment of a1a2 · · · a3i and b1b2 · · · b3j under the assumption that the last
codon alignment is of type t. If i ≤ 0 or j ≤ 0 then we define Dt(i, j) to be
infinity. We compute D(i, j) as

D(i, j) = min
t=1,2,... ,11

Dt(i, j). (5)

In the rest of this paper we assume that the amino acid substitution cost
cp and gap cost gp fulfill lemma 1 and that the combined gap cost function
g(k) = gd(3k)+ gp(k) is affine α+βk for some α, β ≥ 0. These assumptions
make it possible to compute Dt(i, j) in constant time if D(k, l) has been
computed (by the above expression) for all (k, l) < (i, j). This implies that
we can compute D(n,m) in time O(nm).

We divide the explanation of how to compute Dt(i, j) in constant time
according to the number of gaps within a codon (internal gaps) described
by a codon alignment of type t. Codon alignments of type 1–3 describe
no internal gaps, codon alignments of type 4–7 describe one internal gap
and codon alignments of type 8–11 describe two internal gaps. In each case
we use the fact that cp and gp fulfill lemma 1 to compute Dt(i, j) as the
cost of the last codon alignment (of type t) plus the cost of the remaining
alignment.

9

Codon alignments with no internal gaps

A codon alignment of type 1 describes three substitutions. We introduce
c∗p : {A,C,G,T}3 × {A,C,G,T}3 → R such that c∗p(σ1σ2σ3, τ1τ2τ3) is the
cost of a codon alignment of type 1 of codon σ1σ2σ3 and codon τ1τ2τ3.
The cost c∗p(σ1σ2σ3, τ1τ2τ3) is the minimum cost3 of a sequence of the three
substitutions σ1 → τ1, σ2 → τ2 and σ3 → τ3. The cost D1(i, j) is the cost of
the last codon alignment of type 1 plus the cost of the remaining alignment.

D1(i, j) = D(i− 1, j − 1) + c∗p(a
i
1a
i
2a
i
3, b

j
1b
j
2b
j
3) (6)

A codon alignment of type 2 or type 3 describes a gap between codons. Since
the combined gap cost function is affine we can use the technique introduced
in [2] saying that a gap ending in (i, j) is either a continuation of an existing
gap ending in (i− 1, j) or (i, j − 1), or a start of a new gap.

D2(i, j) = min{D(i, j − 1) + α+ β,D2(i, j − 1) + β} (7)

D3(3i, 3j) = min{D(i− 1, j) + α+ β,D3(i− 1, j) + β} (8)

Codon alignments with one internal gap

We will describe how to compute D6(i, j). The other three cases where
the last codon alignment describes one internal gap are handled similarly.
The last codon alignment of type 6 describes three substitutions and one
deletion. If the deletion has length k (a deletion of 3k nucleotides), then the
last codon alignment is an alignment of ai

′
1 a

i′
2 a

i′
3 · · · ai1ai2ai3 and bj1b

j
2b
j
3 where

i′ = i− k. This is illustrated in figure 7.

��
�

r

r

ai
′

1a
i′
2a

i′
3 ai1a

i
2a

i
3

bj1

bj2

bj3

(3i,3j)

(3i−3k−3,3j−3)

Figure 7: The last codon alignment of type 6.

The cost D6(i, j) is the cost of the last codon alignment plus the cost of
the remaining alignment. The cost of the remaining alignment is D(i− k−
1, j − 1) and the cost of the last codon alignment is the minimum cost of a
sequence of the four described events. Any sequence of the four events can
be divided into three steps: The substitutions occurring before the deletion,
the deletion and the substitutions occurring after the deletion. Figure 8
illustrates the three steps of the evolution of ai

′
1 a

i′
2 a

i′
3 · · · ai1ai2ai3 to b

j
1b
j
2b
j
3.

The nucleotides x1, x2 and x3 are the result of the up to three substitutions

3We use the term cost to denote the DNA level cost plus the protein level cost.

10

before the deletion. For example, if the substitution ai
′

1 → bj1 occurs before

the deletion, then x1 is bj1, otherwise it is ai
′

1 . We say that x1 ∈ {ai
′

1 , b
j
1},

x2 ∈ {ai
′

2 , b
j
2} and x3 ∈ {ai3, b

j
3} are the status of the three substitutions

before the deletion. The status of the substitutions before the deletion is
used extensively in the computation of the cost of the last codon alignment.

��
�

r

r

ai
′

1a
i′
2a

i′
3 ai1a

i
2a

i
3

bj1

bj2

bj3 subs−→
��
�

r

r

x1x2a
i′
3 ai1a

i
2x3

bj1

bj2

bj3 del−→
�
�
�
�

r

r

x1x2x3

bj1

bj2

bj3 subs−→
�
�
�
�

r

r

bj1 b
j
2 b

j
3

bj1

bj2

bj3

Figure 8: The evolution of ai
′

1 a
i′
2 a

i′
3 · · · ai1ai2ai3 to bj1b

j
2b
j
3 described by the last

codon alignment.

To compute the cost of the three substitutions in the last codon align-
ment we use the status of the substitutions before the deletion to split the
occurrence into two steps. We say that the substitutions ai

′
1 → x1, a

i′
2 → x2

and ai3 → x3 occur before the deletion and that the substitutions x1 → b
j
1,

x2 → bj2 and x3 → bj3 occur after the deletion. Since an identical substitu-
tion has cost zero, then the cost of the three substitutions in the last codon
alignment is equal to the cost of the six substitutions obtained by splitting
the occurrence of the three substitutions into two steps. The substitutions
occurring before the deletion change codon ai

′
1 a

i′
2 a

i′
3 to x1x2a

i′
3 and codon

ai1a
i
2a
i
3 to ai1a

i
2x3. The substitutions occurring after the deletion change

codon x1x2x3 to bj1b
j
2b
j
3. We recall that the cost of changing codon σ1σ2σ3

to codon τ1τ2τ3 by a sequence of the substitutions σ1 → τ1, σ2 → τ2 and
σ3 → τ3 is c∗p(σ1σ2σ3, τ1τ2τ3), so the cost of the three substitutions is

cost(subs) = c∗p(a
i′
1 a

i′
2 a

i′
3 , x1x2a

i′
3) +

c∗p(a
i
1a
i
2a
i
3, a

i
1a
i
2x3) + c∗p(x1x2x3, b

j
1b
j
2b
j
3). (9)

The cost of the deletion of 3k nucleotides in the last codon alignment is the
sum of the DNA level cost gd(3k) and the protein level cost as given by
expression (4). By using the combined gap cost function g(k) = gd(3k) +
gp(k) = α + βk and our knowledge of the status of the three substitutions
before the deletion, i.e. the remaining codon of the deletion, we can formulate
this sum as

cost(del) = min


α+ βk + cp(a

i
1a
i
2x3, x1x2x3)

4

2α+ βk + min0<l<k cp(a
i−l
1 ai−l2 ai−l3 , x1x2x3)

α+ βk + cp(x1x2a
i′
3 , x1x2x3)

. (10)

The cost of the deletion depends on the deletion length, the remaining codon
x1x2x3 and a witness. The witness encodes the amino acid aligned with the

4We use cp(σ1σ2σ3, τ1τ2τ3) as a convenient notation for cp(σ, τ) where σ and τ are the
amino acids coded by the codons σ1σ2σ3 and τ1τ2τ3 respectively.

11

remaining amino acid (see figure 3(c)). The witness can be the end-codon
ai1a

i
2x3, the start-codon x1x2a

i′
3 or one of the internal codons ai−l1 ai−l2 ai−l3

for some 0 < l < k.
We compute D6(i, j) by minimizing the cost of the last codon alignment

plus the cost of the remaining alignment over all possible last codon align-
ments of type 6. This is done by minimizing the sum cost(subs)+cost(del)+
D(i − k − 1, j − 1) over all possible combinations of deletion length k and
remaining codon x1x2x3. A combination of deletion length k and remaining
codon x1x2x3 is possible if x1 ∈ {ai

′
1 , b

j
1}, x2 ∈ {ai

′
2 , b

j
2} and x3 ∈ {ai3, b

j
3}

where i′ = i − k. The terms c∗p(a
i
1a
i
2a
i
3, a

i
1a
i
2x3) and c∗p(x1x2x3, b

j
1b
j
2b
j
3) of

cost(subs) do not depend on the deletion length, so we can split the mini-
mization as

D6(i, j) = min
x1x2x3

{c∗p(ai1ai2ai3, ai1ai2x3) +

c∗p(x1x2x3, b
j
1b
j
2b
j
3) +D6

x1x2x3
(i, j)} (11)

where

D6
x1x2x3

(i, j) = min
0<k<i

{D(i− k − 1, j − 1) +

c∗p(a
i′
1 a

i′
2 a

i′
3 , x1x2a

i′
3) + cost(del)} (12)

is the minimum cost of the terms that depend on both the deletion length
and the remaining codon under the assumption that the remaining codon
is x1x2x3. The cost D6

x1x2x3
(i, j) is defined if there exist a deletion length

k such that k and x1x2x3 is a possible combination of deletion length and
remaining codon. If we expand the term cost(del) we get

D6
x1x2x3

(i, j) = min
0<k<i

{len6
x1x2

(i, j, k) +

min


cp(a

i
1a
i
2x3, x1x2x3)

α+ min0<l<k cp(a
i−l
1 ai−l2 ai−l3 , x1x2x3)

cp(x1x2a
i′
3 , x1x2x3)

} (13)

where

len6
x1x2

(i, j, k) = D(i− k − 1, j − 1) + c∗p(a
i′
1 a

i′
2 a

i′
3 , x1x2a

i′
3) + α+ βk (14)

is the cost of the remaining alignment plus the part of the cost of the last
codon alignment that does not depend on the codon ai1a

i
2a
i
3 and the witness.

The cost len6
x1x2

(i, j, k) is defined if x1 ∈ {ai
′

1 , b
j
1} and x2 ∈ {ai

′
2 , b

j
2} where

i′ = i− k.
Since only x1 and x2 depend on the deletion length (because ai

′
1 and ai

′
2

depend on the deletion length), then there are at most 32 possible remaining
codons x1x2x3. If we can compute D6

x1x2x3
(i, j) in constant time for each of

12

these possible remaining codons, then we can compute D6(i, j) in constant
time. To compute D6

x1x2x3
(i, j) we must determine a combination of witness

and deletion length that minimizes the cost. This combination must be one
of the four cases illustrated in figure 9, so all we have to do is to compute
the minimum cost of these four cases. The cost of case 1–3 is obtained by
simplifying expression (13) for a particular witness and deletion length.

��
�

r

r

x1x2a
i′
3 z1 z2 z3 a

i
1a

i
2x3

bj1

bj2

bj3

witness

U

(a) Case 1

��
�

r

r

x1x2a
i′
3 z1 z2 z3 a

i
1a

i
2x3

bj1

bj2

bj3

witness

�

(b) Case 2

��
�

r

r

x1x2 z3 a
i
1a

i
2x3

bj1

bj2

bj3

witness

�

(c) Case 3

��
�

r

r

x1x2a
i′
3 z1 z2 z3 a

i
1a

i
2x3

bj1

bj2

bj3

not witness

� U

(d) Case 4

Figure 9: The four cases in the computation of D6
x1x2x3

(i, j). We use z1z2z3

as notation for ai−1
1 ai−1

2 ai−1
3 .

Case 1: The end-codon is the witness and the deletion length is at least
one. The cost is: min

0<k<i
len6

x1x2
(i, j, k) + cp(a

i
1a
i
2x3, x1x2x3).

Case 2: The last internal codon is the witness and the deletion length is at
least two. The cost is: min

1<k<i
len6

x1x2
(i, j, k)+α+cp(a

i−1
1 ai−1

2 ai−1
3 , x1x2x3).

Case 3: The start-codon is the witness and the deletion length is one. The
cost is: len6

x1x2
(i, j, 1) + cp(x1x2a

i−1
3 , x1x2x3).

Case 4: The witness is neither the end-codon nor the last internal codon and
the deletion length is at least two. If the witness of D6

x1x2x3
(i− 1, j) is

not the end-codon ai−1
1 ai−1

2 x3, then by optimality of D6
x1x2x3

(i− 1, j)
this witness must also be the witness of case 4. If this is the case then
the cost of case 4 is D6

x1x2x3
(i− 1, j) + β.

13

Case 4 suggests that we can use dynamic programming to keep track of
D6
x1x2x3

(i, j) under the assumption that the end-codon is not the witness,
i.e. use dynamic programming to keep track of the minimum cost of case 2–
4. We introduce tables F 6

x1x2x3
corresponding to the 64 combinations of

x1x2x3. We maintain that if x1x2x3 is a possible remaining codon and the
end-codon ai1a

i
2x3 is not the witness of D6

x1x2x3
(i, j), then F 6

x1x2x3
(i, j) is

equal to D6
x1x2x3

(i, j). If we define F 6
x1x2x3

(0, j) to infinity, then we can
compute table entry (i, j) as

F 6
x1x2x3

(i, j) = min


cost of Case 2
cost of Case 3
F 6
x1x2x3

(i− 1, j) + β

(15)

In order to compute the cost of case 1 and 2 in constant time we main-
tain the minimum of len6

x1x2
(i, j, k) over k by dynamic programming. We

introduce tables L6
x1x2

corresponding to the 16 combinations of x1x2 such
that L6

x1x2
(i, j) is equal to min0<k<i len

6
x1x2

(i, j, k). If we define L6
x1x2

(0, j)
to infinity, then we can compute table entry (i, j) as

L6
x1x2

(i, j) = min

{
len6

x1x2
(i, j, 1)

L6
x1x2

(i− 1, j) + β
(16)

We are now finally in a position where we can formulate how to compute
D6
x1x2x3

(i, j) in constant time. The cost is the minimum cost of case 1–4.
The cost of case 1 is L6

x1x2
(i, j) + cp(a

i
1a
i
2x3, x1x2x3) and the minimum cost

of case 2–4 is F 6
x1x2x3

(i, j), so

D6
x1x2x3

(i, j) = min

{
L6
x1x2

(i, j) + cp(a
i
1a
i
2x3, x1x2x3)

F 6
x1x2x3

(i, j)
(17)

To compute D6(i, j) in constant time by expression (11) we must compute
D6
x1x2x3

(i, j) for each of the 32 possible remaining codons. To do this we must
compute entry (i, j) in the 16 tables L6

x1x2
and entry (i, j) in the 64 tables

F 6
x1x2x3

. The other three cases where the last codon alignment describes one
internal gap (type 4, 5 and 7) are handled similarly. However, if the last
codon alignment is of type 4 or 5, then only the first nucleotide x1 in the
remaining codon depends on the deletion (or insertion) length. This limits
the number of possible remaining codons to 16 and implies that only four
tables are needed to keep track of min0<k<i len

t
x1

(i, j, k) for t = 4, 5. Hence,
to computeDt(i, j) for t = 4, 5, 6, 7, we must compute 2·4+2·16+4·64 = 296
table entries in total.

Codon alignments with two internal gaps

We will describe how to compute D8(i, j). The other three cases where the
last codon alignment describes two internal gaps are handled similarly. The

14

last codon alignment of type 8 describes three substitutions and two dele-
tions. If the first deletion has length k′ and the second deletion has length k,
then the last codon alignment is an alignment of ai

′′
1 a

i′′
2 a

i′′
3 · · · ai

′
1 a

i′
2 a

i′
3 · · · ai1ai2ai3

and bj1b
j
2b
j
3 where i′ = i− k and i′′ = i′ − k′. This is illustrated in figure 10.

r

r

ai
′′

1a
i′′
2a

i′′
3 ai

′
1a

i′
2a

i′
3 ai1a

i
2a

i
3

bj1

bj2

bj3

(3i,3j)

first deletion

�

second deletion

�

Figure 10: The last codon alignment of type 8

We will compute D8(i, j) in the same way as we computed D6(i, j). We
will minimize the cost over all possible combinations of deletion length and
remaining codon of the second deletion. This reduces the problem to com-
puting D8

x1x2x3
(i, j), the cost under the assumption of a certain remaining

codon of the second deletion, for each of the 32 possible remaining codons
of the second deletion. We will compute D8

x1x2x3
(i, j) similar to the method

described by expression (15), (16) and (17). The method can be used with
almost no modifications. All we essentially have to do is to use len8

x1x2
(i, j, 1)

instead of len6
x1x2

(i, j, 1) in expression (16).
The cost len8

x1x2x3
(i, j, k) is the part of the cost D8(i, j) that does not

depend on the codon ai1a
i
2a
i
3 and the witness of the second deletion, un-

der the assumption the second deletion has length k and remaining codon
x1x2x3. The cost depends on the order of the two deletions in the last codon
alignment, so we introduce len8′

x1x2x3
(i, j, k) and len8′′

x1x2x3
(i, j, k) to denote

the cost when the first deletion occurs before the second deletion and vice
versa. We define len8

x1x2x3
(i, j, k) as min{len8′

x1x2x3
(i, j, k), len8′′

x1x2x3
(i, j, k)}.

We only have to compute len8
x1x2x3

(i, j, 1). In the following we will therefore
examine the cost D8(i, j) under the assumption that the second deletion has
length one and remaining codon x1x2x3. We split the examination depend-
ing on the order of the first and second deletion.

Figure 11 illustrates the evolution of the last codon alignment (of type 8)
when the second deletion has length one and occurs after the first deletion.
The nucleotides y1, y2 and y3 are the status of the substitutions before
the first deletion and the nucleotides x1, x2 and x3 are the status of the
substitutions before the second deletion. We can regard the substitution
ai
′′

1 → bj1 as occurring in three steps: ai
′′ → y1, y1 → x1 and x1 → bj1 where

y1 ∈ {ai
′′

1 , x1} and x1 ∈ {ai
′′

1 , b
j
1}. Similarly, we can regard the other two

substitutions as occurring as ai
′

2 → y2 → x2 → bj2 and ai3 → y3 → x3 → bj3.

15

r

r

y1a
i′′
2a

i′′
3 ai

′
1 y2a

i′
3 a

i
1a

i
2 y3

bj1

bj2

bj3 1 . del−→
��
�

r

r

y1 y2a
i′
1 a

i
1a

i
2 y3

bj1

bj2

bj3 subs−→

��
�

r

r

x1x2a
i′
1 a

i
1a

i
2x3

bj1

bj2

bj3 2 . del−→
�
�
�
�

r

r

x1x2x3

bj1

bj2

bj3 subs−→
�
�
�
�

r

r

bj1 b
j
2 b

j
3

bj1

bj1

bj1

Figure 11: The first deletion occurs before the second deletion and the
second deletion has length one.

The cost of the substitutions in the last codon alignment is

cost(subs) = c∗p(a
i′′
1 a

i′′
2 a

i′′
3 , y1a

i′′
2 a

i′′
3) + c∗p(a

i′
1 a

i′
2 a

i′
3 , a

i′
1 y2a

i′
3) +

c∗p(a
i
1a
i
2a
i
3, a

i
1a
i
2y3) + c∗p(y1y2a

i′
1 , x1x2a

i′
1) +

c∗p(a
i
1a
i
2y3, a

i
1a
i
2x3) + c∗p(x1x2x3, b

j
1b
j
2b
j
3). (18)

The deletion length of the first deletion is k′ and the deletion length of the
second deletion is one. Recall that i′ = i − 1 and i′′ = i′ − k′. Similar to
expression (10) we can formulate the cost of the two deletions as

cost(del1) = min


α+ βk′ + cp(a

i′
1 y2a

i′
3 , y1y2a

i′
3)

2α+ βk′ + min0<l<k′ cp(a
i′−l
1 ai

′−l
2 ai

′−l
3 , y1y2a

i′
3)

α+ βk′ + cp(y1a
i′′
2 a

i′′
3 , y1y2a

i′
3)

(19)

cost(del2) = α+ β + min

{
cp(x1x2a

i′
3 , x1x2x3)

cp(a
i
1a
i
2x3, x1x2x3)

(20)

The cost of the remaining alignment is D(i′ − k′ − 1, j − 1), so the mini-
mum cost under the assumption of x1x2x3 as the remaining codon of the
second deletion is given by the sum cost(subs) + cost(del1) + cost(del 2) +
D(i′ − k′ − 1, j − 1) minimized over all possible combinations of y1y2y3 and
k′. The cost len8

x1x2x3
(i, j, 1) is the part of this cost that does not depend

on ai1a
i
2a
i
3 or the witness of the second deletion. This part includes every-

thing except the terms c∗p(a
i
1a
i
2a
i
3, a

i
1a
i
2y3) + c∗p(a

i
1a
i
2y3, a

i
1a
i
2x3) of cost(subs)

and min{cp(x1x2a
i′
3 , x1x2x3), cp(a

i
1a
i
2x3, x1x2x3)} of cost(del2). It is easy to

verify that the minimum of D(i′ − k′ − 1, j − 1) + c∗p(a
i′′
1 a

i′′
2 a

i′′
3 , y1a

i′′
2 a

i′′
3) +

cost(del2) over the length k′ of the first deletion is D4
y1y2ai

′
3

(i′, j), so

len8′
x1x2x3

(i, j, 1) = α+ β + c∗p(x1x2x3, b
j
1b
j
2b
j
3) +

min
y1y2

{c∗p(ai
′

1 a
i′
2 a

i′
3 , a

i′
1 y2a

i′
3) +D4

y1y2ai
′

3

(i′, j) + c∗p(y1y2a
i′
3 , x1x2a

i′
3)} (21)

16

where we minimize over y1 ∈ {ai
′′

1 , x1} and y2 ∈ {ai
′

2 , x2}. The cost
len8′

x1x2x3
(i, j, 1) is defined if x1x2x3 allows the second deletion to have length

one, i.e. if x1 ∈ {ai
′′

1 , b
j
1}, x2 ∈ {ai

′
2 , b

j
2} and x3 ∈ {ai3, b

j
3}. The nucleotide

ai
′′

1 depends on the unknown length of the first deletion, so we must assume
that it can be any of the four nucleotides.

Figure 12 illustrates the evolution of the last codon alignment when
the second deletion has length one and occurs before the first deletion. The
nucleotides z1, x2 and x3 are the status of the substitutions before the second
deletion and the nucleotides y1, y2 and y3 are the status of the substitutions
before the first deletion. The first nucleotide x1 in the remaining codon
of the second deletion is just ai

′
1 . A detailed description of the cost can

be done as above. It would reveal that len8′′
x1x2x3

(i, j, 1) includes everything
except the cost of the substitution ai3 → x3 → y3 and cp(x1x2x3, w1w2w3)
where w1w2w3 is the witness of the second deletion. It would also reveal the
minimum cost of the remaining alignment, the substitution ai

′′
1 → y1 and

the first deletion is given by D4
y1y2y3

(i′, j), so

len8′′
x1x2x3

(i, j, 1) = α+ β + c∗p(a
i′
1 a

i′
2 a

i′
3 , x1x2a

i′
3) +

min
y1y2y3

{c∗p(ai
′

1x2x3, a
i′
1 y2y3) +D4

y1y2y3
(i− 1, j) + c∗p(y1y2y3, b

j
1b
j
2b
j
3)} (22)

where we minimize over y1 ∈ {z1, b
j
1}, y2 ∈ {x2, b

j
2} and y3 ∈ {x3, b

j
3}. The

nucleotide z1 depends on the unknown length of the first deletion, so we must
assume that z1 can be any of the four nucleotides. The cost len8′′

x1x2x3
(i, j, 1)

is defined if x1x2x3 allows the second deletion to have length one, i.e. if
x1 = ai

′
1 , x2 ∈ {ai

′
2 , b

j
2} and x3 ∈ {ai3, b

j
3}.

r

r

z1a
i′′
2a

i′′
3 x1x2a

i′
3 a

i
1a

i
2x3

bj1

bj2

bj3 2 . del−→ ��
�

r

r

z1a
i′′
2a

i′′
3 x1x2x3

bj1

bj2

bj3 subs−→

��
�

r

r

y1a
i′′
2a

i′′
3 x1 y2 y3

bj1

bj2

bj3 1 . del−→
�
�
�
�

r

r

y1 y2 y3

bj1

bj2

bj3 subs−→
�
�
�
�

r

r

bj1 b
j
2 b

j
3

bj1

bj1

bj1

Figure 12: The second deletion occurs before the first deletion and the
second deletion has length one.

We are finally in a position where we can formulate how to use the
method from the previous section to compute D8(i, j). The cost
len8

x1x2x3
(i, j, k) depends on x1, x2 and x3, so instead of 16 tables we need

64 tables to keep track of min0<k<i len
8
x1x2x3

(i, j, k). We still need 64 tables

17

to keep track of the cost under the assumption that the end-codon ai1a
i
2x3

is not the witness (of the second deletion). We compute table entry (i, j) as

L8
x1x2x3

(i, j) = min

{
len8

x1x2x3
(i, j, 1)

L8
x1x2x3

(i− 1, j) + β
(23)

F 8
x1x2x3

(i, j) = min


L8
x1x2x3

(i− 1, j) + β + α+ cp(a
i−1
1 ai−1

2 ai−1
3 , x1x2x3)

len8
x1x2x3

(i, j, 1) + cp(x1x2a
i−1
3 , x1x2x3)

F 8
x1x2x3

(i− 1, j) + β

(24)

We computeD8
x1x2x3

(i, j) by using the above tables, and we computeD8(i, j)
by minimizing over the 32 possible remaining codons of the second deletion.

D8
x1x2x3

(i, j) = min

{
L8
x1x2x3

(i, j) + cp(a
i
1a
i
2x3, x1x2x3)

F 8
x1x2x3

(i, j)
(25)

D8(i, j) = min
x1x2x3

{c∗p(ai1ai2ai3, ai1ai2x3) +D8
x1x2x3

(i, j)} (26)

This computes D8(i, j) in constant time. The computation require us to
compute entry (i, j) in 128 tables. The other three cases where the last codon
alignment describes two internal gaps, type 9–11, are handled similarly, so
to compute Dt(i, j) for t = 8, 9, 10, 11 we compute entry (i, j) in 4·128 = 512
tables. Finally, to compute D(i, j) by expression (5) we compute entry (i, j)
in 1 + 11 + 296 + 512 = 820 tables. The 512 entries are explained in this
section, the 296 entries was explained in the previous section, the 11 entries
correspond to Dt(i, j) for t = 1, 2, . . . , 11 and the last entry corresponds
to D(i, j).

5 Improvements and future work

The only real difference between the computation of D6(i, j) and D8(i, j) is
between len6

x1x2
(i, j, 1) and len8

x1x2x3
(i, j, 1). The similarity stems from the

fact that a codon alignment of type 6 and type 8 ends in the same way.
By “end in the same way” we mean that the events described on the codon
ai1a

i
2a
i
3 are the same (see figure 5). A codon alignment of type 11 also ends in

the same way as a codon alignment of type 6 or 8. The similarity between
the computation of Dt(i, j) for t = 6, 8, 11 makes it possible to replace
the six tables Ltx1x2x3

and F tx1x2x3
for t = 6, 8, 11 by two tables L6,8,11

x1x2x3

and F 6,8,11
x1x2x3 in which entry (i, j) equals the minimum of entry (i, j) in the

tables being replaced. We compute L6,8,11
x1x2x3(i, j) and F 6,8,11

x1x2x3(i, j) similar to
expression (23) and (24), except that we use

len6,8,11
x1x2x3

(i, j, 1) = min
t=6,8,11

lentx1x2x3
(i, j, 1) (27)

18

instead of len8
x1x2x3

(i, j, 1). We use len6
x1x2x3

(i, j, 1) defined as len6
x1x2

(i, j, 1)+

c∗p(x1x2x3, b
j
1b
j
2b
j
3) to ensure that lentx1x2x3

(i, j, 1) for t = 6, 8, 11 describes the
same part of the total cost. The cost D6,8,10(i, j) is the minimum of Dt(i, j)
over t = 6, 8, 10. To compute D6,8,11(i, j) by expressions similar to expres-
sion (25) and (26) we compute entry (i, j) in 1+64+64 = 129 tables. To com-
puteDt(i, j) for t = 6, 8, 10 we compute entry (i, j) in 3+80+128+128 = 339
tables. The combined computations thus saves the computation of 210 table
entries. Codon alignments of type 7, 9 and 10 also end in the same way,
so we can also combine the computation of Dt(i, j) for t = 7, 9, 10. We can
thus reduce the number of table entry updates in the computation of D(i, j)
to 820− 2 · (339 − 129) = 400.

We are working on implementing the alignment algorithm in order to
compare it to the heuristic alignment algorithm described in [4]. The heuris-
tic algorithm allows frame shifts, so an obvious extension of our exact al-
gorithm would be to allow frame shifts, e.g. to allow insertion-deletions of
arbitrary length. This however makes it difficult to split the evaluation of
the alignment cost into small independent subproblems (codon alignments)
of known size. Another interesting extension would be to annotate the DNA
sequence with more information. For example, if the DNA sequence codes
in more than one reading frame (overlapping reading frames) then the DNA
sequence should be annotated with all the amino acid sequences encoded
and the combined cost of a nucleotide event should summarize the cost of
changes induced on all the amino acid sequences encoded by the DNA se-
quence. This extension also makes it difficult to split the evaluation of the
alignment cost into small independent subproblems. To implement these ex-
tensions efficiently it might be fruitful to investigate reasonable restrictions
of the cost functions.

References

[1] Arvestad, L. Aligning coding DNA in the presence of frame-shift
errors. In Combinatorial Pattern Matching (1997), vol. 1264 of LNCS,
pp. 180–190.

[2] Gotoh, O. An improved algorithm for matching biological sequences.
Journal of Molecular Biology 162 (1981), 705–708.

[3] Hein, J. An algorithm combining DNA and protein alignment. Journal
of Theoretical Biology 167 (1994), 169–174.

[4] Hein, J., and Støvlbæk, J. Genomic alignment. Journal of Molec-
ular Evolution 38 (1994), 310–316.

[5] Hein, J., and Støvlbæk, J. An algorithm combining DNA and
protein alignment. Methods in Enzymology 266 (1996), 402–418.

19

[6] Hua, Y., Jiang, T., and Wu, B. Aligning DNA sequences to mini-
mize the change in protein. Manuscript, October 1997.

[7] Needleman, S. B., and Wunsch, C. D. A general method applicable
to the search for similarities in the amino acid seqeunce of two proteins.
Journal of Molecular Biology 48 (1970), 433–443.

[8] Peltola, H., Söderlund, H., and Ukkonen, E. Algorithms for
the search of amino acid patterns in nucleic acid sequences. Nuclear
Acids Research 14, 1 (1986), 99–107.

[9] Sankoff, D. Matching sequences under deletion/insertion constraints.
In Proc. Nat. Acad. of Sci. U.S.A. (1972), vol. 69, pp. 4–6.

[10] Sellers, P. H. On the theory and computation of evolutionary dis-
tance. SIAM Journal of Applied Mathematics 26 (1974), 787–793.

[11] Wagner, R. A., and Fisher, M. J. The string to string correction
problem. Journal of the ACM 21 (1974), 168–173.

[12] Zhang, Z., Pearson, W. R., and Miller, W. Aligning a DNA
sequence with a protein sequence. In Proceedings of the First Annual
International Conference on Computational Molecular Biology (1997),
ACM, pp. 337–343.

20

Recent BRICS Report Series Publications

RS-98-3 Christian N. S. Pedersen, Rune B. Lyngsø, and Jotun Hein.
Comparison of Coding DNA. January 1998. 20 pp.

RS-98-2 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. January 1998.

RS-98-1 Olivier Danvy. A Simple Solution to Type Specialization (Ex-
tended Abstract). January 1998. 7 pp.

RS-97-53 Olivier Danvy. Online Type-Directed Partial Evaluation. De-
cember 1997. 31 pp. Extended version of an article to appear
in Third Fuji International Symposium on Functional and Logic
Programming, FLOPS ’98 Proceedings (Kyoto, Japan, April 2–
4, 1998).

RS-97-52 Paola Quaglia. On the Finitary Characterization of π-
Congruences. December 1997. 59 pp.

RS-97-51 James McKinna and Robert Pollack.Some Lambda Calculus
and Type Theory Formalized. December 1997. 43 pp.

RS-97-50 Ivan B. Damg̊ard and Birgit Pfitzmann. Sequential Iteration of
Interactive Arguments and an Efficient Zero-Knowledge Argu-
ment for NP. December 1997. 19 pp.

RS-97-49 Peter D. Mosses. CASL for ASF+SDF Users. December
1997. 22 pp. Appears inASF+SDF’97, Proceedings of the
2nd International Workshop on the Theory and Practice of
Algebraic Specifications, Electronic Workshops in Comput-
ing, http://www.springer.co.uk/ewic/workshops/ASFSDF97.
Springer-Verlag, 1997.

RS-97-48 Peter D. Mosses.CoFI: The Common Framework Initiative
for Algebraic Specification and Development. December 1997.
24 pp. Appears in Bidoit and Dauchet, editors,Theory and
Practice of Software Development. 7th International Joint Con-
ference CAAP/FASE, TAPSOFT ’97 Proceedings, LNCS 1214,
1997, pages 115–137.

RS-97-47 Anders B. Sandholm and Michael I. Schwartzbach. Dis-
tributed Safety Controllers for Web Services. December 1997.
20 pp. To appear in European Theory and Practice of Soft-
ware. 1st Joint Conference FoSSaCS/FASE/ESOP/CC/TACAS,
ETAPS ’97 Proceedings, LNCS, 1998.

