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Abstract

In this experimental work, we extend type-directed partial eval-
uation (a.k.a. “reduction-free normalization” and “normalization by
evaluation”) to make it online, by enriching it with primitive opera-
tions (δ-rules). Each call to a primitive operator is either unfolded
or residualized, depending on the operands and either with a default
policy or with a user-supplied filter. The user can also specify how
to residualize an operation, by pattern-matching over the operands.
Operators may be pure or have a computational effect.

We report a complete implementation of online type-directed par-
tial evaluation in Scheme, extending our earlier offline implementation.
Our partial evaluator is native in that it runs compiled code instead of
using the usual meta-level technique of symbolic evaluation.

∗Extended version of an article to appear in the proceedings of the Third Fuji Inter-
national Symposium on Functional and Logic Programming (FLOPS’98), Kyoto, Japan,
April 2-4, 1998.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
Home page: http://www.brics.dk
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Phone: (+45) 89 42 33 69. Fax: (+45) 89 42 32 55. E-mail: danvy@brics.dk
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1 Introduction and Motivation

Type-directed partial evaluation [17] is a practical outgrowth of an intrigu-
ing normalization property lying at the interface between the object level
and the meta-level of a simply typed two-level λ-calculus. Namely: Let us
consider a λ-term e which is closed and lives in the meta-level. We can coerce
it into a two-level λ-term by the obvious two-level η-expansion (noted with
a type-indexed downarrow in Figure 1). Then reducing all the meta-level
redices yields an object λ-term which corresponds to the long βη-normal
form of e.

For example, if we let

S = λf.λg.λx.(f @x) @ (g@x)

K = λa.λb.a

then reducing the meta-level redices of ↓α→α (S@K @K) yields λx.x.
This property was first noticed by Berger and Schwichtenberg [5], who

exploited it to normalize programs extracted from proofs. They imple-
mented the two-level λ-calculus directly in Scheme by letting meta-level
terms be Scheme values and object-level terms be S-expressions (i.e., lists).
The corresponding two-level η-expander is displayed in Figure 2. This
Scheme procedure is passed a representation of a type and a (closed) Scheme
value of that type, constructs (first-order) S-expressions using Scheme’s
quasiquote and unquote [11], and returns a S-expression representing the
long βη-normal form of the Scheme value. Later, Coquand machine-checked
Berger and Schwichtenberg’s algorithm [15] and Berger presented an alter-
native version by extracting it from a normalization proof [4]. In his PhD
thesis [25], Goldberg investigates other encodings of a value from one lan-
guage into another, which he calls “Gödelization.”

Both the foundations and the applications of two-level η-expansion are
being explored today. Altenkirch, Hofmann and Streicher, and Čubrić, Dyb-
jer and Scott are conducting a mathematical investigation [1, 2, 16]. Danvy
and his students, and Sheard and his students are conducting a more ex-
perimental investigation [17, 18, 21, 22, 35, 36]. The present work continues
our practical investigation.

Overview: The rest of this article is organized as follows. In Section 2, we
briefly review the state of the art of offline type-directed partial evaluation
in Scheme. In Section 3, we describe a very simple online extension of
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t ::= α | t1 → t2 | t1 × t2
e ::= x | λx.e | e0 @ e1 | pair(e1, e2) | π1(e) | π2(e)

| λx.e | e0 @ e1 | pair(e1, e2) | π1(e) | π2(e)

↓α e = e

↓t1→t2 e = λx1.↓t2 (e@ (↑t1 x1)) where x1 is fresh.

↓t1×t2 e = pair(↓t1 π1(e), ↓t2 π2(e))

where ↑α e = e

↑t1→t2 e = λx1.↑t2 (e@ (↓t1 x1)) where x1 is fresh.

↑t1×t2 e = pair(↑t1 π1(e), ↑t2 π2(e))

Applications are noted with an infix “@”. Meta-level constructs are
overlined, and object-level constructs are underlined.

N.B. ↓ (resp. ↑) is indexed by types occurring positively (resp. nega-

tively) in the source type.

Figure 1: Simply typed two-level η-expansion

type-directed partial evaluation with primitive operators, and we refine it
as non-intrusively as we can to make it practically useful. Section 4 reviews
related work and Section 5 concludes.

Prerequisites: We assume some rudimentary knowledge about partial
evaluation [14, 17, 28] and a reasonable familiarity with (typed) functional
programming in general and Scheme in particular [11]. We use Scheme be-
cause of its syntactic flexibility (little need for parsing and unparsing due to
S-expressions, pretty-printing facilities, syntactic extensions), its semantic
versatility (dynamic typing, overloading), and ultimately (and subjectively)
its elegance.

2 Offline Type-Directed Partial Evaluation

The challenge of implementing type-directed partial evaluation lies in the
fact that it is compiled code that is being run. The usual partial-evaluation
techniques [14, 28] are of very little help here, since they fundamentally rely
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(define tdpe

(lambda (v t)

(letrec ([reify

(lambda (t v)

(cond

[(base-type? t)

v]

[(function-type? t)

(let ([t1 (function-type->domain t)]

[t2 (function-type->range t)])

(let ([x1 (gensym! (type->name-stub t1))])

‘(lambda (,x1)

,(reify t2 (v (reflect t1 x1))))))]

[(product-type? t)

(let ([t1 (product-type->first t)]

[t2 (product-type->second t)])

‘(cons ,(reify t1 (car v))

,(reify t2 (cdr v))))]))]

[reflect

(lambda (t e)

(cond

[(base-type? t)

e]

[(function-type? t)

(let ([t1 (function-type->domain t)]

[t2 (function-type->range t)])

(lambda (v1)

(reflect t2 ‘(,e ,(reify t1 v1)))))]

[(product-type? t)

(let ([t1 (product-type->first t)]

[t2 (product-type->second t)])

(cons (reflect t1 ‘(car ,e))

(reflect t2 ‘(cdr ,e))))]))])

(begin

(reset-gensym!)

(reify t v)))))

Figure 2: Two-level η-expansion in Scheme
(a.k.a. type-directed partial evaluation)
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〈type〉 ::= Bool

| 〈base-type〉
| (〈compound-type〉)

〈compound-type〉 ::= 〈type〉 * 〈type〉
| 〈type〉 + 〈type〉
| 〈single-domain〉 {-> | -!>} 〈single-range〉
| 〈multiple-domain〉 {=> | =!>} 〈single-range〉

〈single-domain〉 ::= 〈type〉

〈multiple-domain〉 ::= (〈type〉∗)

〈single-range〉 ::= 〈type〉

N.B. The arrows ->, -!>, =>, and =!> associate to the right.

Figure 3: Abstract syntax of types

on having access to source code for analysis and transformation. That is
not the case here, since specialization is performed by running the program.
Therefore there is only one partial-evaluation policy, which a fortiori is fixed
prior to program specialization. Type-directed partial evaluation is thus an
extreme form of offline partial evaluation [14, 28].

As documented earlier [17, 18], we have already extended type-directed
partial evaluation to make it reasonably applicable to Scheme. The extension
handles literals, uncurried functions, functions with computational effects,
booleans and sums, multiple results, and a simple record facility. The user
also has a say in the generation of residual names, to make residual programs
readable.

For simplicity, in the rest of this article, we only consider values of base
type, uncurried functions, functions with computational effects, products,
booleans, and sums. Let us illustrate each of these points in turn. First
of all, the syntax of types is displayed in Figure 3. A base type is a type
variable (noted α in Figure 1). A compound type is a product, a sum, or
a function. An uncurried function has a multiple domain.1 Function types
can be annotated with a computational effect (noted “!” in Figure 3).

1The types “((a) => a)” and “(a -> a)” are synonymous.
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Base types and compound types are declared as follows:

(define-base-type <identifier> {<string>})

(define-compound-type <identifier> <type> {<string>})

The string parameter is optional. It serves as a “name stub” for generating
residual names, alleviating the need to rename residual programs by hand to
make them readable. This naming feature is also available in the constraint
logic-programming language Elf [33].

Because type-directed partial evaluation only handles type schemes, base
types do not matter. However, because we are human, their name does to
us. Therefore, in the rest of this section, we will assume that we have already
defined the base types a, b, and c, as in the following interactive Scheme
session:

> (define-base-type a)

> (define-base-type b)

> (define-base-type c)

>

By default, the name stub for residual variables of type a will be "a", etc.

Road map: The rest of this section is organized as follows. We first illus-
trate pure type-directed partial evaluation with examples from the pure λ-
calculus: the combinator example of Section 1 and Church numbers (Section
2.1). We then illustrate applied type-directed partial evaluation with exam-
ples involving uncurried functions, functions with computational effects, and
literals (Section 2.2). Literals beg for a context-sensitive partial-evaluation
policy, which we achieve by making type-directed partial evaluation online
(Section 3).

2.1 Pure type-directed partial evaluation

In this section, we illustrate pure type-directed partial evaluation as specified
in Figure 1 and implemented in Figure 2. Overlined λ-abstractions and
applications are represented as Scheme’s λ-abstractions and applications.
Underlined λ-abstractions and applications are represented as Scheme lists.
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2.1.1 The Hilbert combinators

Let us reproduce the combinator example of Section 1.

> (define S

(lambda (f)

(lambda (g)

(lambda (x)

((f x) (g x))))))

> (define K

(lambda (a)

(lambda (b)

a)))

> (define I ((S K) K))

> (I 42)

42

> (tdpe I ’(a -> a))

(lambda (a0) a0)

>

We define the Hilbert combinators S and K as the Scheme procedures S and
K, and then the identity combinator I as usual. I denotes a Scheme procedure
that we can apply, e.g., to 42. We can also residualize it into the text of its
normal form by type-directed partial evaluation, using the Scheme procedure
tdpe of Figure 2. tdpe is passed a Scheme value and a representation of its
type (as a constant Scheme list), and yields a representation of the normal
form of this value (as a Scheme list).

In summary, and as illustrated here, type-directed partial evaluation
constructs the text of the long βη-normal form of a closed higher-order value
obtained, e.g., by combining other higher-order values. This construction is
achieved by two-level η-expansion, as specified in Figure 1 and as directly
implemented in Figure 2.

2.1.2 Church numbers

We define the Church number c0 (representing zero) and the Church suc-
cessor function cs, and then the Church number representing three. This
number is a Scheme procedure that we can apply, e.g., to the Scheme succes-
sor function and to the Scheme representation of zero, to obtain the Scheme
representation of three. We can also residualize it into the text of its normal
form by type-directed partial evaluation.
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> (define c0

(lambda (s)

(lambda (z)

z)))

> (define cs

(lambda (n)

(lambda (s)

(lambda (z)

(s ((n s) z))))))

> (((cs (cs (cs c0))) 1+) 0)

3

> (tdpe (cs (cs (cs c0))) ’((a -> a) -> a -> a))

(lambda (x0)

(lambda (a1)

(x0 (x0 (x0 a1)))))

>

To improve the readability of this residual code, we can declare the types
of c0 and of cz:

> (define-compound-type z a)

> (define-compound-type s (a -> a))

> (tdpe (cs (cs (cs c0))) ’(s -> z -> a))

(lambda (s0)

(lambda (z1)

(s0 (s0 (s0 z1)))))

>

2.2 Applied type-directed partial evaluation

In this section, we illustrate uncurried functions, functions with computa-
tional effects, and literals.

2.2.1 Uncurried functions

Type-directed partial evaluation handles Scheme’s uncurried functions. For
example, here is the uncurried S combinator:

> (define uS (lambda (f g x) (f x (g x))))

> (tdpe uS ’((((a b) => c) (a -> b) a) => c))

(lambda (x0 x1 a2) (x0 a2 (x1 a2)))

>
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2.2.2 Functions with computational effects

Functions with computational effects, or whose calls we do not want to
duplicate, are treated by inserting a residual let expression [18]:

> (tdpe uS ’((((a b) =!> c) (a -!> b) a) =!> c))

(lambda (x0 x1 a2)

(let ([b3 (x1 a2)])

(x0 a2 b3)))

>

In this example, we have specified that both the first and the second param-
eters of uS have an effect. In the residual code, the application of the first
one does not need to be named since it is a tail-call. The application of the
second one, however, is named.

Let insertion is very useful in practice. For example, it makes it possible
to specialize definitional interpreters expressed in direct style [22]. Usually,
definitional interpreters need to be written in continuation-passing style to
specialize well [13, 14, 28].

2.2.3 Literals

Handling literals requires some initiative from the user, in the sense that
because we are running compiled code, a distinction needs to be made at the
source level between the static occurrences of operations over these literals
and the dynamic ones. For example suppose we want to residualize the
application of the function (call it foo)

(lambda (x) (lambda (y) (lambda (f) (f (+ x 1) (+ y 1)))))

to, e.g., the literal 10. Scheme will raise an error: the right-most occurrence
of + expects two numbers, not the residual identifier denoted by y.

The source program therefore needs to be factorized, in the sense that
all primitive functions over dynamic literals need to be abstracted out, e.g.,
as follows.

> (define abstracted-foo

(lambda (x)

(lambda (y add)

(lambda (f)

(f (add x 1) (add y 1))))))
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> (define-base-type Int "n")

> (define-compound-type Add ((Int Int) => Int) "add")

> (define-compound-type F ((Int Int) => Int) "f")

> (tdpe (abstracted-foo 10) ’((Int Add) => F -> Int))

(lambda (n0 add1)

(lambda (f2)

(f2 (add1 10 1) (add1 n0 1))))

>

But the residual program is unsatisfactory in that the addition of 10 to 1 did
not happen at partial-evaluation time. More discernment is needed in the
factorization: only the dynamic occurrence of addition should be factorized.

> (define discerning-abstracted-foo

(lambda (x)

(lambda (y add)

(lambda (f)

(f (+ x 1) (add y 1))))))

> (tdpe (discerning-abstracted-foo 10)

’((Int Add) => F -> Int))

(lambda (n0 add1)

(lambda (f2)

(f2 11 (add1 n0 1))))

>

The addition of 10 to 1 happened at partial-evaluation time — but at the
cost of much effort. Online type-directed partial evaluation precisely stems
from the desire to get rid of this kind of gymnastics.

3 Online Type-Directed Partial Evaluation

We thus introduce a facility to declare primitive functions — functions that
will be used atomically during type-directed partial evaluation. In the rest
of this section, we refer to them as primitive operators, or again just as
operators.

(define-primitive <identifier> <type> <static-version>)

The policy of an operator is blissfully simple: if all operands are static (i.e.,
none is a piece of residual syntax), the static version is invoked; otherwise, a
residual call [to this operator] is constructed, based on its type. The static
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version is also invoked at run time (where no operand is ever a piece of
residual syntax).

Primitive operators are thus fundamentally overloaded, and overloaded
in a way that cannot be resolved at compile time.

Road map: The rest of this section is organized as follows. We first il-
lustrate pure primitive operators with the example of Section 2.2.3 (Section
3.1). We then describe impure primitive operators, i.e., primitive opera-
tors whose type is annotated with an effect (Section 3.2). Both kinds of
operators are definable over base types. But what about compound types
(products and functions)? They require more flexibility than the default
partial-evaluation policy. We therefore parameterize primitive operators
with user-defined filters (Sections 3.3 and 3.4). We then illustrate filters
with a standard example in partial evaluation: the exponentiation function
(Section 3.5). Turning to the residualization of pure primitive operators,
we also make it user-definable (Section 3.6). To this end, we introduce a
domain-specific language over residual terms (Section 3.7). We illustrate it
(Section 3.8) and, finally, we revisit impure primitive operators and make
their residualization user-definable as well (Section 3.9).

3.1 Pure primitive operators

Getting back to the example of Section 2.2.3, defining addition as a prim-
itive operation relieves us from having to selectively abstract the dynamic
occurrences of free variables in foo. As a side benefit, foo naturally becomes
discerning:

> (define-primitive add ((Int Int) => Int) +)

> (define foo

(lambda (x)

(lambda (y)

(lambda (f)

(f (add x 1) (add y 1))))))

> (tdpe (foo 10) ’(Int -> F -> Int))

(lambda (n0)

(lambda (f1)

(f1 11 (add n0 1))))

>

We have declared add to be a primitive operator. During partial evaluation,
this operator is invoked twice: once on completely static operands (10 and
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1) and once on incompletely static operands (a residual variable and 1). In
the former case, a static addition takes place, yielding 11. In the latter case,
the call to add is residualized.

As this first example illustrates, primitive operations fit in type-directed
partial evaluation smoothly. In particular, by construction, they are context-
sensitive and thus their binding times are polyvariant.

Overall, source programs are still abstracted with all the primitive oper-
ators. Defining primitive operators, however, is considerably less intrusive
than having to lambda-abstract their dynamic instances.

3.2 Impure primitive operators

What about impure, i.e., effectful primitive operators? We declare them as
primitive operators and we annotate their type with an effect. An impure
primitive operator is then given the same treatment as any other effectful
function, i.e., the result of each of its calls is named with a let expression.
Impure primitive operators thus fit in type-directed partial evaluation just
as smoothly as pure ones do.

We can illustrate them by annotating the type of add, and going through
the same steps as above:

> (define-primitive add! ((Int Int) =!> Int) +)

> (define foo!

(lambda (x)

(lambda (y)

(lambda (f)

(f (add! x 1) (add! y 1))))))

> (tdpe (foo! 10) ’(Int -> F -!> Int))

(lambda (n0)

(lambda (f1)

(let* ([n2 (add! 10 1)]

[n3 (add! n0 1)])

(f1 n2 n3))))

>

Both calls to add! have been unconditionally residualized and sequentialized.
This raises a new problem: if impure primitive operators are uncondi-

tionally residualized, how can we ever run a program using impure primitive
operators? The problem hinges on the fact that type-directed partial eval-
uation happens at run time.

12



We solve this problem by adding one global switch in our implementa-
tion. This switch controls the partial-evaluation mode. If it is on, primitive
operators work as described in this section. If it is off, only their static
version is accessible. In effect, the switch only makes a difference for impure
primitive operators.

3.3 Compound types

So far, we only have considered primitive operators from base type(s) to
base type, taking advantage of the fact that at base type, it is trivial to test
the “staticness” of any operand: just check whether it is a piece of residual
syntax. Compound-type values such as higher-order functions, however, are
represented as such — i.e., as higher-order functions. They are not as easily
recognizable as base-type values.

We could grope for a mechanism. Curried operators over base-type do-
mains, for example, are simple to handle: just wait until they are completely
applied, and then test whether all their operands are static. A more general
solution, however, is necessary, and we describe it in the following section.

3.4 Controlling unfolding

We thus introduce a facility to parameterize the partial-evaluation policy of
an operator, filters, which are user-supplied predicates over the operands.
(Filters were inspired by Schism [12], as addressed in Section 4.)

(define-primitive-with-filter <identifier> <type>

<filter>

<static-version>)

A filter guards an operator and determines its partial-evaluation policy: it
is applied to all the operands, as directed by the type, and returns a boolean
value indicating whether to invoke the static version or to residualize the
call. It typically use the predicates static? and dynamic? over base-type
values. If the type of an operator is annotated with an effect, its filter is
ignored; this is consistent with Section 3.2.

3.5 An example: the exponentiation function

Figure 4 displays a complete program for computing the power function,
using the Russian-peasant algorithm. This program makes use of everything

13



(define-base-type Int "n")

(define-compound-type Loop (Int -> Int) "loop")

(define-primitive is-zero? (Int -> Bool) zero?)

(define-primitive is-odd? (Int -> Bool) odd?)

(define-primitive dec (Int -> Int) 1-)

(define-primitive mul ((Int Int) => Int) *)

(define-primitive sqr (Int -> Int) (lambda (x) (* x x)))

(define-primitive div ((Int Int) => Int) /)

(define-primitive-with-filter fix

((Loop -> Loop) -> Loop)

(lambda (f)

(lambda (n)

(static? n)))

(lambda (f) ;;; Curry’s applicative-order fixed-point operator

((lambda (x) (f (lambda (a) ((x x) a))))

(lambda (x) (f (lambda (a) ((x x) a)))))))

(define power

(lambda (x n)

((fix (lambda (loop)

(lambda (n)

(cond

[(is-zero? n)

1]

[(is-odd? n)

(mul x (loop (dec n)))]

[else

(sqr (loop (div n 2)))])))) n)))

Figure 4: The exponentiation function

we have described so far: definitions of base type (Int) and of compound
type (Loop), including the specification of name stubs for residual variables;
definition of primitive operators with the default partial-evaluation policy;
and definition of a primitive operator with a user-supplied filter. The filter
here is very simple: the fixed-point operator should proceed whenever the
exponent is static. The main function is power. In effect it is closed, since
all its free variables are explicitly declared as primitive operators.

14



Running power:

> (power 10 10)

10000000000

>

Applying power to two static arguments yields a static result.

Specializing power with respect to a given exponent:

> (tdpe (lambda (x) (power x 10)) ’(Int -> Int))

(lambda (n0)

(sqr (mul n0 (sqr (sqr (mul n0 1))))))

> ((lambda (n0)

(sqr (mul n0 (sqr (sqr (mul n0 1))))))

10)

10000000000

>

Applying power to a dynamic base and the static exponent 10 yields a resid-
ual program, which is the specialized version of power with respect to the
exponent 10. As usual in partial evaluation, running the specialized pro-
gram on the remaining input (10) yields the same result as running the
source program on the complete input (10 and 10).

Analysis: because the exponent is static, the filter yields true and all the
recursive calls in power are unfolded.

Specializing power with respect to a given base:

> (tdpe (lambda (n) (power 10 n)) ’(Int -> Int))

(lambda (n0)

((fix1 (lambda (loop1)

(lambda (n2)

(cond [(is-zero? n2)

1]

[(is-odd? n2)

(mul 10 (loop1 (dec n2)))]

[else

(sqr (loop1 (div n2 2)))]))))

n0))

>

Applying power to the static base 10 and a dynamic exponent yields a resid-
ual program, which is the specialized version of power with respect to the

15



base 10. Again, running the specialized program on the remaining input (10)
would yield the same result as running the source program on the complete
input (10 and 10).

Analysis: because the exponent is dynamic, the filter yields false and
none of the recursive calls in power are unfolded. The static base 10, however,
is inlined in the residual program.

Specializing power with respect to no argument:

> (tdpe power ’((Int Int) => Int))

(lambda (n0 n1)

((fix1 (lambda (loop2)

(lambda (n3)

(cond

[(is-zero? n3)

1]

[(is-odd? n3)

(mul n0 (loop2 (dec n3)))]

[else

(sqr (loop2 (div n3 2)))]))))

n1))

>

We can also residualize power with respect to ((Int Int) => Int), i.e., with
respect to no static input. The result is its text.

3.6 Controlling residualization

We have made operators increasingly versatile, but one monolithic action
remains: how they are residualized. Again, it makes sense to leave this
policy up to the user. For example, in Figure 4, mul would be better defined
to do something special if one of its operands is dynamic but the other is 0
or 1.

We therefore enrich the declaration of operators with an optional dy-
namic version specifying how to residualize their calls.

(define-primitive <identifier> <type>

<static-version>

{<dynamic-version>})

(define-primitive-with-filter <identifier> <type> <filter>

<static-version>

{<dynamic-version>})
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We want, however, to preserve the user from having to deal directly with our
representation of residual syntax. To this end, we introduce the following
domain-specific language.

3.7 A domain-specific language over residual terms

For over ten years now, the programming language Scheme has been the
theater of an intensive exploration of macros, viewed not as an inherently
risky business, but as a reasonable way to extend the syntax of one’s pro-
gramming language. The line of research initiated in Kohlbecker’s PhD
thesis [29] and continued in Chez Scheme [24] is of particular interest to us.
Syntactic extensions, as they are called, are hygienic macros2 where abstract
syntax is accessed by pattern matching.

In this section, we briefly present a domain-specific language over resid-
ual terms, designed jointly with Morten Rhiger [34]. This language follows
Kohlbecker and Dybvig’s lead, with a special form case-syntax (see Fig-
ure 5) providing access to residual terms by pattern matching. Dynamic
versions of primitive operators are thus defined as a rewriting system, and
therefore can be formalized using standard rewriting techniques.

• Some identifiers are listed first. They denote values that should be
residualized and pattern-matched upon. Implicitly these identifiers
are of base type; otherwise they are specified together with their type.

• The identifiers that should be considered as constants during pattern
matching are listed next.

• Each clause specifies:

– a list of patterns against which are matched the residualized val-
ues; pattern matching either fails or yields an environment bind-
ing the identifiers of the pattern to the corresponding residual
term; the rest of the clause is evaluated in the extended environ-
ment;

– an optional fender, which is a Scheme predicate evaluated in the
extended environment and guarding the template;

– a template specifying how to construct the corresponding residual
term.

2Hygienic in the sense that no names are captured during macro-expansion [30].
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(case-syntax (〈head〉 ...) (〈constant-identifier〉 ...)

〈clause〉
...

[else 〈template〉])

where 〈head〉 ::= 〈identifier〉 | [〈identifier〉 〈type〉]
〈clause〉 ::= [(〈pattern〉 ...) 〈template〉]

| [(〈pattern〉 ...) 〈fender〉 〈template〉]
〈pattern〉 ::= 〈literal〉

| 〈constant-identifier〉
| 〈identifier〉
| (〈pattern〉 ...)

〈template〉 ::= 〈literal〉
| 〈constant-identifier〉
| 〈identifier〉
| (〈template〉 ...)
| (with ([〈identifier〉 〈Scheme-expression〉] ...)

〈template〉)
〈fender〉 ::= 〈Scheme-expression〉

Figure 5: Abstract syntax of case-syntax

• A pattern can be a literal, an identifier that should be considered as a
constant, an identifier that should be part of the resulting environment
if pattern-matching succeeds, or a compound pattern for matching a
residual application.

• Except for with-expressions, a template is constructed like a pattern,
and is instantiated to construct a residual term. During this instantia-
tion, static computations are enabled through with-expressions, which
are essentially like let-expressions in Scheme.

3.8 A few examples

Thus equipped, we can define a binary addition that, when residualized,
probes for 0 (the identity element of addition) and simplifies its result ac-
cordingly:
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> (define-primitive add

((Int Int) => Int)

+

(lambda (x1 x2)

(case-syntax (x1 x2) (add)

[(0 x2)

x2]

[(x1 0)

x1]

[else

(add x1 x2)])))

> (define bar

(lambda (x z)

(lambda (y)

(add (add x z) (add y z)))))

> (tdpe (bar 0 0) ’(Int -> Int))

(lambda (n0)

(add n0 n0))

>

Primitive operators can also synergize:

• For example, Figure 6 displays a ternary operator adding its operands
and deferring to add as we have just defined it if two of its operands
are static.

• For another example, we have defined a multiplication operator mul

probing its operands for other occurrences of mul, reassociating them
and performing static multiplications whenever possible. With this
operator, we were able to specialize the folding of a static function
[multiplying its static argument with something dynamic] over a static
tree of static numbers, and to perform all the multiplications of static
numbers at specialization time.

Finally, primitive operators can upset the binding-time balance and
make dynamic operations return static results. For example, multiplying
a dynamic number by 0 (which is static) yields 0. In this example, the
binding-time balance is upset because even though one of the multiplicands
is dynamic, the result is static.

Probing for 0 and returning 0, and probing for 1 and returning the other
dynamic argument are expressed as follows:
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(define-primitive add3

((Int Int Int) => Int)

+

(lambda (x y z)

(case-syntax (x y z) (add3 add)

[(x y z)

(and (static? x) (static? y) (zero? (+ x y)))

z]

[(x y z)

(and (static? x) (static? y))

(with ([v (+ x y)])

(add v z))]

[(x y z)

(and (static? x) (static? z) (zero? (+ x z)))

y]

[(x y z)

(and (static? x) (static? z))

(with ([v (+ x z)])

(add v y))]

[(x y z)

(and (static? y) (static? z) (zero? (+ y z)))

x]

[(x y z)

(and (static? y) (static? z))

(with ([v (+ y z)])

(add x v))]

[(0 y z) (add y z)]

[(x 0 z) (add x z)]

[(x y 0) (add x y)]

[else (add3 x y z)])))

Figure 6: Ternary addition

> (define-primitive mul ((Int Int) => Int)

*

(lambda (x1 x2)

(case-syntax (x1 x2) (mul)

[(0 x2) 0]

[(x1 0) 0]

[(1 x2) x2]

[(x1 1) x1]

[else (mul x1 x2)])))

20



> (define baz

(lambda (x y)

(lambda (z f)

(add x (mul y (f z))))))

> (tdpe (baz 10 0)

’((Int (Int -> Int)) => Int))

(lambda (n0 x1)

10)

>

In this session, we have made mul aware that 0 is absorbant. This awareness
pays off when residualizing (baz 10 0) since it makes the multiplication
yield 0 even though the second multiplicand is dynamic, which enables the
addition to be performed statically.

But is it correct? The residual application (f z) has just been discarded.
What if it had a computational effect?

Fortunately (and one more time), types save the day: if the function
denoted by f was effectful, it would have been signaled in its type, and a
residual let expression would have been inserted, as illustrated below:

> (tdpe (baz 10 0)

’((Int (Int -!> Int)) =!> Int))

(lambda (n0 x1)

(let ([n2 (x1 n0)])

10))

>

In this session, the application of the effectful function is residualized and at
the same time the multiplication by 0 yields 0, which enables the addition
to be performed statically.

3.9 Impure primitive operators, revisited

We are currently experimenting with another residualization policy for im-
pure primitive operators. The idea is that since the call to an impure prim-
itive operator is residualized using a let expression anyway, we have access
to the residual identifier naming the residual call. We thus pass it to the
dynamic version of the operator, in addition to the operands. The dynamic
version can then probe for simplifications and either return a static value if
a simplification applies or return the residual identifier otherwise.

For example, an impure version of mul can be defined as follows:
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> (define-primitive! mul!

((Int Int) =!> Int)

*

(lambda (x1 x2)

(lambda (r) ;;; <---***---

(case-syntax (x1 x2) ()

[(0 x2)

0]

[(x1 0)

0]

[(1 x2)

x2]

[(x1 1)

x1]

[else

r])))) ;;; <---***---

> (define baz!

(lambda (x y)

(lambda (z f)

(add x (mul! y (f z))))))

> (tdpe (baz! 10 0) ’((Int (Int -!> Int)) =!> Int))

(lambda (n0 x1)

(let* ([n2 (x1 n0)]

[n3 (mul! 0 n2)])

10))

>

In this example, the call to mul! is residualized but it still yields a static
result, which is exploited statically.

4 Related Work

Our work combines a number of ideas, each of which is relatively known by
itself. We list them below.

Probing operands: The idea of making functions probe their actual pa-
rameters to decide whether to reduce their call or to residualize it is partial-
evaluation folklore. Virtually every person who wrote a partial evaluator
toyed with it to some degree. It is mentioned, for example, in Section 4.5
of the first publication on type-directed partial evaluation [17]. The present
work originates in that section.
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Running code with instrumented primitive operators: This idea is
as old as Lisp and is used, e.g., for “tracing” function calls and returns. For
an other example, in Sussman’s Scheme-programming environment today,
all primitive operators are instrumented to attempt algebraic simplifications
over their operands.3

To the best of our knowledge, Berlin was the first to apply this idea
— i.e., redefining primitive operators to perform symbolic computation and
running a source program directly to specialize it — to partial evaluation. To
the best of our knowledge also, this is not explicitly stated in his published
work [6, 7, 8].4

Berlin’s residual programs are essentially first-order, and both his source
and residual programs are untyped. Because of that, the user must anno-
tate function calls and conditional expressions in source programs. Also, the
partial evaluator avoids code duplication by constructing a graph, which is
then unparsed into a Scheme program, using a traditional compiler anal-
ysis for eliminating common subexpressions and constructing residual let
expressions. In comparison, type-directed partial evaluation is higher-order,
typed, and directly inserts let expressions at residualization time.

Guards: The idea is as old as programming. In the area of partial evalua-
tion, Consel was the first to put them to use with filters, to control whether
to unfold or to residualize user-defined function calls in his partial evaluator
Schism [12]. As for primitive operators in Schism, they are pure and use
the standard strategy of only being executed if all their operands are static.
In comparison, type-directed partial evaluation unconditionally unfolds all
functions (inserting let expressions if their type is annotated with a compu-
tational effect) and uses filters only for primitive operators, which may be
impure. Both Schism’s binding-time analysis and specializer are polyvari-
ant. Type-directed partial evaluation does not have a binding-time analysis,
though its binding times are polyvariant. Its specialization strategy, how-
ever, is monovariant.

3Gerald J. Sussman, personal communication at POPL’96.
4Thanks are due to Daniel Weise for the information (personal communication at

FCRC’96), and also for pointing out how strongly Berlin’s work influenced modern online
partial evaluators: indeed, Berlin’s strategy is ideal to generate basic blocks, but control
structures require careful source annotations, which was deemed impractical. According
to Weise, the Fuse project shifted from symbolic execution to symbolic interpretation to
automate the annotation process of online partial evaluation [8, 37].
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Abstract-syntax rewriting (macros): The idea is as old as program-
ming languages. Macros were fraught with name-capture peril until the
advent of hygienic macro-expansion [30]. Our domain-specific language over
residual abstract syntax follows the lead of Chez Scheme’s syntactic ex-
tensions [24], namely, it uses pattern matching, fenders (i.e., guards), and
with-expressions.

Let insertion: Mogensen suggested to insert residual let expressions to
handle partially static values [31]. Bondorf and Danvy put let insertion
at the core of the Similix partial evaluator to handle call unfolding in the
presence of dynamic actual parameters [10].5 Let insertion is a cornerstone
of call-by-value type-directed partial evaluation [18].

Two-level η-expansion: The idea has been used both in the CPS trans-
formation and in partial evaluation [19, 20].

Partial evaluation: With two exceptions, all other partial evaluators op-
erate over the text of their source programs [14, 28]. The first exception
is Berlin’s [6, 7]. As described above, it operates by running the source
program with instrumented primitive operators. The second exception is
“generating extensions,” which means “dedicated specializers as obtained
by self-application” in the partial-evaluation jargon [14, 28]. In contrast to
a general-purpose specializer, a generating extension incurs no interpretive
overhead. In our experience, though, at least with Similix, generating exten-
sions are still less efficient than type-directed partial evaluation in practice
[9, 21, 34].

Type specialization: Hughes has recently presented a radically new way
of looking at and implementing partial evaluation for functional programs
[27]. This new approach departs from traditional partial evaluation in that
the partial evaluator does not proceed by symbolic interpretation. Instead,
it piggy-backs on type inference, as directed by the control and data flows
of the source program, and thus does not follow the same steps as a tra-
ditional partial evaluator. Type specialization differs from type-directed
partial evaluation in that it still operates on the text of source programs,

5“Ensuring that dynamic side-effects do not disappear and are not duplicated, and
keeping them in the same order as in the source program” is one of the oldest mantras of
Similix. Type-directed partial evaluation shares the same mantra.
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albeit in an unspecified order. In contrast, a type-directed partial evaluator
follows the same steps as a traditional partial evaluator performing symbolic
interpretation and in the same order — it just does so without interpretive
overhead.

Other implementations of type-directed partial evaluation: We
distinguish between meta-level and native implementations.

• A meta-level implementation consists of an interpreter enriched with
two-level η-expansion. Altenkirch, Hofmann, and Streicher [1, 2] and
Sheard [35] have written such interpreters, the former for pure call
by name and the latter for applied call by value. Both also handle
polymorphism, and in addition, Sheard’s treats inductive data types
through a fixed-point operator and “lazy reflection.” Lazy reflection
amounts to delaying η-expansion for contravariant types, which is pos-
sible in a meta-level implementation. Otherwise, Sheard’s implemen-
tation is online: it offers pure primitive operators that probe their
operands with the usual fixed policy. (We also considered that ap-
proach in Section 4.5 of our earlier work [17].)

• A native implementation directly processes compiled code. Berger and
Schwichtenberg have such an implementation, in Scheme [4, 5]. Filin-
ski does too, in Standard ML,6 and so do Zhe Yang, also in Standard
ML,7 and Rhiger, in Gofer [34]. In the summer of 1997, Balat and
Danvy have combined a native implementation with run-time code
generation, in Caml [3]. An ML native implementation cannot offer
probing primitive operators since they are fundamentally overloaded.
Our (offline) Scheme implementation also handles polymorphism.

According to published numbers for comparable examples (including induc-
tive data types), native implementations perform between 1000 and 10000
times faster than meta-level implementations.

The author’s earlier implementations have already been used at other
institutions [23, 26]. The present online implementation so far is only used
by the author and his students, e.g., for Action Semantics [21, 32, 34]. We
find it more flexible and about as efficient, despite the extra processing
activity of primitive operators.

6Personal communication, spring 1995.
7Personal communication, spring 1996.
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5 Conclusion and Issues

Because offline type-directed partial evaluation only handles closed terms,
it requires the user to close every source program by lambda-abstracting all
its free variables, which is awkward in practice. We have extended our type-
directed partial evaluator with typed primitive operations (δ-rules), whose
default policy is to proceed if all the operands are static and to residualize
the operation otherwise. The user can specify the partial-evaluation policy
of an operator in two ways: (1) by specifying a filter deciding whether to
perform the operation or to residualize it; and (2) by specifying how to resid-
ualize the operation. This extension makes type-directed partial evaluation
more modular (the user can write or use libraries of primitive operators)
and more flexible (the partial-evaluation behaviour of primitive operators
is context-sensitive, i.e., their binding times are polyvariant). Online type-
directed partial evaluation is also naturally incremental in that while residual
programs can be compiled and run, they can also be compiled and further
specialized should the opportunity arise.

Contribution: Foremost, we report an online extension of a native im-
plementation of type-directed partial evaluation for Scheme. This extension
handles both pure and impure primitive operators, and both their unfold-
ing and residualization strategies can be specified by the user. The former
is achieved with filters and the latter through a domain-specific language
for residual terms, designed jointly with Morten Rhiger [34]. The resulting
implementation meshes smoothly with our earlier implementation of type-
directed partial evaluation. It is available from the author on request.8 In
this article, we also have attempted to provide a comprehensive practical
overview of type-directed partial evaluation.

Limitations: They are three-fold. Practical: the specialization strategy
of type-directed partial evaluation is monovariant [14, 28], and the use of our
type-directed partial evaluator does require some skill, since specialization
can diverge or yield huge residual programs. Fundamental: only the call-by-
name version of type-directed partial evaluation has been formalized. And
conceptual: inductive types are still out of reach in all their generality.

8http://www.brics.dk/~danvy
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