
B
R

IC
S

R
S

-97-52
P.Q

uaglia:O
n

the
F

initary
C

haracterization
ofπ

-C
ongruences

BRICS
Basic Research in Computer Science

On the Finitary Characterization of
π-Congruences

Paola Quaglia

BRICS Report Series RS-97-52

ISSN 0909-0878 December 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/52/

On the finitary characterization of π-congruences

Paola Quaglia∗

BRICS∗∗ , Aarhus University

Abstract

Some alternative characterizations of late full congruences, either strong or
weak, are presented. Those congruences are classically defined by requiring
the corresponding ground bisimilarity under all name substitutions.

We first improve on those infinitary definitions by showing that congru-
ences can be alternatively characterized in the π-calculus by sticking to a finite
number of carefully identified substitutions, and hence, by resorting to only a
finite number of ground bisimilarity checks.

Then we investigate the same issue in both the ground and the non-ground
πξ-calculus, a CCS-like process algebra whose ground version has already been
proved to coincide with ground π-calculus. The πξ-calculus perspective allows
processes to be explicitly interpreted as functions of their free names. As a
result, a couple of alternative characterizations of π-congruences are given,
each of them in terms of the bisimilarity of one single pair of πξ-processes. In
one case, we exploit λ-closures of processes, so inducing the effective generation
of the substitutions necessary to infer non-ground equivalence. In the other
case, a more promising call-by-need discipline for the generation of the wanted
substitutions is used. This last strategy is also adopted to show a coincidence
result with open semantics.

By minor changes, all of the above characterizations for late semantics can
be suited for congruences of the early family.

0 Introduction

The π-calculus [MPW92] is a by now well-known process algebra that allows the
description of mobile systems. The calculus, that has been shown to have great flex-
ibility and expressive power, exploits a name-passing interaction paradigm. Names,
synonyms of channels, can be sent around and received, possibly changing the lo-
cal/global acquaintances of the inputting process. For instance, conveying that xz
and x(y) stay, respectively, for an output and an input action at channel x, the
following behaviour hold of process xz.P | x(y).Q.

xz.P | x(y).Q τ−→ P | Q{z/y}
∗Funded by the EU, under the Marie Curie TMR Programme. Address: BRICS, Dep. of

Computer Science, Aarhus University, Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
email: quaglia@brics.dk.
∗∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

Namely, the given process can perform a τ -action and then behave like P in parallel
with the actual instance of Q where all the free occurrences of y have been replaced
by z.

As the above transition highlights, name substitution has a fundamental role in
the operational semantics of the calculus. This same influence is mirrored at the
extensional level of bisimulation semantics, essentially due to the fact that substi-
tutions can increase process move capabilities. For instance, unless the notion of
name instantiation is moved inside the bisimulation definition itself (like, e.g., in the
open semantics [San96]), bisimulation fails to be a congruence w.r.t. input action.
The canonical example to see this is in terms of the interleaving interpretation of
parallel composition, which equates the two processes (x | y) and (x.y+y.x) (we are
omitting unnecessary syntactic details). Each of the – either strong or τ -forgetting
– late or early bisimulation semantics, hereby generically denoted by �̇, is such that

x | y �̇ x.y + y.x

x(y).(x | y) 6�̇ x(y).(x.y + y.x)

The reason for the above inequivalence is that, whenever the leading input action
x(y) causes y to be instantiated by x, the left-hand process x(y).(x | y) can perform
a τ -move that the right-hand agent is not able to match.

The usual way to extract a full congruence � from the ground relation �̇ passes
through a closure over name substitutions, so that classical definitions read as fol-
lows:

P � Q iff Pσ �̇ Qσ for all substitutions σ

Full congruences, also called non-ground relations, are pragmatically much more
appealing than their ground duals. Though, the universal quantification over sub-
stitutions induces a prohibitive requirement to check in practice.

The main concern of this paper is to present alternative finitary characterizations
of late, either strong or weak, π-calculus full congruences. A coincidence result with
open semantics is also proved. Our investigation is carried on in both the π-calculus
and the πξ-calculus, a generalization of the calculus appeared in [FMQ96].

As for π-calculus, by adequately classifying name substitutions, we show that
P � Q can be expressed in terms of a finite number of bisimilarity checks Pσ �̇ Qσ,
for carefully chosen substitutions σ.

Then we turn to the πξ-calculus, either retaining its ground form or defining
a non-ground version of it. This allows us to provide a couple of alternative char-
acterizations of late π-congruences as CCS-like bisimilarities [Mil89, HM85] of one
suitable single pair of πξ-processes, either ground or non-ground.

The ground πξ-calculus was introduced with the intent of explicitly mirroring
into a CCS-like setting the π-calculus meta-syntactic operation of substitution. The
motivation for this being the possibility to easily export to the π-calculus some well-
know results about the automated verification and the mathematical theory (logical,
axiomatic, and denotational) of CCS equivalences (see, e.g., [CPS93, HM85, ABV94,
Abr91]). The main operational idea underpinning the πξ-calculus is to avoid to
directly apply name substitutions to π-processes. An explicit component ξ is deemed
to serve the same purpose. It acts as some kind of environment and represents
associations among names. So, the generic πξ-process looks like ξ :: P , where P is
an agent obtained by the usual π-calculus syntax added with abstraction prefixes
‘λy.’. These last prefixes, in turn, are used to associate a concrete operational

2

counterpart to the name substitution occurring in the definition of the input clause
of π-calculus bisimulations, whose strong late version reads like the following:

if P
x(y)−→ P ′ with y fresh, then there is Q′ such that

Q
x(y)−→ Q′ and for all w, P ′{w/y} is late bisimilar to Q′{w/y}

Remarkably, the operational interpretation of λ-abstraction prefixes ensures that in-
put parameters can always be actualized by a finite number of names. So, except for
the unguarded behaviour of the replication operator, πξ-processes can be modelled
by finitely branching structures, which is generally not the case for data-dependent
agents.

As we recalled, the main concern of the research leading to the πξ-calculus
has been to figure out an operational setting which could support a standard CCS
bisimulation semantics, both strong and observational. Precisely, the πξ-calculus
operational semantics is defined as a two level transition system. The low level

system leaves environments unaffected. It defines the relation P
α,C−→ P ′ where C

makes explicit the requirements on names which are to be met in order for the
symbolic step to be converted into a concrete move. The top level transition system
is then defined by rules of the following shape

P
α,C−→ P ′

ξ :: P
δ(ξ′,α,C)
−−. ξ′ :: P ′

ξ′ ∈ η(ξ, α, C) (M)

where the function η takes care of extending the environment ξ with the name

associations activated by the symbolic transition P
α,C−→ P ′, while the function δ

yields a concrete observable action. So, the extensional semantics of the calculus is
given as standard strong and weak bisimulations and observational congruence.

In [FMQ95] and [FMQ96] it was shown that suitable distinct definitions of (M)
and of the pair (η, δ) lead to the operational and axiomatic characterization of both
late and early, either strong or weak, ground π-calculus semantics. The challenging
issue of characterizing the corresponding full congruences was left open.

Here we fill that gap. We stress the correspondence between π-calculus name
substitutions and πξ-calculus environments, and prove the claim that reasoning
about non-ground semantics imposes to regard any π-calculus process as an actual
function of its free names.

First, relying on the ground πξ-calculus, we show that suitable λ-closures of
P and Q induce, in an effective way, the generation of those environments cor-
responding to the finite set of substitutions sufficient to infer P � Q from the
ground bisimilarities of Pσ and Qσ. By this, we prove a coincide result with late
strong and weak congruences, and corresponding axiomatic characterizations for
finite processes.

Next, we argue that for strong semantics a similar result can be more efficiently
achieved by adequately sophisticating the notion of environment and slightly mod-
ifying the top level transition system (M). This leads to the definition of the non-
ground version of the πξ-calculus. Such a calculus allows us to encode in a natural
way a call-by-need strategy for the generation of the substitutions required to de-
cide late full congruence. Finally, an analogous call-by-need instantiation discipline
is used to provide an alternative characterization of open semantics.

By minor changes, all of the characterizations stated for late equivalence rela-
tions do hold for non-ground semantics of the early family [Qua96]. Also, by virtue

3

of the peculiar πξ-calculus interpretation of input actions, those characterizations
allow finite π-processes to be modelled by finite transition systems. So, our results
could be particularly useful in the perspective of verifying mobile systems.

The rest of the paper is organized as follows. Section 1 and Section 2 contain
the necessary background about π-calculus and ground πξ-calculus, respectively.
In Section 3 we prove that each non-ground late semantics can be expressed as the
conjunction of a finite number of corresponding ground bisimilarities. Building on
this property, in Section 4 we characterize late π-congruences in terms of standard
strong and weak bisimilarities of one single suitable pair of ground πξ-processes.
In Section 5 non-ground πξ-calculus is introduced. Then, from a more promising
perspective, yet another characterization of late strong non-groundness is stated,
together with a coincidence result for open semantics. Eventually, Section 6 contains
some concluding remarks. Also, Appendix A reports (minor modifications and
extensions of) the encodings and constructions which appeared in [FMQ96] and are
recalled to prove, in Appendix B, the characterization of open congruence.

1 The π-calculus

An overview of the π-calculus follows. LetN be a denumerably infinite set of names,
ranged over by x, y, z, The syntax of π-calculus processes (ranged over by P ,
Q, . . .) is defined by the following grammar:

P ::= nil | x(y).P | xy.P | τ.P | P + P | P | P | [x = y]P | (y)P | !P

Most of the operators resemble the corresponding CCS constructors [Mil80, Mil89].
The main exceptions are as follows. The matching operator [x = y]P is meant to
test names for equality. The restriction operator (y)P declares y to be a new name
for local use in P . The replication (or bang) operator ‘!’ is used to express infinite
behaviours.

Prefixes x(y), xy, and τ are called, respectively, bound input, free output, and
silent (or internal, or unobservable) action. The adjective bound recalls that brackets
act as formal binder, namely all of the free occurrences of y in P are bound by x(y)
in x(y).P . Indeed, the restriction operator (y) in (y)P is another kind of formal
binder. Prefix xy is given the appellative of free as opposed to the bound output
action x(y). This last action is not available at the syntactic level, and denotes
the ability to communicate at x the private name y. Either in x(y) or in xy or in
x(y), the name x is said to be the subject , while y is called the object. Also, for the
bound input x(y), the name y is sometimes referred to either as parameter or as
placeholder .

If a name is not bound, it is called free. The set of names occurring free in the
action α is written fn(α). Dually, the set of bound names is written bn(α). The set
of names of the action α, written n(α), is defined to be the union of free and bound
names. The unobservable action τ is such that n(τ) = ∅. Free and bound names of
process P , denoted fn(P) and bn(P) respectively, are defined in the obvious way.
Also, n(P) = fn(P) ∪ bn(P), and fn(P,Q) is sometimes used as a shorthand for
fn(P) ∪ fn(Q).

The π-calculus operational semantics is defined inductively, in the style of [Plo81],
by the rules shown in Tab. 1 together with additional symmetric rules for binary
operators. Some of the rules, and in general most of the π-calculus theory, make use
of the meta-syntactic operation of name substitution. Name substitutions (ranged

4

τ.P
τ−→ P x(y).P

x(w)−→ P{w/y} w /∈ fn((y)P)

xy.P
xy−→ P

P
α−→ P ′

[x = x]P
α−→ P ′

P
α−→ P ′

P +Q
α−→ P ′

P
α−→ P ′

P | Q α−→ P ′ | Q
bn(α) ∩ fn(Q) = ∅

P
xy−→ P ′ Q

x(z)−→ Q′

P | Q τ−→ P ′ | Q′{y/z}

P
x(w)−→ P ′ Q

x(w)−→ Q′

P | Q τ−→ (w)(P ′ | Q′)

P
α−→ P ′

(y)P
α−→ (y)P ′

y /∈ n(α)
P

xy−→ P ′

(y)P
x(w)−→ P ′{w/y}

y 6= x, w /∈ fn((y)P ′)

P |!P α−→ P ′

!P
α−→ P ′

Table 1: the π-calculus operational semantics

over by σ, σ′, . . .) are functions from N to N defined almost everywhere as the
identity. Sometimes, when the substitution σ differs from the identity for the names
in {x1, . . . , xn}, σ is simply written {x1σ/x1, . . . , xnσ/xn}. The sets {x1, . . . , xn}
and {x1σ, . . . , xnσ} are then referred to as domain and codomain of σ, written
Dm(σ) and Im(σ), respectively. The term Pσ denotes the process obtained from
P by simultaneously substituting, for each x, any free occurrence of x in P by xσ,
with change of bound names to avoid name clashes. We will use the symbol ≡α to
denote the relation of α-convertibility. Syntactic identity of P and Q will be written
P ≡ Q.

Process operational behaviours are quotiented by strong or weak equivalence
relations defined as bisimulation games. Distinct semantics have been defined, re-
flecting different strategies for the actual instantiation of names. For instance,
depending on the assumed relative atomicity of the act of committing on the input
channel and the act of instantiating the input placeholder, π-calculus bisimulation
semantics naturally split into early and late families [MPW92].

Late semantics give input actions a functional operational intuition. When in-
putting, a process becomes a function of the actual transmitted name. So, the
input clauses of late bisimulation games claim that the derivatives of the inputting
processes continue to simulate each other for all the possible instantiations of the
formal parameter. In the following, as usual, we let =⇒ be the reflexive and tran-

sitive closure of
τ−→, the labelled relation

α
=⇒ be =⇒ α−→=⇒, and

α̂
=⇒ be =⇒ if

α = τ ,
α

=⇒ otherwise.

Definition 1 Let S be a binary symmetric relation over π-calculus processes. Then

5

- S is a strong late ground bisimulation if P S Q implies that

- if P
α−→ P ′ with α 6= x(y) and bn(α) /∈ fn(P,Q), then for some Q′,

Q
α−→ Q′ and P ′ S Q′

- if P
x(y)−→ P ′ with y /∈ fn(P,Q), then for some Q′, Q

x(y)−→ Q′ and, for all
w, P ′{w/y} S Q′{w/y}

- S is a weak late ground bisimulation if P S Q implies that

- if P
α−→ P ′ with α 6= x(y) and bn(α) /∈ fn(P,Q), then for some Q′,

Q
α̂

=⇒ Q′ and P ′ S Q′

- if P
x(y)−→ P ′ with y /∈ fn(P,Q), then for some Q′, Q =⇒x(y)−→ Q′ and, for

all w, P ′{w/y} S Q′{w/y}

P is strong late ground bisimilar to Q, written P ∼̇L Q, if P S Q for some strong
late ground bisimulation S.

P is weak late ground bisimilar to Q, written P ≈̇L Q, if P S Q for some weak late
ground bisimulation S.

P is weak late ground equal to Q, written P '̇L Q, iff P ≈̇L Q and whenever
P

τ−→ P ′ then for some Q′, Q
τ

=⇒ Q′ with P ′ ≈̇L Q′, and symmetrically. �

A couple of observations about the previous definition are worth noticing. First, the
input clause of weak late ground bisimilarity breaks down the double arrow of the
usual CCS definition of weak bisimilarity. Nevertheless, the claim of instantiating
y just after the input move is not surprising if we think again of the late functional
intuition about input steps. Interpreting the derivative processes P ′ and Q′ as
functions of y, requires the bisimilarity of P ′{w/y} and Q′{w/y} for all w, without
giving Q′ the opportunity of silently slip to a distinct function. Second, weak late
ground bisimilarity is not preserved by non-deterministic context. Analogously
to the CCS case, to guarantee substitutivity in those contexts, weak late ground
equality requires each initial silent action to be matched by at least one unobservable
move.

All the above late behavioural relations are equivalences, but neither of them is
preserved by substitution of names, and then by input prefix. For instance, process
P ≡ [x = y]xx. nil, having no outgoing transition, is either bisimilar or equal,
in each of the above senses, to the inactive process nil. This is no longer true
after substituting x for y in P , and hence when checking, e.g., the corresponding
equivalence of x(y).P and x(y). nil.

Indeed, as it is common in the π-calculus literature, the adjective ground , to-
gether with the use of a dotted relational symbol, stays just to recall that the
actual equivalences are not preserved by substitution of names. Such a propri-
ety is achieved by requiring bisimilarity over all name substitutions, so getting the
following relations, sometimes called non-ground bisimilarities.

Definition 2 Let P and Q be π-calculus processes. Then P and Q are

- strong late bisimilar, written P ∼L Q, if Pσ ∼̇L Qσ for all substitutions σ

- weak late bisimilar, written P 'L Q, if Pσ '̇L Qσ for all substitutions σ

6

Also, we write P ≈L Q, if Pσ ≈̇L Qσ for all substitutions σ. �

As far as the definition of ≈L is concerned, notice that, although preserved by
name substitutions, this equivalence, just as its ground version, is not preserved by
non-deterministic context.

In the following, unless otherwise stated, we will always refer to bisimilarities of
the late family, so the adjective ‘late’ will be freely omitted. Further omissions will
be those of unnecessary syntactic details, like, e.g., trailing . nil’s.

2 The ground πξ-calculus

This section provides an overview of the ground πξ-calculus, a generalization of
the calculus appeared in [FMQ96]. Also, some coincidence results with ground π-
calculus semantics are collected. In Appendix A, we report the main constructions
and encodings needed to prove those results, and we comment on which extent
the actual proofs differ from those presented in [FMQ96]. For complete details the
reader is referred to [Qua96].

In the πξ-calculus, processes (ranged over by S, S1, . . .) are written ξ :: P . The
right component of the state operator ‘ :: ’ is (essentially) a π-calculus process,
while ξ keeps track of the associations among names carried out in the past of the
ongoing computation. Name substitutions are never applied to the right component
of ξ :: P . Hence ξ can be viewed as an environment giving the actual associations of
names. The syntax of the right component of the process ξ :: P is formally defined
as follows.

P ::= nil | x(y).P | λy.P | xy.P | τ.P | P + P | P | P | [x = y]P | (y)P | !P

Also, we assume that there is no homonymy either among bound names or among
free and bound names of P . This assumption, that amounts to reason up to α-
conversion, could be easily fulfilled by using an indexing mechanism a là De Bruijn.
But for this requirement on names, prefixes λy, which act as formal binders, are the
only novelty w.r.t. either the π-calculus syntax or the process algebra presented in
[FMQ96]. For the sake of convenience, in spite of new prefixes, we will often refer
to the right component of any πξ-calculus process as to π-calculus process. The
operational role of λ-prefixes is to call for an actual instantiation of the formal pa-
rameter y. In the calculus appeared in [FMQ96], an analogous observable result was
obtained by means of more complex environments ξ. The introduction of λ-prefixes
allows to simplify the semantic model in [FMQ96] and most of the constructions
and intermediate results needed to prove characterization theorems.

The operational semantics of the πξ-calculus follows the SOS style and is based
on a two-stage approach. The first stage consists of the definition of a symbolic
semantics where transition labels record requirements on names. The evaluation of
those requirements is then the main concern of the top level transition system.

The symbolic operational semantics is given by the axioms and rules reported
in Tab. 2 together with symmetric rules for choice and asynchronous parallel com-
position. At this first operational level, requirements on names are not checked and
name instantiation is not applied to processes, but rather recorded by transition
labels (ranged over by ω, ω′, . . .). Labels are pairs of the form 〈α,C〉: the first
component is essentially an action in the same sense of the π-calculus; the second
component, called obligation, is a logical formula that codes requirements on names.

7

τ.P
〈τ,true〉−→ P xy.P

〈xy,x↓〉−→ P

x(y).P
〈x(y),x↓〉−→ P λy.P

〈[y],true〉−→ P

P
ω−→ P ′

[x = y]P
µxy(ω)
−→ P ′

P
ω−→ P ′

P +Q
ω−→ P ′

P
ω−→ P ′

P | Q ω−→ P ′ | Q

P
ω−→ P ′ Q

ω′−→ Q′

P | Q ω‖ω′−→ P ′ | Q′

P
ω−→ P ′

(y)P
oyω−→ P ′

P
ω−→ P ′

(y)P
νyω−→ (y)P ′

(P)dec 0 |!(P)dec 1 ω−→ P ′

!P
ω−→ P ′

. .

µxy〈α,C〉 = 〈α, C ∧ x = y〉

〈α1, C
′
1〉 ‖ 〈α2, C

′
2〉 =


〈τ [y/w], C1 ∧ C2 ∧ x = z〉 if α1 ∈ {xy, x(y)}, C′1 = C1 ∧ x↓

and α2 = z(w), C′2 = C2 ∧ z ↓
or symmetrically

〈τ, false〉 otherwise

νy〈α,C〉 =
{
〈α,C ∧ y 6= z〉 if α = xz

〈α,C〉 otherwise

oy〈α,C〉 =

{
〈x(z), C ∧ y = z〉 if α = xz

〈α, false〉 otherwise

Table 2: symbolic operational semantics

The execution of the new prefixes λy results in the actions [y] which, although re-
sembling the concretions of [Mil92], have no counterpart in the monadic π-calculus.
Also, differently from the π-calculus, communication is characterized by a single
inference rule. More precisely, we avoided to use the so-called Close rule which
describes the communication of a private name and causes a restriction to appear

8

(P)dec a = case P in

nil : nil

τ.P1 : τ.(P1)
dec a

xy.P1 : xy.(P1)
dec a

x(y(s)).P1 : x(y(s·a)).(P1{y(s·a)/y(s)})dec a

λy(s).P1 : λy(s·a).(P1{y(s·a)/y(s)})dec a

[x = y]P1 : [x = y](P1)
dec a

P1 + P2 : (P1)
dec a + (P2)

dec a

P1 | P2 : (P1)
dec a | (P2)

dec a

(y(s))P1 : (y(s·a))(P1{y(s·a)/y(s)})dec a

!P1 : !(P1)
dec a

end case

Table 3: definition of ()dec a

on top of synchronizing processes. In the πξ-calculus the information about privacy
of names is completely captured by environments. Before plunging processes into
environments, we only impose a consistency requirement: no process must be al-
lowed to commit on a link which is not known outside. To this end, the input and
the output transition labels include the obligation x ↓. It actually demands for a
delayed check against the privacy of channel x.

The non homonymy condition we assume on names has to dynamically hold
for every expansion of the replicated process !P . So, decorated versions of P are
used in the premise of the rule for the bang operator. This is meant to assure
that any parallel copy of the agent P borns uniquely its bound names. The idea
is to label bound names by superscripts and to expand, e.g., process !x(y).y into
x(y(0)).y(0) |!x(y(1)).y(1). To this purpose, we use y(s) to indicate that the name y is
superscripted by the finite string s of zeros and ones. Then y(s1) 6= y(s2) whenever
s1 6= s2, while y is a short-hand for y superscripted by the empty string1. We
feel free to omit the indication of superscripts when it is clear from the context the
identity of names. Function ()dec a is defined in Tab. 3, where s·a denotes the
concatenation of the string s with a ∈ {0, 1}.

We now comment on environments, left components of πξ-processes. An envi-
ronment is a set of equations on two distinct entities: names and constants. Con-
stants are taken from a denumerably infinite setD that is ranged over by c, c1, c2, . . . ,
and disjoint from the set N of names. As we are dealing with π-calculus processes
where there is no homonymy either among bound names or among free and bound
names, we suppose that free and bound names of π-processes are taken from two dis-
joint, infinite, subsets of N , called NI and NRT , respectively. Similarly, we assume
that the set of constants D is partitioned into two disjoint sets DI and DRT .

1We would like to thank Franck van Breugel for pointing out the misbehaviour of a previous
decoration operator.

9

Definition 3 A ground environment ξ is an equivalence relation over N ∪D which
is:

- consistent : ci ξ cj implies ci = cj

- finitely active: the set {(a, b) | a ξ b and a 6= b} is finite

Given an environment ξ, we denote by [a]ξ the equivalence class of ξ containing a.
Such a class is said to be undefined if D∩ [a]ξ = ∅, defined-by-constant – or shortly
defined – otherwise.
A constant c is active in ξ iff there exists y such that y ∈ [c]ξ, it is inactive
otherwise.
The family of all ground environments is denoted by E , and the identity ground
environment is denoted by IdE .
Let R1, R2 be relations over N ∪ D. Then R1 + R2 is defined as the smallest
equivalence relation including (R1 ∪R2). �

We will often refer to ground environments simply as to environments. Also, in view
of the above mentioned consistency requirement, we will let ξ sometimes assume
the reading of a partial function. Whenever (y ξ c), we will denote the constant c as
ξ(y) and will say that the partial function ξ() is defined on y, denoted by ξ(y)↓.
If ξ() is not defined on y, then we will write ξ(y)↑.

The coming definition identifies the environments where π-calculus processes are
let start running.

Definition 4 Letting N ⊆ NI , the initial ground environment ξN is defined as

ξN = IdE +{(x, ı(x)) | x ∈ N}

where ı : NI → DI is a bijective mapping, and DI ∩ DRT = ∅ and DI ∪ DRT = D
and NI ∩NRT = ∅ and NI ∪NRT = N . �

During the execution of a πξ-calculus process, the generation of fresh constants is
needed. To this end, we assume the existence of the following suitable functions.
Function allD : E −→ 2Df returns the finite set of all the constants which are active
in its argument. Function newD : E −→ DRT yields a constant which is inactive
in its argument. Here we assume that newD only depends on the active run-time
constants in the argument, so that whenever allD(ξ1) ∩ DRT = allD(ξ2) ∩ DRT the
equality newD(ξ1) = newD(ξ2) does hold.

The late operational semantics of πξ-calculus processes is described by the infer-
ence rules of Tab. 4. Both rules allow to infer the behaviour of ξ :: P from a symbolic
transition of P and the definition of the result and of the update function, δ and η
respectively. The function δ yields the observable result out of the transition. The
possibly many-valued function η takes care of extending the environment ξ with the
name associations activated by the transition. In defining η, the satisfiability of the
obligation C is checked by means of a specialized evaluation function. Whenever
the requirements expressed by C are not met in the environment ξ, the application
η returns the empty set, so that the πξ-calculus process at hand is unable to move.

The rule associated with symbolic inputs shows the first-class role of instanti-
ation in the πξ-calculus. Correspondingly to the execution of the symbolic action
x(y), the process ξ :: P evolves to the process ξ′ :: λy.P ′ whose right component
is an explicit function of the placeholder y. The next – compulsory – move of the

10

P
ω−→ P ′ ω 6= 〈x(y), C〉

ξ :: P
δ(ξ′,ω)
−−. ξ′ :: P ′

ξ′ ∈ η(ξ, ω)

P
〈x(y),C〉−→ P ′

ξ :: P
δ(ξ′,〈x(y),C〉)
−−. ξ′ :: λy.P ′

ξ′ ∈ η(ξ, 〈x(y), C〉)

Table 4: definition of −−.

process ξ′ :: λy.P ′ is the instantiation of the input parameter. Notice, in fact, that
the operational description guarantees instantiations to have priority over any other
action even when the inputting agent is, e.g., underneath a parallel composition.

The definition of the update and of the result function (η,δ) is reported in
Tab. 5. In the definition of η, elements are coerced to be singleton sets. The first
step in computing the update function η consists in checking the satisfiability of the
obligation. If the obligation evaluates to false in the environment, then η results in
the empty set. Otherwise, depending on the structure of the action α, the update
function yields a set of environments obtained by possibly adding a pair to ξ. Any
information about the privacy of names is consistently captured by environments at
the top level. So, outputting the – syntactically – free name y may be the same as
outputting a private name. Precisely, if ξ(y)↑ then η(ξ, xy, C) is exactly the same
as η(ξ, x(y), C). It results into an environment where the name y is associated with
a new constant.

One comment is in place for placeholder instantiations. Correspondingly to
those actions, the function η yields as many environments as the possible choices of
c in allD(ξ), plus a new constant. This corresponds to instantiate y with (possibly
a superset of) all the free names of the process at hand, plus a new fresh one.
The intuitive reason for this relies on the following. Given any π-calculus process
P ′, the agents P ′{z/y} and P ′{u/y} have analogous move potentials whenever
z, u /∈ fn(P ′). Precisely, either P ′{z/y} or P ′{u/y} have the same action capabilities
as P ′ has. As a consequence of the above observation, if P performs the input x(y)
transforming into P ′, then the relevant instantiations of y in P ′{w/y} are given by
those names w such that w ∈ fn(P ′) ⊆ fn(P) ∪ {y}. Our definition of η(ξ, [y], C)
is just meant to mimic those instantiations. The function allD(ξ) plays the role
of fn(P) while newD(ξ) stays for the set {y}. Notice, however, that at any time
during execution only finitely many constants are active. This implies that finite πξ-
processes can be always represented by labelled trees which are finitely branching.

Consider now the result function δ. It yields either τ or the constant(s) associ-
ated with the relevant name(s). The parameter of the action x(y) is not relevant.
When inputting, the process becomes a function of y and then depends on the ac-
tual instantiation of the placeholder. The parameter will become observable at the
next step.

What is crucial here is that the result function δ computes concrete – vs. sym-

11

[[C]]ξ = case C in

true : tt

false : ff

x↓ : ξ(x)↓ −→ tt , ff

x = y : x ξ y −→ tt , ff

x 6= y : x ξ y −→ ff , tt

C1 ∧ C2 : [[C1]]ξ and [[C2]]ξ

end case

ηξαC = ¬[[C]]ξ −→ ∅, case α in

τ : ξ

τ [x/y] : ξ + (y, x)

x(y), xy : ξ(y)↓ −→ ξ, ξ + (y, newD(ξ))

x(y) : ξ

[y] :
⋃
c∈(allD(ξ) ∪ newD(ξ)) ξ + (y, c)

end case

δξαC = case α in

τ, τ [x/y] : τ

x(y), xy : ξ(x)ξ(y)

x(y) : ξ(x)

[y] : [ξ(y)]

end case

Table 5: definition of (η, δ)

bolic – labels (ranged over by ρ, ρ1, . . .) which do not include obligations anymore.
As a consequence, the operational behaviour of πξ-calculus processes can be quo-
tiented by the usual CCS bisimulation equivalences [Par81, Mil83, HM85]. We recall
those semantics, assuming, as usual, ==. to be the reflexive and transitive closure

of
τ−−., and

ρ
==. to be ==.

ρ−−.==., and
ρ̂

==. to be ==. if ρ = τ ,
ρ

==. otherwise.

Definition 5 Let S be a binary symmetric relation over πξ-calculus processes.
Then

- S is a strong bisimulation if S1 S S2 implies that

if S1
ρ−−. S′1 then for some S′2, S2

ρ−−. S′2 and S′1 S S′2
- S is a weak bisimulation if S1 S S2 implies that

12

if S1
ρ−−. S′1 then for some S′2, S2

ρ̂
==. S′2 and S′1 S S′2

S1 is strong bisimilar to S2, written S1 ∼ S2, if S1 S S2 for some strong bisimulation
S.

S1 is weak bisimilar to S2, written S1 ≈ S2, if S1 S S2 for some weak bisimulation
S.

S1 is weak congruent (or observational congruent) to S2, written S1 ≈c S2, iff

S1 ≈ S2 and whenever S1
τ−−. S′1 then for some S′2, S2

τ
==. S′2 and S′1 ≈ S′2, and

symmetrically. �

The finite fragment of the symbolic operational semantics of Tab. 2 (that is, all the
rules but the one for the bang operator) fits in a simple generalization of the De
Simone format [DS85] where labels of transitions are elements of an algebra with
several operations rather than elements of a monoid of actions.

As a result of this, we can state a head-normalizing axiom system for the
finite terms of the transition system in Tab. 2 by simply exploiting the proce-
dure presented in [ABV94]. The first step of that procedure consists in breaking
down, by means of auxiliary operators, each (so-called smooth and not distinc-
tive) process constructor f whose operational behaviour is described by more than
one inference rule. This equation expresses the behaviour of the constructor f
as a sum of auxiliary operators, one for each inference rule characterizing f (e.g.,
(y)P = (νy)P + (oy)P). The procedure goes on imposing distributive, action and
inaction equations on smooth and distinctive operators. Distributive laws describe
the interplay between the non-deterministic choice operator and the other operators
(e.g., (νy)(P + Q) = (νy)P + (νy)Q). Action laws describe the interactions of all
the operators with prefixing. Here, we need to extend action laws to the case of
the generalized prefixing ω.P . Action laws cause auxiliary operators to be pushed
as deep as possible inside terms (e.g., (νy)(ω.P) = νy(ω).(y)P). Finally, the so
called inaction equations identify as the inactive process any expression having no
outgoing transition (e.g., (νy) nil = nil). The axiom system Aa in Tab. 6 is the
actual result of the application of the above procedure. The system has the main
propriety of being head-normalizing, namely Aa allows any term P to be rewritten
as a sum of prefixes.

Once its π-component has been reduced in head normal form, any finite πξ-agent
can be transformed into a finite labelled tree by means of the laws of the system
AL of Tab. 6. Those axioms allow πξ-calculus processes to be rewritten into terms
given by the following grammar

S ::= ξ :: P | ρ;S | S ⊕ S
ρ ::= τ | c | [c] | c1c2 | c1c2

where P makes use of generalized action prefixes ω as explained above, and ‘;’ is
a prefixing operator, and ‘⊕’ is a non-deterministic choice constructor. We assume
that the empty summation

⊕
∅ stays for the πξ-process ξ :: nil where ξ is intended

to be some fixed environment, say the identity relation. AxiomsC1′−C4′ of system
AL are the usual monoidal laws for summation where, for arbitrary instantiations of
the environment ξ, process ξ :: nil is a neutral element of the top level summation
operator. Axioms U and V are the corresponding of the two operational rules which
define the transition relation −−.. Eventually, the D law describes the distributivity

13

Aa : (C1) P1 + P2 = P2 + P1

(C2) (P1 + P2) + P3 = P1 + (P2 + P3)

(C3) P + P = P

(C4) P + nil = P

(EX) P1 | P2 = P1 U P2 + P2 U P1 + P1 ‖ P2

(R) (x)P = (νx)P + (ox)P

(A1) [x = y] ω.P = µxy(ω).P

(A2) ω.P1 U P2 = ω.(P1 | P2)

(A3) ω1.P1 ‖ ω2.P2 = (ω1 ‖ ω2).(P1 | P2)

(A4) (νx)(ω.P) = νx(ω).(x)P

(A5) (ox)(ω.P) = ox(ω).P

(D1) [x = y](P1 + P2) = [x = y]P1 + [x = y]P2

(D2) (P1 + P2) U P = P1 U P + P2 U P

(D3) (P1 + P2) ‖ P = P1 ‖ P + P2 ‖ P
(D4) P ‖ (P1 + P2) = P ‖ P1 + P ‖ P2

(D5) (νx)(P1 + P2) = (νx)P1 + (νx)P2

(D6) (ox)(P1 + P2) = (ox)P1 + (ox)P2

(IN) [x = y] nil = (νx) nil = (ox) nil = nilUP = P ‖ nil = nil ‖ P = nil

AL : (C1′) S1 ⊕ S2 = S2 ⊕ S1

(C2′) (S1 ⊕ S2)⊕ S3 = S1 ⊕ (S2 ⊕ S3)

(C3′) S ⊕ S = S

(C4′) S ⊕ ξ :: nil = S

(U) ξ :: ω.P =
⊕

ξ′∈ηL(ξ,ω) δ(ξ
′, ω); (ξ′ :: P) if ω 6= 〈x(y), C〉

(V) ξ :: 〈x(y), C〉.P =
⊕

ξ′∈ηL(ξ,〈x(y),C〉) δ(ξ
′, 〈x(y), C〉); (ξ′ :: 〈[y], true〉.P)

(D) ξ :: (P1 + P2) = ξ :: P1 ⊕ ξ :: P2

Aw : (T1) ρ; τ ;S = ρ;S

(T2) S ⊕ τ ;S = τ ;S

(T3) ρ; (S1 ⊕ τ ;S2)⊕ ρ;S2 = ρ; (S1 ⊕ τ ;S2)

Table 6: axiom systems Aa, AL, Aw

14

of the low level choice operator over the state construct ‘ :: ’. Notice that, while
U and V are axiom schemata with an infinite number of possible instantiations,
in every instantiation the summation ⊕ξ′ is extended only to a finite number of
summands.

One comment relative to weak semantics is due. Referring to [Hen88], Luca
Aceto discussed in [Ace94] the problems given raise by the interplay between the
auxiliary constructs for expanding parallel compositions and the second Milner’s
τ -law. Here the issue is completely avoided, as the ACP [BK84] merge operators
are only used for the axiomatization Aa of the low level symbolic transition system,
while Milner’s τ -laws, reported in Tab. 6 as Aw, are only adopted for the top level
transition system.

The coming theorems deal with the characterization of ground π-calculus bisim-
ilarities in terms of the CCS-like πξ-calculus semantics.

Theorem 6 Let ξN :: P and ξN :: Q be πξ-calculus processes with P and Q finite
and such that N = fn(P,Q). Then

1. ξN :: P ∼ ξN :: Q iff Aa,AL ` ξN :: P = ξN :: Q

2. ξN :: P ≈c ξN :: Q iff Aa,AL,Aw ` ξN :: P = ξN :: Q �

Theorem 7 (coincidence with late ground semantics)
Let P , Q be π-calculus processes, and let N = fn(P,Q). Then

1. P ∼̇L Q iff (ξN :: P) ∼ (ξN :: Q).
Also, if P and Q are finite, then P ∼̇L Q iff Aa,AL ` ξN :: P = ξN :: Q

2. P ≈̇L Q iff (ξN :: P) ≈ (ξN :: Q)

3. P '̇L Q iff (ξN :: P) ≈c (ξN :: Q).
Also, if P and Q are finite, then P '̇L Q iff Aa,AL,Aw ` ξN :: P = ξN :: Q

�

The above results can be proven by minor changes to similar characterizations
already appeared in [FMQ96]. The πξ-calculus, as presented here, differs from
the semantic model introduced in [FMQ96] just for the explicit use of abstraction
prefixes λy. Also, [FMQ96] only dealt with strong semantics. However the proofs of
the weak clauses of both Th. 6 and Th. 7 do not present relevant difficulties w.r.t.
the corresponding strong items. For instance, once the completeness of the axiom
system (Aa,AL) has been shown for strong semantics, the proof of Th. 6 requires
to pass through a saturation lemma, just as it is the case in CCS [Mil89]. An
analogous reasoning holds of Th. 7. There is a one-to-one correspondence between
the τ -moves of π-processes and πξ-processes, therefore the characterization of weak
semantics is not much more complex than that of strong.

The main concern of the coincidence proof is to define suitable encodings of
π-calculus processes into πξ-calculus processes and vice-versa. We can comment on
this point illustrating the idea that underlies the proof of

(ξN :: P) ∼ (ξN :: Q) implies P ∼̇L Q.

Given a strong bisimulation S containing the pair (ξN :: P, ξN :: Q), it is a matter
of encoding it into a late ground bisimulation, say Tr(S), containing (P,Q). The

15

construction is based on a translation of pairs of πξ-calculus processes into pairs of π-
agents. Starting from environments, the translation essentially generates the name
substitutions to be applied to the π-component of πξ-processes. Given any pair in S,
the key point is that the same constant in the environments of the paired processes
has to be substituted by the same name. The observability of input parameter
actualizations guarantees that S contains pairs of πξ-calculus processes where, once
executed an input action, the respective placeholders have been instantiated in the
same way. This exactly captures the flavour of the late bisimulation input clause.

For (P ′, Q′) ∈ Tr(S) and P ′
x(y)−→ P ′′, a π-calculus process Q′′ is shown to exist such

that Q′
x(y)−→ Q′′. Moreover, the relation Tr(S) is proved to contain not only all the

pairs (P ′′{w/y}, Q′′{w/y}) but also (if any) all the pairs of the derivatives of theirs.
The encoding from πξ-calculus to π-calculus is somehow made complex by the

structural differences between the two algebras. Translating constants into names
and reconstructing the name substitutions coded by environments is not enough.
One has as well to remove possible occurrences of leading λ-prefixes, and to recover
the possible nesting of those restrictions whose occurrence has been syntactically
‘lost’ because of the use of one single CCS-like communication rule vs. the π-calculus
dichotomy between the Close and the usual synchronization rule. Obviously, all
these issue are reversed when encoding the π-calculus into the πξ-calculus.

Eventually, another subtle point is the characterization of the operational cor-
respondence between the behaviours of processes which are the one encoding of the
other. As it is natural, any proof of this kind can only be based on the syntactic
structure of processes, and then, as far as the πξ-calculus is concerned, on the sym-
bolic transition system at the first level. Nevertheless, the behaviour of πξ-calculus
processes is ruled by a two level transition system where the top-level evaluation of
the obligation C plays a significative role: a symbolic derivation for P may result in
no move at all for the global process ξ : P . Hence, an actual operational correspon-
dence between the two calculi can be faithfully captured only at the second level
of the πξ-calculus. Also, contrary to πξ-calculus processes, in the π-calculus all of
the bound names are always syntactically bound. So the π-inference of Q

α−→ Q′

could pass through the application of a so-called Open rule which has no dual in
any symbolic derivation of the πξ-calculus process corresponding to Q. Given any
symbolic free output action of the πξ-calculus, there is no way to argue whether or
not it is actually free till the environment is investigated in the top level transition
system.

The above issues result in quite non standard theorems about the operational
correspondence of processes of the two calculi, where, from the πξ-perspective, we
are obliged to reason at the level of the symbolic πξ-calculus transition system and
to simultaneously carry around inductive information about obligations and names
to be used as look-aheads for the top level.

We end up this section with a last comment on Theorem 7. Essentially, an initial
ground environment ξN codes the information that the names in N are all distinct
the one from the other. So, comparing the behaviours of ξN :: P and ξN :: Q, with
N = fn(P,Q), is the same as assuming that the names occurring free in both P
and Q are, without exception, all distinct. This exactly captures the ground view
which does not take into account that putting processes into arbitrary contexts
might result in causing arbitrary equalities of names. Hence, not surprisingly, the
bisimilarity of ξN :: P and ξN :: Q can only correspond to ground – vs. non-ground
– π-calculus bisimilarity of P and Q. We will see in the following that, to capture

16

the flavour of π-calculus non-groundness, either more generous πξ-processes, or a
more abstract notion of environment is needed.

3 Limiting π-groundness checks

Let any of the relations in {∼L,≈L,'L} be denoted by the symbol � and assume
that �̇ stays for the corresponding ground relation. The equivalence � is classically
defined by closing �̇ over any name substitution, and hence by requiring an infinite
number of ground bisimilarity checks. In the following we will show that P � Q
can be alternatively expressed in terms of a finite number of checks Pσ �̇ Qσ for
carefully chosen substitutions σ. In the next section, relying on particular features of
the πξ-calculus, we will be able to effectively generate the set of name substitutions
to be taken into account. The finitary characterization presented below is referred
to semantics of the late family, though exactly the same result does hold for early
relations [Qua96].

The universal quantification over substitutions in the definition of non-ground
bisimilarities gives raise to a heavy requirement to check in practice. Nevertheless,
not all of the infinite name substitutions are either always or equally relevant to
infer process equivalence. Resorting to infinite checks would be undoubtly useless to
infer, e.g., z(y) � z(u). More generally, given an arbitrary process P and any name
x /∈ fn(P), for all w it holds that P{w/x} ≡ P . Hence, a first simple improvement
in checking P � Q is to consider, rather than all the possible name substitutions,
only those whose domains are given by the union of the free names of P and Q.

With some ingenuity, the number of necessary substitutions may be further on
diminished. The relevant issue to be investigated here is how the application of
name substitutions relates to possible changes in process move potentials. First, at
least in the absence of a mismatching operator, substitutions do not decrease those
potentials. Indeed, if a process R may execute an action α transforming into R′,
then, up to α-equivalence, Rσ can perform ασ and become R′σ [MPW92]. However,
as the coming example shows, substitutions may increase performance capabilities.

Example 8 Assuming x 6= y, let R1 ≡ (x | y) and σx = {x/x, x/y}. The parallel
components of R1σx may be involved in a communication which is forbidden to the
subprocesses of R1. A τ -move is equally possible for R1σy for σy = {y/x, y/y}.
More generally, given any substitution σz = {z/x, z/y}, a communication occurs
between the subagents xσz and yσz of R1σz . �

Suppose to want to check the congruence of the two processes R1 and R2, with R1

the same as in Ex. 8 and R2 such that fn(R1, R2) = {x, y}. We already know that
comparable action capabilities are expected for the two processes R1σx and R1σy.
This suggests that the bisimilarity of R1σx and R2σx might be related to that of
R1σy and R2σy in a very precise sense. If so, then checking both of R1σx ∼̇L R2σx
and R1σy ∼̇L R2σy would be superfluous. In the following we will show the claim
that R1 ∼L R2 can be inferred by choosing any pair of distinct names (w, u) and
resorting to only two checks:

R1{u/x, u/y} ∼̇L R2{u/x, u/y} R1{u/x,w/y} ∼̇L R2{u/x,w/y}

The comparability of the move potentials of the two processes R1σx and R1σy of
Ex. 8 depends on the fact that either σx or σy map both x and y into the same

17

target name. From this we gain the intuition that substitutions can be quotiented
according to the way their domains are partitioned into subsets of names sharing
the same image, no matter what such an image is.

Definition 9 The name substitution σ : N → N is said to represent the partition
of N into the k disjoint and non-empty sets N1, . . . , Nk iff ∀j, h ∈ {1, . . . , k} :
j 6= h,∀x, y ∈ Nj ,∀z ∈ Nh it holds that xσ = yσ and xσ 6= zσ. �

Given any ground behavioural equivalence �̇, our next goal is to prove that checking
Pσ �̇ Qσ is just the same as checking Pσ′ �̇ Qσ′ whenever σ and σ′ represent the
same partition of fn(P,Q). As auxiliary intermediate results, we prove statements
on the relationship between the strong and the weak behaviour of Pσ and Pσ′

with σ and σ′ representing the same partition of fn(P). Since the substitutions
σx = {x/x, x/y} and σy = {y/x, y/y} considered in Ex. 8 represent the same
partition of {x, y} = fn(R1), the coming lemmata actually formalize the intuitive
comparability of the action potentials of R1σx and R1σy .

Lemma 10 Let σ, σ′ : N → N represent the same partition of fn(P). If Pσ
α−→ P1

with bn(α) /∈ fn(Pσ, Pσ′) and such that (bn(α))σ = (bn(α))σ′ = bn(α), then by

an inference of equal depth Pσ′
β−→ P2 where, for some action γ and some process

P ′ with fn(P ′) ⊆ fn(P) ∪ bn(α), it holds that α ≡ γσ, β ≡ γσ′ and P1 ≡α P ′σ,
P2 ≡α P ′σ′.

Proof: By induction on depth of inference. Each rule of the π-calculus transition
system is considered in turn as the last rule applied. We show in the following only
the more interesting cases, the others are either simpler or analogous. In particular,
we suppose that the last rule applied in the inference of Pσ

α−→ P1 is either the
input axiom or the communication rule.

(Inp)

P ≡ x(y).R. Then, for z /∈ fn((y)R,Rσ) and such that zσ = z, it holds that Pσ ≡α
xσ(z).R{z/y}σ. Analogously, for u /∈ fn((y)R,Rσ′) and such that uσ′ = u, it holds
that Pσ′ ≡α xσ′(u).R{u/y}σ′. Suppose that α = xσ(w) with w = wσ = wσ′.
Then

P1 ≡α R{z/y}σ{w/z} ≡ R{z/y}{w/z}σ ≡ R{w/y}σ
by z = zσ and w = wσ. Also, by the hypothesis that w /∈ fn(Pσ′) and by u = uσ′

and w = wσ′, it follows that

Pσ′
xσ′(w)−→ P2 ≡α R{u/y}σ′{w/u} ≡ R{w/y}σ′

Then the thesis, taking γ = x(w) and P ′ ≡ R{w/y}.

(Com)

P ≡ R1 | R2 and α = τ . Then R1σ
xσzσ−→ R′1 and R2σ

yσ(w)−→ R′2 (or symmetrically)
where we can assume w fresh w.r.t. fn(R2σ,R2σ

′) and such that w = wσ = wσ′

and where xσ = yσ and P1 ≡ R′1 | R′2{zσ/w}

=⇒ By ind. hyp. R1σ
′ xσ′zσ′−→ R′′1 and R2σ

′ yσ
′(w)−→ R′′2 with

R′1 ≡α T1σ R′2 ≡α T2σ

R′′1 ≡α T1σ
′ R′′2 ≡α T2σ

′

18

for some T1 and T2 such that fn(T1) ⊆ fn(R1) and fn(T2) ⊆ fn(R2) ∪ {w}
=⇒ As σ and σ′ represent the same partition of fn(P), they also represent the
same partition of fn(R1, R2) ⊆ fn(P). So, by xσ = yσ, it follows xσ′ = yσ′. Then

Pσ′
τ−→ P2 with

P2 ≡ R′′1 | R′′2{zσ′/w} ≡α T1σ
′ | T2σ

′{zσ′/w} ≡ T1σ
′ | T2{z/w}σ′

by w = wσ′

=⇒ The thesis, taking P ′ ≡ T1 | T2{z/w}. In fact

P1 ≡ R′1 | R′2{zσ/w} ≡α T1σ | T2σ{zσ/w} ≡ T1σ | T2{z/w}σ

by w = wσ. Also, fn(P ′) = fn(T1, T2) \ {w} ⊆ fn(R1, R2). �

Lemma 11 Let σ, σ′ : N → N represent the same partition of fn(P). If Pσ =⇒ P1

then by a derivation of equal length Pσ′ =⇒ P2 where, for some process P ′ with
fn(P ′) ⊆ fn(P), it holds that P1 ≡α P ′σ and P2 ≡α P ′σ′.

Proof: By induction on the length n (n ≥ 0) of the derivation of P1 from Pσ.

(base) For the base case P1 ≡ Pσ, then simply take P ′ ≡ P .

(step) Assume now that Pσ =⇒ P1
τ−→ P ′1 with the derivation Pσ =⇒ P1 of

length n > 0.

=⇒ By ind. hyp. Pσ′ =⇒ P2 with a derivation of n steps, and for some P ′ it holds
that P1 ≡α P ′σ and P2 ≡α P ′σ′

=⇒ By P1
τ−→ P ′1 and by P1 ≡α P ′σ and by ≡α ⊂ ∼̇L it follows that P ′σ

τ−→
P ′′1 ≡α P ′1
=⇒ As fn(P ′σ) = fn(P1) ⊆ fn(Pσ) and fn(P ′σ′) = fn(P2) ⊆ fn(Pσ′), the hypothe-

ses of Lemma 10 are satisfied. By such a lemma P ′σ′
τ−→ P ′′2 where, for some P ′′,

it holds that P ′′1 ≡α P ′′σ and P ′′2 ≡α P ′′σ′

=⇒ By P2 ≡α P ′σ′ it follows that P2
τ−→ P ′2 ≡α P ′′2 . Hence the thesis, since

P ′1 ≡α P ′′1 ≡α P ′′σ and P ′2 ≡α P ′′2 ≡α P ′′σ′. �

Given two substitutions σ, σ′ representing the same partition of fn(P,Q), the next
theorem relates the ground (in)equivalence of Pσ and Qσ to the (in)equivalence of
Pσ′ and Qσ′.

Theorem 12 Let σ, σ′ : N → N represent the same partition of fn(P,Q) and let
�̇ ∈ {∼̇L, ≈̇L, '̇L}. Then Pσ �̇ Qσ iff Pσ′ �̇ Qσ′.

Proof: We first prove the result relative to strong semantics. To this end, let
S =

⋃
n Sn where

S0 = ∼̇L
Sn+1 = { (Pσ,Qσ) | Pσ′ Sn Qσ′ and

σ, σ′ represent the same partition of fn(P,Q) }

We show that S is a strong late ground bisimulation by proving, by induction on
n, that P Sn Q implies that

19

- if P
α−→ P ′ with α 6= x(y) and bn(α) /∈ fn(P,Q), then for some Q′, Q

α−→ Q′

and P ′ S Q′

- if P
x(y)−→ P ′ with y /∈ fn(P,Q), then for some Q′, Q

x(y)−→ Q′ and, for all w,
P ′{w/y} S Q′{w/y}

(base) By definition of S0.

(step) Assume n > 0 and suppose (Pσ,Qσ) ∈ Sn by (Pσ′, Qσ′) ∈ Sn−1 and σ, σ′

representing the same partition of fn(P,Q). We only consider bound actions, the
other cases are easier.

(bound output)

Suppose that Pσ
xσ(y)−→ P1 with y /∈ fn(Pσ,Qσ)

=⇒ For some y′ /∈ fn(Pσ, Pσ′, Qσ,Qσ′) and such that y′ = y′σ = y′σ′, it holds that

Pσ
xσ(y′)−→ P1{y′/y}

=⇒ By Lemma 10, Pσ′
xσ′(y′)−→ P2 with P1{y′/y} ≡α P ′σ and P2 ≡α P ′σ′ for some

process P ′ such that fn(P ′) ⊆ fn(P) ∪ {y′}

=⇒ By ind. hyp. it follows from (Pσ′, Qσ′) ∈ Sn−1 that Qσ′
xσ′(y′)−→ Q2 with

(P2, Q2) ∈ S

=⇒ By Lemma 10, Qσ
xσ(y′)−→ Q1 with Q2 ≡α Q′σ′ and Q1 ≡α Q′σ for some Q′ such

that fn(Q′) ⊆ fn(Q) ∪ {y′}.

=⇒ By y /∈ fn(Qσ) it holds thatQσ
xσ(y)−→ Q1{y/y′}. Hence the thesis (P1, Q1{y/y′}) ∈

S by

P1 ≡ P1{y′/y}{y/y′}
≡α P ′σ{y/y′}
S Q′σ{y/y′}
≡α Q1{y/y′}

where (P ′σ{y/y′}, Q′σ{y/y′}) ∈ S is justified by (P2, Q2) ∈ S, i.e. (P ′σ′, Q′σ′) ∈ S.
In fact, from y /∈ fn(Pσ,Qσ) and y′ /∈ fn(Pσ′, Qσ′) it follows the freshness of y and
y′ w.r.t. the relevant codomains of σ{y/y′} and σ′ = σ′{y′/y′}. Then σ{y/y′} and
σ′ represent the same partition of fn(P ′, Q′) ⊆ fn(P,Q) ∪ {y′}.

(input)

Suppose that Pσ
xσ(y)−→ P1 with y /∈ fn(Pσ,Qσ)

=⇒ For some y′ /∈ fn(Pσ, Pσ′, Qσ,Qσ′) and such that y′ = y′σ = y′σ′, it holds that

Pσ
xσ(y′)−→ P1{y′/y}

=⇒ By Lemma 10, Pσ′
xσ′(y′)−→ P2 with P1{y′/y} ≡α P ′σ and P2 ≡α P ′σ′ for some

process P ′ with fn(P ′) ⊆ fn(P) ∪ {y′}

=⇒ By ind. hyp., it follows from (Pσ′, Qσ′) ∈ Sn−1 that Qσ′
xσ′(y′)−→ Q2 with

(P2{u/y′}, Q2{u/y′}) ∈ S for all u

=⇒ By Lemma 10, Qσ
xσ(y′)−→ Q1 with Q2 ≡α Q′σ′ and Q1 ≡α Q′σ for some Q′ such

that fn(Q′) ⊆ fn(Q) ∪ {y′}. Then (P ′σ′{u/y′}, Q′σ′{u/y′}) ∈ S for all u

20

=⇒ By y /∈ fn(Qσ) it holds that Qσ
xσ(y)−→ Q1{y/y′}. Then the thesis, since

(P1{w/y}, Q1{y/y′}{w/y}) ∈ S for all w. In fact

P1{w/y} ≡ P1{y′/y}{y/y′}{w/y}
≡α P ′σ{w/y′}
S Q′σ{w/y′}
≡α Q1{w/y′}
≡ Q1{y/y′}{w/y}

where (P ′σ{w/y′}, Q′σ{w/y′}) ∈ S is justified by (P ′σ′{u/y′}, Q′σ′{u/y′}) ∈ S
with σ{w/y′} and σ′{u/y′} representing the same partition of fn(P ′, Q′) ⊆ fn(P,Q)∪
{y′}.
An analogous proof schema is used to handle τ -forgetting relations. Indeed, sup-
pose that either Pσ′ ≈̇L Qσ′ or Pσ′ '̇L Qσ′. By hypothesis, a weak late ground
bisimulation U there exists such that (Pσ′, Qσ′) ∈ U and, when ground equality

is assumed, if Pσ′
τ−→ P ′ then for some Q′, Qσ′

τ
=⇒ Q′ with (P ′, Q′) ∈ U , and

symmetrically. Then T =
⋃
n Tn where

T0 = U
Tn+1 = { (Pσ,Qσ) | Pσ′ Tn Qσ′ and

σ, σ′ represent the same partition of fn(P,Q) }
is shown to be a weak late ground bisimulation by proving, by induction on n, that
P Tn Q implies

- if P
α−→ P ′ with α 6= x(y) and bn(α) /∈ fn(P,Q), then for some Q′, Q

α̂
=⇒ Q′

and P ′ T Q′

- if P
x(y)−→ P ′ with y /∈ fn(P,Q), then for some Q′, Q =⇒x(y)−→ Q′ and, for all w,

P ′{w/y} T Q′{w/y}
Also, under the assumption Pσ′ '̇L Qσ′, the relation T is proved to be such that
whenever Pσ

τ−→ P ′′ then for some Q′′, Qσ
τ

=⇒ Q′′ with (P ′′, Q′′) ∈ T , and
symmetrically.
W.r.t. the proof for strong bisimulation, the only remarkable issue in the proofs
for τ -forgetting semantics is the possibly interleaved application of Lemma 10 and
Lemma 11 for dealing with weak behaviours. �

The above theorem guarantees that lots of checks may be saved when trying to
infer the non-ground bisimilarity of two processes P and Q. In fact, once a certain
Pσ �̇ Qσ has been proved, any other test on the ground equivalence of Pσ′ and Qσ′

is useless whenever σ and σ′ happen to represent the same partition of fn(P,Q).
Considering again the introductory Ex. 8, assume to want to test whether or

not R1 ≡ (x | y) ∼L R2 with fn(R2) = {x, y}. In such a case checking just the
ground late bisimilarity of R1{x/x, x/y} and R2{x/x, x/y} gives full information
about the late ground equivalence of any pair of processes R1σ and R2σ with σ =
{z/x, z/y, w1/u1, . . . , wn/un}.

We will show in the following that late congruences of the two processes P and
Q may be expressed in terms of a finite number of checks on the corresponding
ground bisimilarity of Pσ and Qσ. To do that, we first introduce a definition which
allows substitutions to be grouped into families representing a given set of names.

21

Definition 13 Let N ⊆ N be a set of names and {σi}i∈I be a family of name
substitutions σi : N → N . Then {σi}i∈I is a partition family of N iff the following
holds:

- if N = ∅ then {σi}i∈I contains only the identity substitution

- for each partition of N 6= ∅ into k disjoint and non-empty sets N1, . . . , Nk,
there is exactly one substitution in {σi}i∈I that represents N1, . . . , Nk �

Notice that an infinite number of distinct partition families of N 6= ∅ there exists.
However, any partition family of N is somehow unredundant: it contains one and
only one representative of each of the possible partition of N .

Relying on the notion of partition family, we can eventually prove the general
result which justifies our initial claim that, whenever fn(R1, R2) = {x, y} and u 6= w,
the strong late congruence of R1 and R2 can be characterized as conjunction of the
following ground bisimilarities:

R1{u/x, u/y} ∼̇L R2{u/x, u/y} R1{u/x,w/y} ∼̇L R2{u/x,w/y}

Theorem 14 Let P , Q be π-calculus processes and let �̇ ∈ {∼̇L, ≈̇L, '̇L}. Also,
assume � to be the non-ground relation corresponding to the chosen �̇. Then
P � Q iff Pσ �̇ Qσ for all σ ∈ {σi}i∈I with {σi}i∈I partition family of fn(P,Q).

Proof:

=⇒) By definition of �.

⇐=) Assume that a partition family {σi}i∈I of fn(P,Q) there exists such that
Pσ �̇ Qσ for all σ ∈ {σi}i∈I .
Any name substitution σ′ represents one out of the possible partitions of fn(P,Q).
(For instance, if Dm(σ′) ∩ fn(P,Q) = ∅, then σ′ behaves over fn(P,Q) just like the
identity substitution and hence σ′ represents the partition of fn(P,Q) into singleton
sets.)

By definition of partition family, the substitution σ′ represents the same partition
of fn(P,Q) as some σ ∈ {σi}i∈I . Hence the thesis, by Th. 12. �

As finite set, fn(P,Q) only has a finite number of distinct partitions. Then any
partition family of fn(P,Q) is finite. So, an immediate corollary of Theorem 14 is
that two π-calculus processes can be shown to be congruent by relying on a (big
but) finite number of ground bisimilarity checks.

4 Processes as functions

In the following we will focus on the opportunity of relating the results of Section 3
to the peculiar features of the ground πξ-calculus. Letting � ∈ {∼L,≈L,'L}, this
will show up in the characterization of P � Q as corresponding CCS-bisimilarity of
two single πξ-processes.

Theorem 7 in Section 2 shows that name substitutions are naturally encoded
by environments. Precisely, it proves that a suitable management of environments
can take the place of the π-calculus meta-syntactic operation of substitution. So,
letting N = fn(P,Q), we expect for instance the double implication

22

(ξNσ :: Pσ) ∼ (ξNσ :: Qσ) iff (ξNσ :: P) ∼ (ξNσ :: Q)

to hold. Actually, a more abstract property can be proved. Applying the substi-
tution σ to P and to Q is definitely unnecessary in the πξ-calculus. Besides that,
the mere application of σ to N can be rendered by making explicit the way how σ
quotients its domain into subsets sharing the same image.

Lemma 15 Let P1, P2 be π-calculus processes with N = fn(P1, P2), and, given a
name substitution σ : NI →NI , assume ξN/σ = IdE +{(x, ı(xσ)) | x ∈ N}. Also, let
l ∈ {∼,≈,≈c}. Then (ξNσ :: P1σ) l (ξNσ :: P2σ) iff (ξN/σ :: P1) l (ξN/σ :: P2).

Proof: We start by commenting on the shape of the environments ξ (ξ′, respec-
tively) which are reachable along the derivations from a given ξNσ :: Pσ (ξN/σ :: P ,
respectively).

By the definitions of ξNσ and ξN/σ and η, the only differences between ξ and ξ′ are
relative to the equivalence classes containing elements of B = {ı(x) | x ∈ Nσ}. Pre-
cisely, for all c ∈ B it holds that [c]ξ ∩NI = {ı−1(c)} while [c]ξ′ may be either such
that [c]ξ′ ∩NI 6= {ı−1(c)} or such that card([c]ξ′ ∩NI) > 1 (for example think of the
name substitutions {y/z} and {y/z, y/w} which give raise to [ı(y)]ξ′∩NI = {z} and
to [ı(y)]ξ′ ∩ NI = {z, w}, resp.). The above observation is all we need to construct
a relation containing (ξNσ :: P1σ, ξ

Nσ :: P2σ) starting from a relation containing
(ξN/σ :: P1, ξ

N/σ :: P2), and vice-versa.

Assume that (ξN/σ :: P1) l (ξN/σ :: P2). Then there exists a relation S, subset of ei-
ther ∼ or ≈, which contains the pair (ξN/σ :: P1, ξ

N/σ :: P2) and possibly some other
relevant pairs when the two processes are supposed to be observational congruent.
We define in the following a relation S′ that proves (ξNσ :: P1σ) l (ξNσ :: P2σ).

S′ =
⋃

(ξP ::P,ξQ::Q)∈S(ξ
′
P

:: Pσ, ξ′
Q

:: Qσ)

where ξ′
P

is defined as follows, and ξ′
Q

is constructed in an analogous way.

ξ′P = ξ̃P +
⋃
c∈B {(c, ı−1(c))} ∪ {(c, x) | x ∈ [c]ξP \N}

with ξ̃P such that the following holds

- if a ξP b and, for all c ∈ B, a /∈ [c]ξP , then a ξ̃P b

- if a ξP b and there exists c ∈ B such that a ∈ [c]ξP , then a ξ̃P a and b ξ̃P b

Intuitively, ξ̃P is the same as ξP but for ‘removing’ the equivalence classes [c] such
that c ∈ B, namely, except for replacing any of such [c] by the union of the equiva-
lence classes [a] = {a} with a ∈ [c].

Now assume (ξNσ :: P1σ) l (ξNσ :: P2σ) and let T , contained in either ∼ or ≈, be
the relation which witnesses the hypothesis. In this case the thesis can be shown
by transforming T into T ′ as follows.

T ′ =
⋃

(ξP ::P,ξQ::Q)∈T
⋃
P ′,Q′(ξ

′′
P :: P ′, ξ′′Q :: Q′)

where

ξ′′P = ξ̃P +
⋃
c∈B {(c, x) | ı(xσ) = c} ∪ {(c, x) | x ∈ [c]ξP \Nσ}

23

with ξ̃P defined as above, and ξ′′
Q

defined analogously to ξ′′
P
. As far as P ′ and Q′ are

concerned, if σ is injective, then P ′ and Q′ are simply Pσ−1 and Qσ−1, but this is
not the most general case. So, P ′ (resp. Q′) is taken from the family of processes
which are obtained by non-deterministically substituting in P (resp. in Q) any
occurrence of the name y by any name x such that xσ = y. E.g., letting P = yy
and σ = {y/x, y/z}, such a family should be {xx, xy, xz, yx, yy, yz, zx, zy, zz}. �

The above result strongly depends on the fact that environments naturally repre-
sent, via equivalence classes, partitions of sets of names.

Definition 16 The environment ξ represents the partition of N ⊆ NI into the
disjoint and non-empty sets N1, . . . , Nk iff the following holds:

- N =
⋃
c∈allD(ξ)

(
[c]ξ ∩N

)
- for all j ∈ {1, . . . , k} there exists c ∈ allD(ξ) such that Nj =

(
[c]ξ ∩N

)
�

Notice that the partition of N represented by a given environment ξ is identified
resorting to the constants in allD(ξ). Nevertheless, the actual distinguishing feature
of any environment is just the represented partition, rather than the identity of its
active constants. This is claimed by the next proposition.

Proposition 17 Let P1 and P2 be π-calculus processes, and let the environments
ξ and ξ′ represent the same partition of N ⊆ NI . Also, let l ∈ {∼,≈,≈c}. Then
ξ :: P1 l ξ :: P2 iff ξ′ :: P1 l ξ′ :: P2.

Proof: Let S be a relation over πξ-calculus processes which proves that ξ ::
P1 l ξ :: P2 (resp. ξ′ :: P1 l ξ′ :: P2). Then a relation S′ which shows that
ξ′ :: P1 l ξ′ :: P2 (resp. ξ :: P1 l ξ :: P2) may be defined by adequately translating
the active constants of the environments of any pair (ξP :: P, ξQ :: Q) ∈ S. �

It was shown above that πξ-calculus environments represent partitions of sets of
names in a genuine way. A more effective feature can now be focussed on. In the πξ-
calculus, partitions of sets can be effectively generated by sequential compositions
of λ-prefixes.

Example 18 Consider for instance the tree depicted in Fig. 1. It represents the
transition system associated with the πξ-process

S0 ≡ (IdE :: λx.λy.λz. nil)

But for the root node, the environment of any other agent in Fig. 1 is given a
compact visualization that only reports on the relevant equivalence classes. We
now comment on the computations starting with S0. No constant is active in IdE .
Then, when the leading prefix λx fires, the name x is deterministically associated
with c1 = newD(IdE). Correspondingly, S0 becomes

S1 ≡ (IdE + (x, c1) :: λy.λz. nil)

with (IdE+(x, c1)) representing the single partition of {x} into {x}. Differently from
S0, the environment of process S1 contains one active constant. So, the symbolic
step labelled by 〈[y], true〉 induces two distinct transitions of S1. The one is labelled
by [c1], the other is labelled by the concretion of a new constant c2. The two

24

IdE ::λx.λy.λz. nil

[c1]

��

[x,c1]::λy.λz. nil

[c1]

{{vv
vv
vv
vv
vv
vv
vv
vv
vv
v

[c2]

$$
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ

[x,y,c1]::λz. nil

[c1]

vvmm
mm
mm
mm
mm
mm
m

[c2]

��

[x,c1],[y,c2]::λz. nil

[c1]

uukkk
kkk

kkk
kkk

kk

[c2]

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

[c3]

��

[x,y,z,c1]::nil [x,z,c1],[y,c2]::nil

[x,y,c1],[z,c2]::nil [x,c1],[y,c2],[z,c3]::nil

[x,c1],[y,z,c2]::nil

Figure 1: transition system of IdE :: λx.λy.λz. nil

derivatives of S1 have a common right component (λz. nil), but their environments
are distinct because of the association of the name y with the constant c1 and with
the constant c2, respectively. Such environments represent the partitioning of the
set {x, y} into {x, y} and into {x} ∪ {y}, respectively. Computations go on by the
firing of the λz prefix and actually the environments of the leaf-processes represent
all the possible partitions of {x, y, z} into disjoint and non-empty sets. �

The above comment on Fig. 1 can be formalized as follows.

Proposition 19 Suppose that ξ :: λy.P
ρ−−. ξ′ :: P , then the following holds.

1. If ξ = IdE then ρ = [newD(IdE)] and ξ′ represents the only possible partition
of {y}

2. If ξ represents the partition of N into the disjoint and non-empty sets N1, . . . ,
Nk, with y /∈ N , then

- if ρ = [c] with ([c]ξ∩N) = Nj, then ξ′ represents the partition of N ∪{y}
into the k disjoint sets N1, . . . , Nj ∪ {y}, . . . , Nk

25

- if ρ = [newD(ξ)] then ξ′ represents the partition of N ∪{y} into the k+1
disjoint sets N1, . . . , Nk, {y}

Proof: By definition of η, it holds that ξ′ = ξ + (y, cj) with ρ = [cj]. Then the
thesis, by Def. 16. �

In the following, the partition generation property of λ-prefixes will be used to
describe partition families. This passes through the definition of λ-closures.

Definition 20 Let P be a π-calculus process and L be a list of names. Then the
λ-closure of P w.r.t. L is defined as λ clos(P,L) where

λ clos(P, []) = P
λ clos(P, [y,L]) = λ clos(λy.P,L)

with [] denoting the empty list, and [, []] denoting the ‘cons’ list operator. �

The bisimilarity of two agents obtained by a suitable λ-closure may now be used
to express the bisimilarity of a whole substitution-indexed family of pairs of πξ-
processes.

Lemma 21 Let P1, P2 be π-calculus processes with N = fn(P1, P2) and let L be a
list containing all and only the elements of N . Also, assume l ∈ {∼,≈,≈c} and,
given a name substitution σ, let ξN/σ = IdE +

{
(x, ı(xσ)) | x ∈ N

}
. Then

IdE :: λ clos(P1,L) l IdE :: λ clos(P2,L) iff (ξN/σ :: P1) l (ξN/σ :: P2) for all
σ ∈ {σi}i∈I with {σi}i∈I partition family of N .

Proof: If N = ∅ then the thesis is immediate by λ clos(Pi,L) ≡ Pi for i ∈ {1, 2}
and by ξN/σ = IdE . Hence suppose N 6= ∅. Using Prop. 19, it can be proved by
induction that ⋃{

ξp | IdE :: λ clos(Pi,L) −−.∗ ξp :: Pi
}

represents a partition family of N , namely each environment ξp represents a dis-
tinct partition of N into the disjoint and non-empty sets N1, . . . , Nk. Also no-
tice that no internal non-determinism raises at any step during the computation
IdE :: λ clos(Pi,L) −−.∗ ξp :: Pi.

Hence IdE :: λ clos(P1,L) l IdE :: λ clos(P2,L) iff ξp :: P1 l ξp :: P2 for all ξp
representing the partition p of N . Actually, any of the above environments ξp has
the following shape

ξp = IdE +
{
(x, ξp(x)) | x ∈ N

}
where allD(ξp) is given by the first k run-time generated constants rather than by
constants in DI. Then each ξp differs from ξN/σ only for the identities of the active
constants. Hence the thesis by Prop. 17. �

Any non-ground bisimilarity of the π-calculus processes P and Q , say P � Q, was
already proved (cf. Th. 14) to be expressible in terms of a finite number of suitable
checks on Pσ �̇ Qσ. We now show that P � Q can equally be characterized
as the corresponding CCS-like bisimilarity of two single πξ-processes whose right
components are the λ-closures of P and Q.

26

Theorem 22 (coincidence with late non-ground semantics)
Let P , Q be π-calculus processes and let L be a list containing all and only the
elements of fn(P,Q). Then

1. P ∼L Q iff IdE :: λ clos(P,L) ∼ IdE :: λ clos(Q,L)

2. P ≈L Q iff IdE :: λ clos(P,L) ≈ IdE :: λ clos(Q,L)

3. P 'L Q iff IdE :: λ clos(P,L) ≈c IdE :: λ clos(Q,L)

Proof: Assume �̇ to be the ground dual of � ∈ {∼L,≈L,'L} and the π-calculus
dual of l ∈ {∼,≈,≈c}. Then, letting N = fn(P,Q), the following holds:

P � Q

iff (Th. 14) Pσ �̇ Qσ for all σ ∈ {σi}i with {σi}i partition family of N

iff (Th. 7) (ξNσ :: Pσ) l (ξNσ :: Qσ) for all σ ∈ {σi}i with {σi}i partition family
of N

iff (Lemma 15) (ξN/σ :: P) l (ξN/σ :: Q) for all σ ∈ {σi}i with {σi}i partition
family of N and ξN/σ = IdE + {(x, ı(xσ)) | x ∈ N}
iff (Lemma 21) IdE :: λ clos(P,L) l IdE :: λ clos(Q,L). �

Theorem 23 (equational characterizations of late non-ground semantics)
Let P , Q be finite π-calculus processes and let L be a list containing all and only
the elements of fn(P,Q). Then

1. P ∼L Q iff Aa,AL ` IdE :: λ clos(P,L) = IdE :: λ clos(Q,L)

2. P 'L Q iff Aa,AL,Aw ` IdE :: λ clos(P,L) = IdE :: λ clos(Q,L)

Proof: By Th. 22 and Th. 6. Only recall that equational characterizations of late
πξ-calculus semantics does hold for processes of the πξ-calculus, hence for processes
whose right component may contain arbitrary occurrences of λ-prefixes. �

Suppose that card(fn(P,Q)) = n. Then there are n! distinct permutations of the
elements in fn(P,Q) and consequently n! distinct lists built up by fn(P,Q). Theo-
rem 22 asserts that the bisimilarity of P and Q can be checked relying just on one
of those lists, no matter which one. The role of L in λ clos(P,L) is only that of
generating environments that represent a partition family of the due names. So,
the actual sequencing of the list can only influence the generation order, but the
desired final effect is independent on it. Roughly, the choice of the list L stays
to λ clos(P,L) the same way as the choice of a correct sequential algorithm for
computing the partitions of a finite set stays to the computed function.

When processes P and Q are to be compared, what does really matter is to use
the same list L in defining either the λ-closure of P or the λ-closure of Q. This
guarantees that the bisimilarity of the pair of processes(

IdE :: λ clos(P,L), IdE :: λ clos(Q,L)
)

is factorized into the bisimilarity of all the pairs in the set given by⋃
p

(
ξp :: P, ξp :: Q

)
27

where p ranges over the possible partitions of fn(P,Q) and ξp represents just the
partition p.

The results stated in Theorem 22 are far from unexpected. Putting a given
process in any context may result in binding some or all of its free names. Therefore,
reasoning about congruence compells to think of any process as of a function of its
free names. Not randomly, any non-ground relation � coincides with its ground
counterpart �̇ over terms without any free name. Also, the following might be
proved. If fn(P,Q) = {y1, . . . , yn} then checking P � Q is the same as picking up
a fresh name, say x, and checking

x(y1).x(y2).x(yn).P �̇ x(y1).x(y2).x(yn).Q

Given the process x(y1).x(y2).x(yn).P which represents a ‘prefix-closure’ of P ,
the late paradigm directly suggests that x(y2).x(yn).P is a function of y1, and
that the agent x(y3).x(yn).P is a function of both y1 and y2, . . . , and P is a
function of all of {y1, . . . , yn}. The λ-closures used in the πξ-calculus and the above
prefix-closures express exactly the same intrinsic functional dependence of processes
on their free names.

A final comment can be related to the observation above. The result in Theo-
rem 22 could have been proved by using an alternative strategy whose pattern can
be sketched out as follows.

P � Q

iff x(y1).x(y2).x(yn).P �̇ x(y1).x(y2).x(yn).Q

iff ξ{x} :: x(y1).x(y2).x(yn).P l ξ{x} :: x(y1).x(y2).x(yn).Q

iff IdE :: λy1.λy2.λyn.P l IdE :: λy1.λy2.λyn.Q

The approach we used exploits more transparently the correspondence between π-
calculus substitutions and πξ-environments.

5 Call-by-need generation strategies

In this section the non-ground version of the πξ-calculus is defined. Relying on that,
a more promising characterization of strong late π-calculus congruence is presented.
Also, a coincidence result for open semantics is stated.

We commented that reasoning about non-groundness imposes to regard any
π-calculus process as a function depending on its free names. So, as πξ-calculus
is concerned, more sophisticated environments are adopted where free names are
associated with constants not by default, but rather following a call-by-need disci-
pline. This corresponds to adopting a call-by-need strategy for the generation of
the substitutions needed to reason about non-groundness.

It was shown that late non-ground bisimilarities of P andQ can be expressed, for
σ ranging over a partition family of fn(P,Q), as conjunctions of the corresponding
ground equivalences of Pσ and Qσ. We also pointed out that any partition fam-
ily of fn(P,Q) has finite cardinality. So, the alternative characterizations stated in
Section 3 are effective improvements on the usual definitions of non-ground bisim-
ilarities. Nevertheless, the finite number of checks they require is quite big: as
many checks are needed as the cardinality of a partition family of fn(P,Q), which
grows more than 2n with n = card(fn(P,Q)). Depending on n, the pre-processing

28

phase consisting either in generating a partition family of fn(P,Q), or in taking the
ground πξ-calculus view and hence firing the λ-abstractions prefixing P and Q, may
be really prohibitive. Worst than that, such a pre-processing phase could also be
useless. Think, for instance, to have to check the congruence of the two processes

P ≡ x(y). nil
Q ≡ x(y).(z)zx.Q1

Since (z)zx.Q1 is deadlocked, there is no sensible reason for generating lots of
substitutions whose number essentially depends on the cardinality of fn(Q1). Free
names could more properly and more efficiently be dealt with as variables and could
be instantiated following a by-need discipline. Consider for instance the following
example.

Example 24 Think of the π-calculus process (x | y) as of the agent

Pv ≡ vx : {x} | vy : {x, y}

The syntax used for describing Pv is meant to suggest that x and y are dealt with as
variables whose types are non-disjoint sets of names. Roughly, Pv gives the intuition
that, whenever (x | y) is put in an arbitrary context, x and y may be substituted
either by distinct names or by the same name, which we conveyed to be x (x results
as intersection of the types of vx and vy). We can now discuss the action potentials
of Pv. Process Pv can surely interleave the execution of the actions vx and vy. The
more, with the proviso that vx and vy assume the same value, Pv can also perform
a τ -step. �

The intuition which underlies Ex. 24 will be rendered formal in the πξ-calculus by
adequately sophisticating the definitions of environment and of evaluation function.
In particular, we will retain either the symbolic transition system of Section 2, or
the idea of expressing extensional semantics in terms of ordinary strong bisimilarity.
Though, the top-level transition relation and the update and result functions will
be refined following a call-by-need name instantiation strategy.

In the present perspective, environments become sets of equations over three
distinct entities: names, constants, and variables. Names and constants are as
described in Section 2. Variables (ranged over by v, v1, . . .) are typed, each type
being a finite subset of D. More specifically, variables are taken from a domain V
which is supposed to contain one variable per type and to be disjoint by both N
and D. Notationally v : D indicates that the variable v takes values in the finite
set D ⊂ D, and an association of the form (x ξ (v : D)) means that x may take as
value any of the constants in D.

Definition 25 A non-ground environment ξ is an equivalence relation over N ∪
D ∪ V which is:

- consistent : ci ξ cj implies ci = cj and c ξ (v : D) implies c ∈ D and
(v1 : D1) ξ (v2 : D2) implies D1 ∩D2 6= ∅

- finitely active: the set {(a, b) | a ξ b and a 6= b} is finite

A variable v is active in ξ iff there exists a 6= v with (v ξ a). A constant c is active
in ξ iff there exists either a 6= c with (c ξ a) or a variable v : D which is active in
ξ and c ∈ D. Variables and constants which are not active, are called inactive.

29

Still, the equivalence class of ξ containing a is indicated as [a]ξ, and the family
of all non-ground environments is denoted E , and we write IdE for the identity
environment. �

Because of the grown complexity of the environments we now deal with, we refine
the notions of definedness and undefinedness of the partial function ξ(). We say
that ξ is defined on y (still denoted by ξ(y)↓) iff for some a ∈ D ∪ V it holds that
(y ξ a). If ξ() is not defined on y, then we write ξ(y)↑. Also, the class [y]ξ is
said to be undefined if ξ(y)↑, defined otherwise. When [y]ξ is defined, we call it
defined-by-variable if D ∩ [y]ξ = ∅, defined-by-constant otherwise.

Describing initial non-ground environments needs to generate fresh variables.
So, we assume the existence of the following new functions:

newV : E −→ 2Df −→ V allV : E −→ 2Vf typV : E −→ 2Df

Functions newD and allD are defined the same as they were for ground environ-
ments, however recall that in the meanwhile the notion of active constant has been
slightly modified. The application newV(ξ) : D returns a variable of type D which
is inactive in ξ. The function allV returns the finite set of all the variables which
are active in the argument, and eventually typV(ξ) yields the union of the types of
the variables in allV(ξ).

We define below the non-ground dual of the initial environment ξN . It actually
represents in an abstract way all the possible partitions of N .

Definition 26 Letting L be a list of distinct elements of NI, the initial non-ground
environment ξL is defined as

ξL = add var(IdE ,L)

where add var(ξ, []) = ξ
add var(ξ, [x,L]) = add var(ξ + (x,newV(ξ) : (allD(ξ) ∪ newD(ξ)),L)

�

In the non-ground πξ-calculus the evaluation of symbolic obligations becomes a
crucial issue: some equalities of names must be checked, some others must be
imposed. The equalities to be tested are those relative to names whose instantiation
has been caused by a communication or a placeholder concretion. The equalities to
be forced, instead, are relative to those names the process at hand is supposed to be
a permanent function of. This exactly captures the essence of non-groundness. Since
we are reasoning here modulo name substitutions, imposing the equality x = y when
both x and y have initially been free names (cf. Ex. 24) is equivalent to assuming
that, no matter what xσ and yσ actually are, if they are the same then the process
can move and from now onwards x and y must be taken to be the same.

As a consequence of the above discussion, the obligations of the symbolic se-
mantics must sometimes be considered as actual constraints. This, in turn, implies
that the evaluation of obligations cannot be any longer a boolean predicate. It
rather yields a relation to be added with the environment. To explain this we can
focus our attention on the evaluation of the obligation x = y in ξ. First suppose
that the equality of x and y must only be checked. Then, depending on whether
x ∈ [y]ξ or not, the evaluation function returns the empty relation (denoted φ) or
the inconsistent relation (written ε). Assume now that x and y are recognized as

30

names which could be arbitrarily substituted by putting the process into a given
context. In this case the equality x = y is forced into the environment by letting
the evaluation function return the constraint-relation (x, y).

Having to cope with inconsistent relations, a more general notion of sum oper-
ation on environments is needed, too.

Definition 27 Let R1, R2 be relations over N ∪D∪V or the distinguished element
ε /∈ N ∪D ∪ V denoting the inconsistent relation. The sum R1]R2 is defined as:

R1]R2 =

 ε if R1 = ε or R2 = ε
ε if R1 +R2 is not consistent
R1 +R2 otherwise

�

A couple of comments are due. First, observe that the active variables of the initial
non-ground environment ξL have incremental types. So, given any pair of variables
(v1 : D1), (v2 : D2) ∈ allV(ξL) it holds that D1 ∩ D2 6= ∅. This guarantees that
the names occurring in L can be arbitrarily joined in the same equivalence class
without giving raise to any inconsistency. Second, recall that observable results will
be actual functions. Then, correspondingly to the possible inconsistency induced
by adding environments with constraints, the result function may yield on some
arguments a distinguished error element denoted by ⊥.

It will be made clear soon that requiring the external observer to interact with
functions is too strong a requirement when aiming at characterizing extensional
semantics via ordinary bisimilarity. We use functions to give a compact represen-
tation of behaviours modulo substitutions. Suppose P to be the process at hand,
with fn(P) = {x1, . . . , xn}. Intuitively, observing the n-ary function f gives in-
formation that for all the tuples (y1, . . . , yn) such that f(y1, . . . , yn) 6= ⊥, process
P{y1/x1, . . . , yn/xn} can move performing f(y1 . . . yn). By this, a process P1 able
to execute g1 = λx1x2.x2 has the same action capabilities of P2 which can perform
both g1 and g2 = λx1x2. x1 = x2 → x2,⊥. Nevertheless, if the bisimulation game
required to match just the above behaviours, then the two processes would not be
equated. In fact P1 could not properly react to the g2-move played by P2. This
leads us to reason about functional observations via the standard partial ordering
relation over functions.

Definition 28 Let f and h be n-ary functions. Then f v h iff fã 6= ⊥ implies
fã = hã. The constant function always yielding ⊥ is denoted by ⊥. �

5.1 Strong late non-groundness, again

In the following we will introduce the late non-ground πξ-calculus, namely we will
define a new top-level transition relation that allows us to characterize late π-
calculus non-groundness without resorting to λ-closures.

Introducing the issue of non-groundness we commented on the opportunity of
considering any process P as a function of its free names x̃. We also noticed that
correspondingly to the firing of input actions any process behaves like a function of
the input parameter. These two kinds of functionality are conceptually distinct and
must be guaranteed do not interfere. The dependence on the tuple x̃ continues to
hold throughout the computation. By contrast, the dependence on an input place-
holder is not permanent, it gets immediately lost when the parameter is actualized.

31

P
ω−→ P ′ ω 6= 〈x(y), C〉 ξ′ ∈ ηN(ξ, ω) ρ v δN(ξ′, ω) ρ 6= ⊥

ξ :: P
ρ−−.ηN ξ′ :: P ′

P
〈x(y),C〉−→ P ′ ξ′ ∈ ηN(ξ, x(y), C) ρ v δN(ξ′, x(y), C) ρ 6= ⊥

ξ :: P
ρ−−.ηN ξ′ :: λy.P ′

Table 7: definition of −−.ηN

So, although any derivative of P may have some free names more than P , it must
still be dealt with as a function of x̃ only. The information on the identity of the
names in the tuple x̃ cannot be recovered syntactically, then it becomes a parameter
of the update function, and hence of the top-level transition relation.

The non-ground late behaviour of πξ-processes is described by the relation
−−.ηN defined in Table 7. The parameter N represents the set of names that the
given running process is supposed to be a permanent function of. The extensional
πξ-semantics is then given by the strong bisimulation induced by −−.ηN , hereby
denoted ∼ηN .

New pairs of update and result functions are involved in the definition of the
non-ground transition relation. Besides this, the main difference between −−.ηN
and its ground dual −−. is that labels are not directly given by the result function
δN(ξ′, ω), but rather by functions less than or equal to δN(ξ′, ω) and still distinct
from ⊥.

The actual definition of the non-ground update function ηN requires a special-
ized evaluation function whose definition is reported in Tab. 8 together with the
definition of (ηN , δN). The revised evaluation function takes as additional argument
the set of names whose instantiation is to be forced by-need. As expected, {|C|}Nξ
yields either a finite relation over N ∪D ∪ V or the inconsistent relation ε.

The first step in computing ηN(ξ, α, C) is adding ξ with the relation yielded by
the evaluation function {|C|}Nξ. If the sum operation causes inconsistency, then
the update function returns the empty set and, by definition of −−.ηN , the πξ-
calculus process taken into account remains blocked. When ξ]{|C|}Nξ results into
an environment ξ1 6= ε, the definition of ηN(ξ, α, C) is essentially the same as that
of η(ξ1, α, C) and indeed in this event we still use the ground sum operation ‘+’.

One single difference between ηN and η is worth noticing. It is relative to the
instantiation of input placeholders, and then to the definition of ηN(ξ, [y], C). The
ground update function would associate y with all the constants active in ξ1 plus
a new one. Here y is non-deterministically associated with all the active variables
(i.e., with each of the names initially free) and with all the constants activated
during the ongoing computation plus a new one.

The observable result δN(ξ′, ω) yields a function of all the variables which are ac-
tive in ξ′. Maybe associating variables with some tuple of constants in the variables
types gives raise to inconsistency. For instance, this is the case for the association of

32

{|C|}Nξ = case C in

true : φ

false : ε

x↓ : ξ(x)↓ −→ φ, ε

x = y : x ∈ N and y ∈ N −→ (x, y), x ξ y −→ φ, ε

x 6= y : x ξ y −→ ε, φ

C1 ∧ C2 : {|C1|}Nξ] {|C2|}Nξ
end case

ηNξαC = case ξ] {|C|}ξ in
ε : ∅
ξ1 : case α in

τ : ξ1

τ [x/y] : ξ1 + (y, x)

x(y), xy : ξ1(y)↓ −→ ξ1, ξ1 + (y, newD(ξ1))

x(y) : ξ1

[y] :
⋃

(v:D)∈allV(ξ1) ξ1 + (y, v : D) ∪⋃
c∈(allD(ξ1) \ typV(ξ1)) ∪ newD(ξ1)) ξ1 + (y, c)

end case

end case

δNξαC = λd1 : D1 . . . λdm : Dm . case ξ]
∑m
i=1(vi, di) in

ε : ⊥
ξ1 : case α in

τ, τ [x/y] : τ

x(y), xy : ξ1(x)ξ1(y)

x(y) : ξ1(x)

[y] : [ξ1(y)]

end case

end case

where {v1 : D1, . . . , vm : Dm} = allV(ξ), D1 ⊂ D2 ⊂ . . . ⊂ Dm

Table 8: definition of (ηN , δN)

(v1 : {c1}, v2 : {c1, c2}) with the tuple (c1, c2) when v2 ∈ [v1]ξ′ . Then the function
δN may return on some tuple of arguments the distinguished element ⊥ denoting
undefinedness. However for ξ′ ∈ ηN(ξ, ω) it holds that δN(ξ′, ω) 6= ⊥. Also, the
result yielded by the actualization δN(ξ′, ω)(c̃) 6= ⊥ is analogous to the observation

33

returned by the ground function δ.
In order to give a deeper intuition about the definition of ηN and δN we discuss

in the following a case study.

Example 29 Let N = {x, z} and let ξL be as defined below.

ξL = IdE +(x, v1 : {c1}) + (z, v2 : {c1, c2})

We compute ηN and δN correspondingly to few symbolic actions and environments.

1. First let ω = 〈[y], true〉.
Function ηN(ξL, ω) returns a set composed by three updated environments,
say {ξ1, ξ2, ξ3}. Assuming newD(ξL) = c3, the following equalities hold.

ξ1 = ξL + (y, v1) = ξL + (y, x) δN(ξ1, ω) = λd1 : {c1}.λd2 : {c1, c2}. [d1]

ξ2 = ξL + (y, v2) = ξL + (y, z) δN(ξ2, ω) = λd1 : {c1}.λd2 : {c1, c2}. [d2]

ξ3 = ξL + (y, c3) δN(ξ3, ω) = λd1 : {c1}.λd2 : {c1, c2}. [c3]

2. Assume now ω′ = 〈τ, y = z〉.
Here ηN(ξ1, ω

′) = ηN(ξ3, ω
′) = ∅ in fact the input placeholder y was instanti-

ated by z neither in ξ1 nor in ξ3. Hence {|y = z|}Nξ1 = {|y = z|}Nξ3 = ε. By
contrast, as {|y = z|}Nξ2 = φ, the following holds

ηN(ξ2, ω
′) = {ξ2}

δN(ξ2, ω
′) = λd1 : {c1}.λd2 : {c1, c2}. τ

The idea is that, no matter what any zσ could be, the action τ may take place
only if y was instantiated by zσ. In such a case the action surely fires, with
‘surely’ being represented by the fact that δN(ξ2, ω

′) is a constant function.

3. Now consider ω′′ = 〈τ, x = z〉.
Here, letting j = 1, 2, 3, the following holds.

{|x = z|}Nξj = (x, z)

ηN(ξj , ω
′′) = {ξj + (x, z)}

δN(ξj + (x, z), ω′′) = λd1 : {c1}.λd2 : {c1, c2}. d1 = d2 → τ,⊥

The above indicates that, independently on the actual instantiation of y, the
action τ may be performed only with the proviso that xσ and zσ are the same.

�

Example 29 makes clear that the information furnished by the set indexing ηN
cannot be recovered by simply checking the association of names with variables. As
it is the case for (y ξ1 v1) and for (y ξ2 v2), those associations might have been
inherited, for instance, because of the instantiation of some placeholder.

We can now provide a better understanding of the reason why we defined the
relation −−.ηN resorting to the partial ordering on functions, namely using labels
ρ v δN(ξ′, ω). First observe that

- the πξ-calculus non-ground process ξ :: P stays for a substitution-indexed
family of π-calculus processes, say {Pπσ}σ

34

- any substitution σ is actually witnessed by a tuple c̃ such that δN(ξ′, ω)(c̃) 6= ⊥

In this view, function δN(ξ′, ω) is a monolithic – functional vs. point-wise – repre-

sentation of the family of labels {ασ}σ such that Pπσ
ασ−→ P ′π. Taking ρ v δN(ξ′, ω)

is meant to factorize the observable effect δN(ξ′, ω) while retaining a functional view
about processes. Indeed, if the relation −−.ηN were defined assuming ρ = δN(ξ′, ω)
then the induced strong bisimulation semantics over πξ-calculus processes would
be finer than late congruence. We comment further on this issue by means of the
example below.

Example 30 Consider the following late congruent processes.

P ≡ x(y).(τ + [x = z]τ)
Q ≡ x(y).τ

Let ξL = IdE +(x, v1 : {c1}) + (z, v2 : {c1, c2}) with N = {x, z} and also assume
ξ1 = ξL + (y, v1). Then the following holds.

ξL :: P
ρ−−.ηN ξL :: λy.(τ + [x = z]τ)

ρ′−−.ηN ξ1 :: τ + [x = z]τ

ξL :: Q
ρ−−.ηN ξL :: λy.τ

ρ′−−.ηN ξ1 :: τ

A close look at Ex. 29 shows that

δN(ηN(ξ1, τ, [x = z]), τ, [x = z]) = λd1 : {c1}.λd2 : {c1, c2}. d1 = d2 → τ,⊥

while

δN(ηN(ξ1, τ, true), τ, true) = λd1 : {c1}.λd2 : {c1, c2}. τ

If −−.ηN were directly labelled by δN(ξ′, ω) in Tab. 7, then ξL :: P and ξL :: Q
would be deemed to be not strong bisimilar. In fact, the derivative ξ1 :: τ of
ξL :: Q could not match the move played by ξ1 :: (τ + [x = z]τ) and labelled
λd1d2. d1 = d2 → τ,⊥. �

In the following we address the issue of translating non-ground environments into
ground environments. Once this has been done, we can proceed and prove the
characterization theorem.

The following definition is about the consistent transformation of variables into
constants in their types.

Definition 31 Let ξ be a non-ground environment. Then a variable substitution
for ξ is a substitution from variables to constants defined as it follows.

- if allV(ξ) = ∅ then the only variable substitution for ξ is the empty substitu-
tion

- if allV(ξ) = {v1 : D1, . . . , vm : Dm} with D1 ⊂ . . . ⊂ Dm, then a variable
substitution σ for ξ is defined as σ = σv1(ξ) . . . σvm(ξ) where

- σvj (ξ) is the substitution {aj/vj} with

aj =

{
ξ(vj) if [vj]ξ is defined-by-constant
cj ∈ Dj otherwise

35

- ∀i, j = 1, . . . ,m if vi ∈ [vj]ξ then Im(σvi(ξ)) = Im(σvj (ξ)) �

Variable substitutions are applied to non-ground environments in order to encode
them into sets of ground environments. We convey to use the notation below.

Notation Let ξ be a non-ground environment, and let σ be a substitution from
variables to constants. Then ξσ is defined to be

ξσ =

{
ξ if σ is empty
(eraseV(ξ + (v, c))v)σ′ if σ = {c/v}σ′

where the application of eraseV : E → V → E to the arguments ξ and v is assumed
to return an environment like ξ but where v is made inactive, namely all and only
the associations (a, v) with a 6= v have been erased. �

The following proposition asserts that there exists a precise relationship between
the two evaluation functions considered so far.

Proposition 32 Let σ be a variable substitution for ξ, and C be an obligation.
Then ξ] {|C|}Nξ 6= ε iff ξ] {|C|}Nξ]

∑
Dm(σ)(vj , vjσ) 6= ε iff [[C]]ξσ iff

ξσ = (ξ] {|C|}Nξ)σ.

Proof: Notice, in the definition of the two evaluation functions, the correspondence
between tt and the empty relation φ and the one between ff and the inconsistent
relation ε. Then the thesis is an immediate consequence of the definition of variable
substitution. �

Making use of variable substitutions, the functional behaviours of non-ground late
πξ-calculus processes can be related to the behaviours of ground agents. It can
be shown that a precise relationship there exists. We informally explain it in the
following.

- Suppose that a ground environment is defined to be equal to ξσ with ξ non-
ground and σ variable substitution for ξ. Then the fact that ξσ :: P can move
implies that ξ :: P can move as well, since its functional behaviour is distinct
from ⊥ in at least one point.

- For the other way round, if the non-ground environment ξ′ is reached by
executing the observable function f then there exists a corresponding ground
step for each point of definedness of f .

Proposition 33 Let ξ :: P be a non-ground πξ-calculus process. Then the following
holds.

1. Assume ξσ :: P
ρ−−. ξ′′ :: P ′ with σ variable substitution for ξ.

Then ξ :: P
f−−.ηN ξ′ :: P ′ with f(Im(σ)) = ρ. Also, σ is a variable substitu-

tion for ξ′ and ξ′′ = ξ′σ.

2. Assume ξ :: P
f−−.ηN ξ′ :: P ′.

Then f(c̃) 6= ⊥ iff c̃ = Im(σ′) with σ′ variable substitution for ξ′. Moreover
any σ′ such that f(Im(σ′)) 6= ⊥ is also a variable substitution for ξ and

ξσ′ :: P
ρ−−. ξ′σ′ :: P ′ with ρ = f(Im(σ′)).

36

Proof:

1. Let ξσ :: P
ρ−−. ξ′′ :: P ′

=⇒ P
〈α,C〉−→ P ′′ with [[C]]ξσ and P ′′ such that either P ′ ≡ P ′′ or P ′ ≡ λy.P ′′

depending on α

=⇒ By Prop. 32 and the hypothesis that σ is a variable substitution for ξ it
follows that ξ] {|C|}Nξ 6= ε and that (ξ] {|C|}Nξ)σ = ξσ

=⇒ The thesis comes by the definitions of η, ηN , δ, δN and by the definition
of variable substitution.

2. Assume ξ :: P
f−−.ηN ξ′ :: P ′

=⇒ P
〈α,C〉−→ P ′′ with ξ] {|C|}Nξ 6= ε and P ′′ such that either P ′ ≡ P ′′ or

P ′ ≡ λy.P ′′.
Moreover, the thesis that f(c̃) 6= ⊥ iff c̃ = Im(σ′) with σ′ variable substi-
tution for ξ′ directly comes by the definition of variable substitution. In fact
variable substitutions are the only possible associations of variables with con-
stants which do not give raise to inconsistency. Hence any c̃ distinct from the
codomain of a variable substitution for ξ′ is such that ξ′]

∑m
i=1(vi, ci) = ε

which implies f(c̃) = ⊥.

Also, as in general ξ′ encodes more constraints than ξ does, any variable sub-
stitution for ξ′ is a variable substitution for ξ as well

=⇒ By Prop. 32 and the hypothesis that σ′ is a variable substitution for ξ

it follows that [[C]]ξσ′ holds. Hence the thesis that ξσ′ :: P
ρ−−. ξ′σ′ :: P ′ is a

consequence of the definitions of of η, ηN , δ, δN . �

We can now state a more efficient characterization of strong late non-ground π-
calculus semantics. The coincidence result exploits the relationship between non-
ground πξ-processes and the πξ-agents obtained by λ-closure. On the one hand,
non-ground environments are let to burst out into sets of ground environments. On
the other way round, sets of ground environments are given a compact representa-
tion via one single non-ground environment.

Theorem 34 (coincidence with strong late non-ground semantics)
Let P1, P2 be π-calculus processes and let L be a list containing all and only the
elements of the set N = fn(P1, P2). Then P1 ∼L P2 iff ξL :: P1 ∼ηN ξL :: P2.

Proof: We prove in the following that

ξL :: P1 ∼ηN ξL :: P2 iff IdE :: λ clos(P1,L) ∼ IdE :: λ clos(P2,L)

then the thesis comes by Th. 22.

(if)

Assume that a relation S ⊆ ∼ηN there exists with (ξL :: P1, ξ
L :: P2) ∈ S. Then

transform the relation S into the relation Sλ ∪S1 with the two components defined
as follows.

Sλ =
⋃
L2,ξL1

{
(ξL1

:: λ clos(P1,L2), ξL1
:: λ clos(P2,L2))

}
37

where L1,L2 are lists such that L = [L1,L2] and, for j = 1, 2, the environment ξL1

ranges over the environments which are reachable from IdE :: λ clos(Pj , [L1,L2]) by
firing the λ-abstractions over the names contained in L1.

S1 =
⋃

(ξP ::P,ξQ::Q)∈S
{
(adj con(ξPσ) :: P, adj con(ξQσ) :: Q)

}
where σ is a variable substitution for both ξP and ξQ and adj con() is a func-
tion which possibly renames the constants of the defined equivalence classes of its
argument. The use of the function adj con() is due to the fact that, when ap-
plying a variable substitution to a non-ground environment, some care is needed
in order to be respectful of the constant generation mechanism. For instance,
assume that such a mechanism returns in the order the constants (c1, c2, c3, . . .)
and that ξ = IdE + (x, v1 : {c1}) + (z, v2 : {c1, c2}) + (y, c3) and eventually that
σ = {c1/v1, c1/v2}. In such a case ξσ = IdE + (x, c1) + (z, c1) + (y, c3). Instead of
this we want to get the environment IdE + (x, c1)+ (z, c1)+ (y, c2). That is why we
use the function adj con(ξσ). It is supposed to suitably act on [c]ξσ in order to let
allD(ξσ) be given by the first k generated constants whenever card(allD(ξσ)) = k.

By construction the relation Sλ ∪ S1 contains the pair (IdE :: λ clos(P1,L), IdE ::
λ clos(P2,L)). We now want to prove that (Sλ ∪ S1) ⊆ ∼.

Given any pair (ξL1
:: P, ξL1

:: Q) ∈ Sλ it can be easily proved that whenever
ξL1

:: P moves then the process ξL1
:: Q can match the move and the derivative

agents are either in Sλ or in S1. Letting yn be the last name in the list L, the only
care is relative to processes of the shape P ≡ λyn.Pi and Q ≡ λyn.Pj with i, j = 1, 2
and i 6= j. In such cases the thesis that the derivative agents belong to the relation
S1 just depends on the definitions of λ clos(,L) and of ξL. In fact, suppose that
yk is the k-th element of the list L. Then there is a neat relationship between the
set of constants associated with yk in the environments which are derivable from
IdE :: λ clos(,L) and the type of the variable associated with yk in the environ-
ment ξL. Both the two sets are given by the first k generated constants. Then the
thesis directly comes from the definition of variable substitution.

Now consider the relation S2 defined as it follows.

S2 =
⋃

(ξP ::P,ξQ::Q)∈S
{
(ξPσ :: P, ξQσ :: Q)

}
where σ is a variable substitution for both ξP and ξQ. As far as the proof that
S1 ⊆ ∼ is concerned, we get rid of the function adj con() and show instead that
the relation S2 is a late ground strong bisimulation. Then the thesis is a consequence
of Prop. 17.

Assume that (ξPσ :: P, ξQσ :: Q) ∈ S2 because of (ξP :: P, ξQ :: Q) ∈ S with σ

variable substitution for both ξP and ξQ. Also assume that ξPσ :: P
ρ−−. ξ′′ :: P ′.

=⇒ By Prop. 33 it follows that ξP :: P
f−−. ξP ′ :: P ′ with ρ = f(Im(σ)) and σ

variable substitution also for ξP ′ and ξ′′ = ξP ′σ

=⇒ By (ξP :: P, ξQ :: Q) ∈ S it follows that some ξQ′ :: Q′ there exists such that

ξQ :: Q
f−−. ξQ′ :: Q′ with (ξP ′ :: P ′, ξQ′ :: Q′) ∈ S

=⇒ By Prop. 33 and by f(Im(σ)) = ρ it comes that ξQσ :: Q
ρ−−. ξQ′σ :: Q′ with

σ variable substitution for ξQ′

=⇒ By (ξP ′ :: P ′, ξQ′ :: Q′) ∈ S and by definition of S2 it follows that (ξP ′σ ::
P ′, ξQ′σ :: Q′) ∈ S2

38

(only if)

Assume that the relation T ⊆ ∼ contains the pair (IdE :: λ clos(P1,L), IdE ::
λ clos(P2,L)). Then define the relation T ′ acting as follows. For each subset of T
of the shape⋃

σ

{
(adj con((ξL + ξP)σ)) :: P, adj con((ξL + ξQ)σ) :: Q)

}
where P,Q 6≡ λz.R for z ∈ N and σ is a variable substitution for both (ξL + ξP)
and (ξL + ξQ), the relation T ′ is let to contain the pair (ξL + ξP :: P, ξL + ξQ :: Q).

By the definitions of λ clos(,) and of variable substitution, the pair (ξL :: P1, ξ
L ::

P2) is contained in T ′. We now prove that T ′ ⊆ ∼ηN .

Assume that the pair (ξv
P

:: P, ξv
Q

:: Q) is put in T ′ because of⋃
σ

{
(adj con(ξv

P
σ) :: P, adj con(ξv

Q
σ) :: Q)

}
⊆ T

Also, suppose that ξvP :: P
f−−.ηN ξv

P ′ :: P ′

=⇒ By Prop. 33 for all c̃ such that f(c̃) 6= ⊥ it holds that c̃ = Im(σ′) with σ′

variable substitution for both ξv
P

and ξv
P ′ . Moreover it also holds that ξv

P
σ′ :: P

ρ−−.
ξv
P ′σ
′ :: P ′ with ρ = f(c̃)

=⇒ By definition of the function adj con() and by⋃
σ

{
(adj con(ξv

P
σ) :: P, adj con(ξv

Q
σ) :: Q)

}
⊆ T ⊆ ∼

it follows that ξvQσ
′ :: Q

ρ−−. ξv
Q′σ
′ :: Q′ with

{(adj con(ξv
P ′σ
′) :: P ′, adj con(ξv

Q′σ
′) :: Q′)} ⊆ T

=⇒ ξvQ :: Q
h−−.ηN ξv

Q′ :: Q′ with (ξv
P ′ :: P ′, ξv

Q′ :: Q′) ∈ T ′ by

{(adj con(ξv
P ′σ
′) :: P ′, adj con(ξv

Q′σ
′) :: Q′)} ⊆ T

for all σ′ which is a variable substitution for both ξv
P ′ and ξv

Q′ and where h = f .
In fact, by the assumed generality of σ′, the two functions are point-wise equal on
each c̃ = Im(σ′) and by Prop. 33 these are the only points where the two functions
are distinct from ⊥. �

5.2 Digression on open semantics

In order to show the flexibility of the non-ground πξ-calculus, we now go further
in adopting a functional interpretation of processes and show an alternative char-
acterization of π-calculus open semantics, whose definition follows [San96].

Definition 35 A binary symmetric relation S is an open bisimulation if P S Q
implies that for all name substitutions σ

if Pσ
α−→ P ′ with bn(α) /∈ fn(Pσ,Qσ), then for some Q′, Qσ

α−→ Q′ and

P ′ S Q′

P is open bisimilar to Q, written P ∼O Q, if P S Q for some open bisimulation S.
�

39

P
ω−→ P ′ ξ′ ∈ ηO(ξ, ω) ρ v δO(ξ′, ω) ρ 6= ⊥

ξ :: P
ρ−−.ηO ξ

′ :: P ′

Table 9: definition of −−.ηO

Open semantics moves name instantiation inside the definition of bisimulation, im-
mediately qualifying itself as a congruence. Indeed, as well as late non-ground
bisimilarity, it involves a universal quantification over substitutions, so requiring at
each step an infinite number of checks. Nevertheless, a more efficient character-
ization of open bisimilarity was proposed. It is based on a specialized transition
system that allows name substitutions to be delayed as much as possible.

The πξ-calculus open semantics is in that same spirit. Indeed, free names and
instantiation are interpreted much as variables and unification are dealt with in
logic programming. When an input action fires, a variable is associated with the
formal parameter of the performed action. This shows up in the definitions of the
open πξ-calculus transition system, denoted by −−.ηO , where the actualization of
input placeholders is delayed as much as possible. The transition relation −−.ηO
is reported on Tab. 9, and again the actual πξ-semantics is given by the induced
strong bisimulation, written∼ηO . There is no need here to let the transition relation
be parametric over a set of names. In fact, the present instantiation strategy gen-
uinely consists in delaying actualization as much as possible. At any point during
computation, all the variables can still be considered as formal parameters. This
implies that the evaluation function can always add constraints on variables. More
specifically, suppose that one name out of x and y, or also both, are associated with
a variable. If so, evaluating whether or not x = y in ξ results in the constraint
(x, y). Then the addition of ξ with the relation (x, y)

- either respects the required equality
(e.g. [x]ξ = [y]ξ = {x, y, c})

- or induces the required equality
(e.g. [x]ξ = {x, c} and [y]ξ = {y, v : {c} ∪D} or, also,
[x]ξ = {x, v1 : D} and [y]ξ = {y, v2 : D ∪D′})

- or causes inconsistency
(e.g. [x]ξ = {x, c1} and [y]ξ = {y, c2})

The refined evaluation function 〈[C]〉ξ is reported in Tab. 10 together with specialized
update and result functions for open semantics. As far as 〈[x = y]〉ξ is concerned,
notice that a constraint is added to the environment only when (ξ(x)↓ and ξ(y)↓).
If this is not the case, then we have just to test whether or not (x ξ y). In fact,
if (ξ(x)↑ or ξ(y)↑) then at least one name out of x and y is private. Think, for
instance, of the obligation in the symbolic action ox〈zy, z ↓〉 = 〈z(y), x = y ∧ z ↓〉.
The issue of variable instantiation plays no role when x and y are as above: no
association can make them to be the same.

40

〈[C]〉ξ = case C in

true : φ

false : ε

x↓ : ξ(x)↓ −→ φ, ε

x = y : (ξ(x)↓ and ξ(y)↓) −→ (x, y), x ξ y −→ φ, ε

x 6= y : x ξ y −→ ε, φ

C1 ∧ C2 : 〈[C1]〉ξ] 〈[C2]〉ξ
end case

ηOξαC = case ξ] 〈[C]〉ξ in
ε : ∅
ξ1 : case α in

τ : ξ1

τ [x/y] : ξ1 + (y, x)

x(y), xy : ξ1(y)↓ −→ ξ1, ξ1 + (y, newD(ξ1))

x(y) : ξ1 + (y,newV(ξ1) : (allD(ξ1) ∪ newD(ξ1)))

[y] : ξ1

end case

end case

δOξαC = λd1 : D1 . . . λdm : Dm . case ξ]
∑m

i=1(vi, di) in

ε : ⊥
ξ1 : case α in

τ, τ [x/y] : τ

x(y), xy : ξ1(x)ξ1(y)

x(y) : ξ1(x)

[y] : [ξ1(y)]

end case

end case

where {v1 : D1, . . . , vm : Dm} = allV(ξ), D1 ⊂ D2 ⊂ . . . ⊂ Dm

Table 10: definition of (ηO, δO)

Apart from the use of distinct criteria for evaluating obligations, the function
ηO differs from ηN only as far as input actions are concerned. The improvement
in efficiency over the transition systems described so far is made evident by the
fact that ηO(ξ, x(y), C) causes – at most – the association of the name y with one
single fresh variable. The information that such a variable may assume any of the

41

constants already active in ξ or a new one is coded in the variable type. This
treatment of input actions delays as much as possible the actual instantiation of
the parameter. More properly, the instantiation is fully delegated to the constraint
system implemented by the evaluation function 〈[]〉 and hence it takes place only
if, and when, it is strictly necessary for the computation to go on.

The definition of the result function δO is analogous to the one of δN . Anyway,
contrary to δN , the number of arguments of the function returned by δO is not a
priori fixed by the definition of the non-ground environment ξL chosen to start
running. Here, the result yielded by δO is a function of all the names in the list L
and of all the placeholders of the input actions already fired. The act of inputting
potentially makes free one more name. Hence, assuming the list L in ξL to contain
all the free names of the initial π-calculus process, the present transition system
interprets any agent as a function of all its free names.

The open instantiation strategy can be illustrated by means of the following
example.

Example 36 Let ξL be defined as it follows.

ξL = IdE +(x, v1 : {c1}) + (z, v2 : {c1, c2})

We investigate on the values returned by ηO and by δO when they are applied to
distinct environments and symbolic actions.

1. Assume ω = 〈x(y), x↓〉 and suppose newD(ξL) = c3. Then

ηO(ξL, ω) = {ξL + (y, v3 : {c1, c2, c3})}
δO(ξL + (y, v3), ω) = λd1 : {c1}.λd2 : {c1, c2}.λd3 : {c1, c2, c3}. d1

2. For ω′ = 〈τ, true〉 the following holds.

ηO(ξL + (y, v3), ω
′) = {ξL + (y, v3)}

δO(ξL + (y, v3), ω
′) = λd1 : {c1}.λd2 : {c1, c2}.λd3 : {c1, c2, c3}. τ

3. Suppose now ω′′ = 〈τ, y = z〉. In such a case

ηO(ξL + (y, v3), ω
′′) = {ξL + (y, v3) + (y, z)}

δO(ξL + (y, v3) + (y, z), ω′′) =

λd1 : {c1}.λd2 : {c1, c2}.λd3 : {c1, c2, c3}. d3 = d2 → τ,⊥

Given any name substitution σ, the result yielded by δO(ξL+(y, v3)+(y, z), ω′′)
means that the action τ may be performed only with the proviso that y is
instantiated by zσ. In the meanwhile, the name zσ could be either the same
as xσ (d1 = d2 = d3 = c1) or distinct from it (d1 = c1 and d2 = d3 = c2).
Obviously, when y is instantiated by a name which is assumed to be fresh
w.r.t. all the other names around (d3 = c3) the requirement y = zσ cannot
be met. �

Open π-calculus semantics distinguishes the process x(y).(τ.τ + τ) from x(y).(τ.τ +
τ + τ.[y = z]τ). Correspondingly in the πξ-calculus, we can see that

42

ξL :: x(y).(τ.τ + τ) 6∼O ξL :: x(y).(τ.τ + τ + τ.[y = z]τ)

for ξL = IdE +(x, v1 : {c1}) + (z, v2 : {c1, c2}). The reason for this is that process
ξL :: x(y).(τ.τ + τ) cannot win any bisimulation game started by the partner and
terminating in the state ξL + (y, v3) :: [y = z]τ . More precisely, a bisimulation
relation should contain

- either the pair (ξL + (y, v3) :: [y = z]τ, ξL + (y, v3) :: τ)

- or the pair (ξL + (y, v3) :: [y = z]τ, ξL + (y, v3) :: nil)

This is impossible. In the first case the process ξL + (y, v3) :: [y = z]τ could not
match the move (λd1d2d3.τ) performed by ξL + (y, v3) :: τ . In the second case, the
deadlocked ξL + (y, v3) :: nil could not react to any ρ v λd1d2d3. d3 = d2 → τ,⊥.

The following proposition, analogous to Prop. 32, provides the basis for the
encoding of open non-groundness into the ground πξ-calculus.

Proposition 37 Let σ be a variable substitution for ξ, and C be an obligation.
Then ξ] 〈[C]〉ξ 6= ε iff ξ] 〈[C]〉ξ]

∑
Dm(σ)(vj , vjσ) 6= ε iff [[C]]ξσ.

Proof: The statement is a direct consequence of the definitions of the involved
evaluation functions and of variable substitution. The only interesting difference
between [[]] and 〈[]〉 raises from the evaluation of obligations of the shape x = y
when (ξ(x)↓ and ξ(y)↓). So, assume ξ] 〈[x = y]〉ξ 6= ε. This does hold iff [x]ξ and
[y]ξ are

- either both defined-by-constant and such that [x]ξ ∩ D = [y]ξ ∩D

- or both defined-by-variable

- or one is defined-by-variable via v : D and the other is defined-by-constant
via c ∈ D

Then the theses by definition of variable substitution and of ξσ. �

The next statement is the actual corresponding of Prop. 33. It addresses the rela-
tionship between variable substitutions and functional observations.

Proposition 38 Assume ξ :: P
f−−.ηO ξ′ :: P ′. Then the following holds.

1. f(c̃) 6= ⊥ iff c̃ = Im(σ) with σ variable substitution for ξ′

2. if σ is a variable substitution for ξ′ then frag(σ, ξ) is a variable substitution
for ξ, where frag(σ, ξ) = {v1σ/v1, . . . , vmσ/vm} for allV(ξ) = {v1, . . . , vm}

Proof:

1. By definition, the set of the variable substitutions for a given environment
represents all the possible ways to transform variables into constants with-
out giving raise to inconsistency. Hence, in the definition of δO the sum
ξ′]

∑m
i=1(vi, ci) is distinct from the distinguished element ε iff the tuple

(c1, . . . , cm) is the codomain of some variable substitution.

43

2. The updated environment ξ′ potentially encodes some constraints more than
ξ. Then, although the other way round is not true, whenever allV(ξ′) =
allV(ξ) any variable substitution for ξ′ is a variable substitution for ξ as well.
By definition of ηO, correspondingly to the symbolic execution of the input
action x(y) it holds that allV(ξ′) = allV(ξ) ∪ {vm : Dm}. In such a case a
variable substitution for ξ may be obtained by the variable substitution σ
for ξ′ by simply getting rid of the component relative to the variable vm.
In fact, correspondingly to the execution of x(y) it holds that [y]ξ = {y}
and [y]ξ′ = {y, vm}. Hence any variable substitution for ξ′ has the shape
σv{cm/vm} with cm ∈ Dm and Dm(σv) = allV(ξ). �

The following characterization theorem concludes our investigation into call-by-need
instantiation strategies in the πξ-calculus. The proof of the result involves either the
previous encoding of non-groundness into groundness or the encoding of πξ-calculus
into π-calculus (and back) reported in Appendix A.

Theorem 39 (coincidence with open semantics)
Let P1, P2 be π-calculus processes and let L be a list containing all and only the
elements of fn(P1, P2). Then P1 ∼O P2 iff ξL :: P1 ∼ηO ξL :: P2

Proof: See Appendix B. �

6 Concluding remarks

We provided operational and axiomatic characterizations of late, either strong or
weak, π-calculus congruences. A coincidence result with open semantics was also
shown. Target languages of our characterizations were either the π-calculus or the
πξ-calculus, a process algebra whose ground version was already proved to coincide
with ground π-calculus.

The main contributions of the paper are the finitary nature of the proposed
characterizations and the fact that they allow π-calculus semantics to be rephrased
in terms of CCS equivalences which come equipped with well-known mathematical
properties and verification tools. By this, our results could be particularly promising
in the perspective of veryfing mobile systems.

Relating to π-calculus, it was shown that each non-ground equivalence relation
can be expressed by closing the corresponding ground bisimilarity under the substi-
tutions of a suitable finite family {σi}i. This result can be directly instantiated to
early semantics, either strong or τ -forgetting [Qua96]. So, the cardinality of {σi}i
gives full insights about the actual complexity of π-congruence checking, both late
and early.

Then, the πξ-calculus view allowed processes to be explicitely interpreted as
functions of their free names. So we resorted, in turn, to ground environments
paired with λ-closures of π-processes, and to functional environments paired with
standard π-processes.

The main advantage of the first of these approaches is that the mere evolution
of a λ-closed term induces the generation of (the environments corresponding to)
the substitutions {σi}i needed to check non-groundness. This, on its side, adds

44

effectiveness to the very first alternative characterization we presented. Also, inter-
preting late congruence as bisimilarity of ground πξ-processes permits equational
characterizations for non-groundness to be directly stated on the πξ-calculus axiom
system for groundness [FMQ95].

Eventually, by introducing the non-ground dual of ground πξ-calculus, we ex-
ploited, for the characterization of both late and open semantics, a more promising
call-by-need discipline for the instantiation of the arguments which the running pro-
cess is considered to depend on. Analogous instantition strategies are a common
feature of symbolic semantics for data-dependent calculi [HL95]. Indeed, a call-by-
need discipline underlies the alternative characterizations of late and open π-calculus
semantics presented in [Lin95, Lin94] and [San96], respectively. The relationship
between their approach and the one proposed here deserves further investigation.
What is immediately evident is the difference at the extensional level. Symbolic
semantics is defined as closure over a family of bisimulation relations indexed by
equalities and inequalities on names. By contrast, in the non-ground πξ-calculus,
the call-by-need strategy is adopted just to recognize the minimal symbolic re-
quirements for the computation to go on. Then those requirements are actually
interpreted and made concrete by updating environments. So, πξ-processes are
equated by standard bisimulation semantics.

Another topic for future work, suggested by the proposed functional interpreta-
tion of processes, is the study of possible relationships between our results and the
π-calculus presentation in [HLMP97].

A final comment is about non-ground π-calculus semantics of the early family.
They can be characterized using an approach analogous to that we adopted for
the late case. Precisely, the early view can be retrieved as a special case of late
πξ-semantics by minor changes to the ground and non-ground transition systems
[Qua96]. In the same spirit as the free input actions of [MPW93], those changes
essentially amount to make atomic any input step and the subsequent instantiation
move.

Acknowledgments

We would like to thank Gian-Luigi Ferrari and Ugo Montanari for the joint work
that provided the basis of the πξ-calculus, and for helpful comments relating to
this.

References

[Abr91] S. Abramsky. A Domain Equation for Bisimulation. Information and
Computation, 92(2):161–218, 1991.

[ABV94] L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS Rules into Equa-
tions. Information and Computation, 111(1):1–52, 1994.

[Ace94] L. Aceto. On “axiomatising finite concurrent processes”. SIAM Journal
of Computing, 23(4):852–863, 1994.

[BK84] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Com-
munication. Information and Control, 60:109–137, 1984.

45

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Work-
bench: A Semantics-Based Tool for the Verification of Concurrent Sys-
tems. ACM Trans. on Programming Languages and Systems, 15(1):36–
72, 1993.

[DS85] R. De Simone. Higher level synchronizing devices in MEIJE-SCCS.
Theoretical Computer Science, 37(3):245–267, 1985.

[FMQ95] G.-L. Ferrari, U. Montanari, and P. Quaglia. The Weak Late π-calculus
Semantics as Observation Equivalence. In I. Lee and S.A. Smolka, edi-
tors, Proc. 6th International Conference on Concurrency Theory, CON-
CUR ’95, volume 962 of LNCS, pages 57–71. Springer-Verlag, 1995.

[FMQ96] G.-L. Ferrari, U. Montanari, and P. Quaglia. A π-calculus with Explicit
Substitutions. Theoretical Computer Science, 168(1):53–103, 1996.

[Hen88] M. Hennessy. Axiomatising finite concurrent processes. SIAM Journal
of Computing, 17(5):997–1017, 1988.

[HL95] M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer
Science, 138:353–389, 1995.

[HLMP97] F. Honsell, M. Lenisa, U. Montanari, and M. Pistore. Final Semantics
for the π-calculus. Submitted for publication, 1997.

[HM85] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and
Concurrency. Journal of the ACM, 32(1):137–161, 1985.

[Lin94] H. Lin. Symbolic Bisimulation and Proof Systems for the π-Calculus.
Technical Report 7/94, School of Cognitive and Computing Sciences,
University of Sussex, 1994.

[Lin95] H. Lin. Complete Inference Systems for Weak Bisimulation Equivalences
in the π-Calculus. In P.D. Mosses, M. Nielsen, and M.I. Schwartzbach,
editors, Proc. 6th International Joint Conference CAAP/FASE, TAP-
SOFT ’95, volume 915 of LNCS. Springer-Verlag, 1995.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer-Verlag, 1980.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267–310, 1983.

[Mil89] R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

[Mil92] R. Milner. The Polyadic π-Calculus: a Tutorial. In F.L. Bauer,
W. Brauer, and H. Schwichtenberg, editors, Logic and Algebra of Spec-
ification, pages 203–246. Springer-Verlag, 1992.

[MPW92] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes,
Part I and II. Information and Computation, 100(1):1–77, 1992.

[MPW93] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.
Theoretical Computer Science, 114(1):149–171, 1993.

46

[Par81] D. Park. Concurrency and automata on infinite sequences. In Proc. 5th
GI-Conference, volume 104 of LNCS. Springer-Verlag, 1981.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics. Techni-
cal Report DAIMI-FN-19, Computer Science Department, Aarhus Uni-
versity, 1981.

[Qua96] P. Quaglia. The π-calculus with explicit substitutions. PhD thesis, Uni-
versità degli Studi di Pisa, Dipartimento di Informatica, 1996. Report
TD-09/96.

[San96] D. Sangiorgi. A Theory of Bisimulation for the π-calculus. Acta Infor-
matica, 33(1):69–97, 1996.

47

Appendix A

We recall in the following the main constructions and encodings needed to show
Th. 7. They result from mild simplifications of analogous statements appeared in
[FMQ96]. These simplifications, on their hand, are essentially due to the introduc-
tion of explicit λ-prefixes which allows us to avoid the use of more sophisticated
environments, similar to those presented in Sec. 5 of this paper.

As commented in Sec. 2, the proof of the characterization result is quite complex.
The definitions and the few auxiliary statements that follow are not meant to cover
each single detail. They have rather been selected to bear out a sketch of the proof
of Th. 7, and to provide the formal constructions used in Appendix B to show
Th. 39. Complete proofs and detailed comments on encodings can be found in
[Qua96], Chapter 3.

The first definition presents the core issue of the transformation of environments
into actual name substitutions. Roughly, each relevant name x in ξ is classified
according to the following criterion:

- it was involved in the communication of a bound name and there is still a
name z ∈ [x]ξ which occurs bound in P ;

- it was involved in a communication which should be indeed a closing commu-
nication;

- it is really (i.e. semantically) a free name of ξ :: P , namely ξ(x)↓.

Definition 40 (restriction, constant, admissible substitutions) Let ξ :: P be a
πξ-calculus process. Also, given the set A ⊆ N , assume to be able to choose a
canonical representative of A, say crep(A) ∈ A. (E.g. assume the existence of a
standard ordering on the names in N , then crep(A) might be the least element of
A w.r.t. that order). Then we define the following substitutions.

- letting rep(x, ξ :: P) = z whenever ([x]ξ ∩ bn(P)) = {z}

s(ξ :: P) = {rep(x0, ξ :: P)/x0, . . . , rep(xm, ξ :: P)/xm}

where Dm(s(ξ :: P)) =
{
x | card([x]ξ) ≥ 2 and ξ(x)↑ and ([x]ξ∩bn(P)) 6= ∅

}
- the restriction substitution σr of ξ :: P is

σr(ξ :: P) =
{
crep([x0]ξ)/x0, . . . , crep([xm]ξ)/xm

}
where Dm(σr(ξ :: P)) =

{
x | card([x]ξ) ≥ 2 and ξ(x)↑ and ([x]ξ ∩ bn(P)) =

∅
}

- the constant substitution σc of ξ is

σc(ξ) =
{
ξ(x0)/x0, . . . , ξ(xm)/xm

}
where Dm(σc(ξ)) =

{
x | [x]ξ is defined-by-constant

}
- an admissible name substitution for {c0, . . . , cj , cj+1, . . . , cj+k} is an injective

substitution

48

rsp(R,P) = case R in

∅ : {P}
{x} ∪R′ :

⋃
y∈ R

⋃
P ′∈ rnp(y,P) rsp(R \ {y}, P ′)

end case

where

rnp(y, P) = case P in

nil : {nil}
α.P1 : {α.P1}

[x = z]P1 : {[x = z]P1}
P1 + P2 : {P1 + P2}
P1 | P2 : y ∈ (fn(P1) ∩ fn(P2)) −→ {(y)(P1 | P2)},

{(y)(P1 | P2)}∪
{(P1 | P ′2) s.t. P ′2 ∈ rnp(y, P2) and y ∈ bn(P1 | P ′2)}
{(P ′1 | P2) s.t. P ′1 ∈ rnp(y, P1) and y ∈ bn(P ′1 | P2)}

(z)P1 : {(z)P ′ s.t. P ′ ∈ rnp(y, P1)}
!P1 : {!P1}

end case

Table 11: definition of rsp(,)

σn =
{
ı−1(c0)/c0, . . . , ı

−1(cj)/cj , x1/cj+1, . . . , xk/cj+k
}

where {c0, . . . , cj} ⊆ DI and {cj+1, . . . , cj+k} ⊆ DRT and ı : NI → DI is the
bijective mapping of Def. 4 and {x1, . . . , xk} ⊆ N �

The coming definition supplies us with the formal machinery needed to recover the
lack in πξ-calculus of a proper analogous of the Close rule. Given a set of names R
and a process P , the function rsp(R,P) returns a set of processes where the names
in R are non-deterministically put on top of the parallel compositions in P .

We then proceed with the formalization of the actual encoding of πξ-calculus
into π-calculus.

Definition 41 (rsp(R,P)) Let R be a finite set of names, and let P be a π-calculus
process. The set rsp(R,P) is defined in Table 11. �

Notation Given a π-calculus process P and a substitution s, we denote by [P]s the
process obtained from P by substituting any free occurrence of x by xs, without
caring of name clashes. Then, given [P]s and a substitution σ with Dm(σ) =
bn([P]s), we denote by [P]sσ the α-conversion of [P]s which respects σ, namely the
π-calculus process obtained by substituting any occurrence of y ∈ bn([P]s) by yσ.

�

49

Translation 1 (from ground πξ-calculus to π-calculus)
Let S be a bisimulation for η-reachable πξ-calculus processes. Then

Trξ(S) =
⋃

(ξP ::P ′,ξQ::Q′)∈S Trξ
(
(ξP :: P, ξQ :: Q)

)
where

- P ≡ P ′′ if P ′ ≡ λy.P ′′ and P ≡ P ′ otherwise

- Q ≡ Q′′ if Q′ ≡ λz.Q′′ and Q ≡ Q′ otherwise

- Trξ((ξP :: P, ξQ :: Q)) is the set of pairs (Pπ, Qπ) such that

- Pπ ≡α P̂ (σc(ξP)σn)

- Qπ ≡α Q̂(σc(ξQ)σn)

- P̂ ∈ rsp(Im(σr(ξP :: P)), [P]s(ξP ::P)σr(ξP :: P))

- Q̂ ∈ rsp(Im(σr(ξQ :: Q)), [Q]s(ξQ::Q)σr(ξQ :: Q))

- σn admissible name substitution for Im(σc(ξP)) ∪ Im(σc(ξQ)). �

Remark 42 Let Pπ and Qπ be as in Trans. 1. By definition, for some Pr without
homonymy either among bound names or among free and bound names Pπ ≡α Pr
where

- Pr ∈ rsp(Dm(σr(ξP :: P))σP , [P]
s(ξP ::P)
σ′P

σP)

- σP = σr(ξP :: P)σ′′
P
(σc(ξP)σn)

- σ′
P
, σ′′

P
are, respectively, the refreshment of the bound names of P and the

refreshment of the names in Im(σr(ξP :: P))

Similarly, for a suitableQr without homonymy and for suitable substitutions σ′
Q
, σ′′

Q
,

it holds that

Qπ ≡α Qr ∈ rsp(Dm(σr(ξQ :: Q))σQ, [Q]
s(ξQ::Q)
σ′Q

σQ)

where σQ = σr(ξQ :: Q)σ′′
Q
(σc(ξQ)σn). �

We now consider the opposite encoding: from π-calculus to πξ-calculus. Given a
π-process, supposingly obtained by some derivation, we need

- either to know which would be its syntactic structure if no name instantiation
(but decoration of bound names of replicated subprocesses) had ever been
applied during the derivation;

- or to build a suitable corresponding environment, and possibly prefix the
process by a λ-abstraction.

The following definitions, leading to the wanted encoding, are meant to meet the
demands above.

Definition 43 (sub(P)) Let P be a π-calculus process. The set sub(P) is defined
in Table 12, where n stays for a positive integer. �

50

sub(P) = case P in

nil : {nil}
α.P1 : {α.P1} ∪ sub(P1)

[x = z]P1 : {[x = z]P1} ∪ sub(P1)

P1 + P2 : {P1 + P2} ∪ sub(P1) ∪ sub(P2)

P1 | P2 : {P1 | P2} ∪ {(P ′1 | P ′2) s.t.

(P ′1 ∈ sub(P1) and P ′2 ≡ P2) or

(P ′1 ≡ P1 and P ′2 ∈ sub(P2)) or

(P ′1 ∈ sub(P1) and P ′2 ∈ sub(P2))}
(y)P1 : {(y)P1} ∪ {(y)P ′1 s.t. P ′1 ∈ sub(P1)} ∪ sub(P1)

!P1 : {!P1} ∪ {(P ′1 | P ′′1) s.t.

P ′1 ∈ sub((P1)
dec 0) and

P ′′1 ∈ sub(repl((P1)
dec 1, n− 1))}

end case

where

repl(P, j) = case j in

j = 0 : !P

j > 0 : (P)dec 0 | repl((P)dec 1, j − 1)

end case

Table 12: definition of sub()

Notation We use the operator (R)decn meaning that the names in the set R have
been arbitrarily decorated, up to n times, by either ()dec 0 or ()dec 1. Namely

(R)decn =
⋃
x∈R,|s|≤n {x(s)}

where s is a string of zeros and ones. �

Definition 44 ((Pj , Pr, R, s, σ)-dual of Pπ) Let Pj , Pπ be π-calculus processes.
Process P ∈ sub(Pj) is a (Pj , Pr, R, s, σ)-dual of Pπ if a set of names R and name
substitutions s, σ exist such that Pπ ≡α Pr ∈ rsp(R, [P]sσ) where, letting Res be
the set of the restricted names of Pj , the following holds:

- R ⊆
⋃
k≥0(Res \ bn(P))deck

- Dm(s),Dm(σ) ⊆
⋃
k≥0(bn(Pj))

deck

- Im(s) ⊆ bn(P)

- Im(σ) ⊆ R ∪ (N \
⋃
k≥0(n(Pj))

deck) �

51

Definition 45 ((N,RP , sP , σP)-environment for Pr) Let N ⊆ NI , and RP ⊆ NRT ,
and sP , σP be name substitutions, and Pr be a π-calculus process. Also, take F =
{x | x ∈ Dm(σP) and xσP /∈ RP}. Then, a (N,RP , sP , σP)-environment for Pr is
defined as follows.

- If F = ∅, then the only (N,RP , sP , σP)-environment for Pr is given by ξ =
ξN + {(x, y) | y = xsP or (y = xσP and xσP ∈ RP) or (yσP = xσP and xσP /∈
RP)}.

- If F 6= ∅ then choose any ordering (x1, . . . , xm) of its elements.
An (N,RP , sP , σP)-environment for Pr is given by the following recurrence:

ξ0 = ξ
ξi+1 = ξi + (xi+1,newD(ξi))

Let ξP be an (N,RP , sP , σP)-environment for Pr and let ξQ be an (N,RQ, sQ, σQ)-
environment for Qr where RQ ⊆ NRT and sQ, σQ are name substitutions and Qr is
a π-calculus process. Then, ξP and ξQ are compatible iff allD(ξP) = allD(ξQ) and
∀x ∈ Dm(σP),∀y ∈ Dm(σQ), (xσP /∈ bn(Pr) and yσQ /∈ bn(Qr) and xσP = yσQ)
implies ξP (x) = ξQ(y). �

Translation 2 (from π-calculus to ground πξ-calculus)
Let P1, P2 be π-calculus processes with N = fn(P1, P2) and let S be a late ground
bisimulation containing (P1, P2). Then define the relation TrE((P1, P2),S) as it
follows.

TrE((P1, P2),S) =
⋃

(Pπ,Qπ)∈S TrE((P1, P2), (Pπ , Qπ))

where TrE((P1, P2), (Pπ , Qπ)) is the set of pairs (ξP :: P, ξQ :: Q) such that, letting
i, j = 1, 2 and i 6= j, the following holds:

- P is a (Pi, Pr, RP , sP , σP)-dual of Pπ and Q is a (Pj , Qr, RQ, sQ, σQ)-dual of
Qπ

- ξP is an (N,RP , sP , σP)-environment for Pr and
ξQ is an (N,RQ, sQ, σQ)-environment for Qr

- ξP and ξQ are compatible

The translation TrL((P1, P2),S) is given by TrE((P1, P2),S) plus the pairs defined
as follows. For each subset of TrE((P1, P2),S) of the shape⋃

c∈allD(ξP)∪newD(ξP)(ξP + (y, c) :: P, ξQ + (z, c) :: Q)

add TrE((P1, P2),S) with the pair (ξP :: λy.P, ξQ :: λz.Q). �

Remark 46 By construction, if (ξP :: P, ξQ :: Q) ∈ TrE((P1, P2), (Pπ , Qπ)) then

- Pπ ≡α Pr ∈ rsp((Dm(σr(ξP :: P)))σr(ξP :: P), [P]s(ξP ::P)σr(ξP :: P)(σc(ξP)σn))

- Qπ ≡α Qr ∈ rsp((Dm(σr(ξQ :: Q)))σr(ξQ :: Q), [Q]s(ξQ::Q)σr(ξQ :: Q)(σc(ξQ)σn))

where Pr and Qr are without homonymy of names and σn is an admissible name
substitution for Im(σc(ξP)) ∪ Im(σc(ξQ)) and the restriction substitutions σr(ξP ::
P) and σr(ξQ :: Q) were computed fixing a particular choice for the canonical
representative crep of Def. 40. �

52

The next step is to establish an operational correspondence in between π-calculus
and πξ-calculus. What we state is actually the relationship between behaviours
of processes which are the one encoding of the other. Since this is proved in an
inductive way, we cannot work directly on translated processes, but rather have to
consider the generic process which could occur in the derivation of a transition of
the encoded agent. Such a generic process is much similar to the process Pπ of
Remark 42 and Remark 46, but can have restrictions on a subset of Im(σr(ξP :: P))
instead of on the whole of it.

Definition 47 We call P−π any α-converse of P−r ∈ rsp(Rσ, [P]
s(ξP ::P)
σ′ σ) where

- Rσ ⊆ Dm(σr(ξP :: P))σ

- Dm(σ′) ⊆ bn([P]s(ξP ::P))

- σ = σr(ξP :: P)σ′′(σc(ξP)σn)

with Dm(σ′′) = Im(σr(ξP :: P)) and σn admissible name substitution for D ⊇
Dm(σc(ξP)) and the refreshments σ′, σ′′ such that P−r is without homonymy either
among its bound names or among its free and bound names. �

Theorem 48 (relating P−π with P) Let P−π , P
−
r be as in Def. 47 and let s = s(ξP ::

P)σ′σ. Then the following holds.

1. If P−π
u1u2−→ P ′π then

P
〈xy,C∧x↓〉−→ P ′ and [[C]]ξP and xs = u1 and ys = u2 and

P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]
s(ξP ::P)
σ′ σ)

2. If P−π
u1(w)−→ P ′π with w fresh then

- either P
〈x(y),C∧x↓〉−→ P ′ and [[C]]ξP and xs = u1 and

P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]
s(ξP ::P)
σ′ σ{w/ys}) and ys /∈ Rσ

- or P
〈xy,C∧x↓〉−→ P ′ and [[C]]ξP and xs = u1 and

P ′π ≡α P ′r ∈ rsp(Rσ \ {ys}, [P ′]s(ξP ::P)
σ′ σ{w/ys}) and ys ∈ Rσ

3. If P−π
u1(w)−→ P ′π with w fresh then

P
〈x(y),C∧x↓〉−→ P ′ and [[C]]ξP and xs = u1 and

P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]
s(ξP ::P)
σ′ σ{w/ys})

4. If P−π
τ−→ P ′π then

- either P
〈τ,C〉−→ P ′ and [[C]]ξP and P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]

s(ξP ::P)
σ′ σ)

- or P
〈τ [x/y],C〉−→ P ′ and [[C]]ξP and

- if [x]ξP ∩ bn(P) 6= ∅ and [x]ξP ∩ bn(P ′) = ∅
then P ′π ≡α P ′r ∈ rsp(Rσ ∪ {w}, [P ′]s(ξP ::P)

σ′ σ{w/xs,w/ys}) with w
fresh

- else either P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]
s(ξP ::P){xs/y}
σ′ σ)

or P ′π ≡α P ′r ∈ rsp(Rσ{w/xs}, [P ′]s(ξP ::P)
σ′ σ{w/xs,w/ys}) with w

fresh �

53

Theorem 49 (relating P with P−π) Let P−π , P
−
r be as in Def. 47 and let s = s(ξP ::

P)σ′σ. Then the following holds.

1. If P
〈xy,C∧x↓〉−→ P ′ and [[C]]ξP and [x]ξP ∩ bn(P) = ∅ and xs /∈ Rσ then

- if ys /∈ Rσ then P−π
xsys−→ P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]

s(ξP ::P)
σ′ σ)

- else P−π
xs(w)−→ P ′π ≡α P ′r ∈ rsp(Rσ \ {ys}, [P ′]s(ξP ::P)

σ′ σ{w/ys}) with w
fresh

2. If P
〈x(y),C∧x↓〉−→ P ′ and [[C]]ξP and [x]ξP ∩ bn(P) = ∅ and xs /∈ Rσ then

P−π
xs(w)−→ P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]

s(ξP ::P)
σ′ σ{w/ys}) with w fresh

3. If P
〈x(y),C∧x↓〉−→ P ′ and [[C]]ξP and [x]ξP ∩ bn(P) = ∅ and xs /∈ Rσ then

P−π
xs(w)−→ P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]

s(ξP ::P)
σ′ σ{w/ys}) with w fresh

4. If P
〈τ,C〉−→ P ′ and [[C]]ξP then P−π

τ−→ P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]
s(ξP ::P)
σ′ σ)

5. If P
〈τ [x/y],C〉−→ P ′ and [[C]]ξP then P−π

τ−→ P ′π and

- if [x]ξP ∩ bn(P) 6= ∅ and [x]ξP ∩ bn(P ′) = ∅
then P ′π ≡α P ′r ∈ rsp(Rσ ∪ {w}, [P ′]s(ξP ::P)

σ′ σ{w/xs,w/ys}) with w fresh

- else either P ′π ≡α P ′r ∈ rsp(Rσ, [P ′]
s(ξP ::P){xs/y}
σ′ σ)

or P ′π ≡α P ′r ∈ rsp(Rσ{w/xs}, [P ′]s(ξP ::P)
σ′ σ{w/xs,w/ys}) with w fresh

�

Eventually, the following proposition provides, in terms of statements on relevant
name substitutions and obligations, what is needed to definitely relate (both ways)
the symbolic transitions of the processes in Th. 48 and Th. 49 with the concrete
moves of the (encoding/encoded) top-level πξ-processes.

Proposition 50 Let Pπ , Pr and Qπ, Qr be as in Remark 42. Then the following
holds.

1. xs(ξP :: P)σ′PσP ∈ fn(Pπ) implies [[x↓]]ξP

2. ξP (x) = ξQ(y) ∈ D implies xs(ξP :: P)σ′
P
σP = ys(ξQ :: Q)σ′

Q
σQ

3. [[x↓]]ξQ implies [x]ξQ ∩ bn(Q) = ∅ and xs(ξQ :: Q)σ′QσQ /∈ Dm(σr(ξQ :: Q))σQ
�

Proof of Theorem 7, sketch
Once proved the results on semantic correspondences, those about equational char-
acterizations are easy corollaries of Th. 6. We then concentrate on the first kind of
statements, dealing with all of the three items simultaneously.

(only if)

Assume that either (ξN :: P1) l (ξN :: P2) with l ∈ {∼,≈} or (ξN :: P1) ≈c
(ξN :: P2). In both cases, by hypothesis there exists a bisimulation S ⊆ l con-
taining the pair (ξN :: P1, ξ

N :: P2), and also some extra hypotheses do hold when

54

(ξN :: P1) ≈c (ξN :: P2). The relation Trξ(S) contains by construction the pair
(P1, P2) and it is proven to be the wanted π-calculus equivalence relation.
Letting (Pπ , Qπ) ∈ Trξ((ξP :: P, ξQ :: Q)) ⊆ Trξ(S), the proof is by case analysis

on Pπ
α−→ P ′π. Each case goes as it follows. By Th. 48 the corresponding symbolic

transition from P is recovered. Then Prop. 50 is invoked to guarantee that the
symbolic step from P is actually converted into a concrete move from ξP :: P . By
the hypothesis (ξP :: P, ξQ :: Q) ∈ S, we then have complete information about
the corresponding move of ξQ :: Q and proceed to find out the wanted transition

Qπ
α−→ Q′π with (P ′π , Q

′
π) ∈ Trξ(S). This requires a kind of inversion of the above

reasoning that appeals, this time, to Prop. 50 and Th. 49. Also, in the case when
S is a weak relation (i.e. it proves that (ξN :: P1) and (ξN :: P2) are either weak
bisimilar or weak congruent) we resort to an intermediate result about the relation-
ship of the weak behaviours of ξQ :: Q and Qπ. Eventually, when the action α is
an input action, the fact that (P ′π{z/w}, Q′π{z/w}) ∈ Trξ(S) for all z follows quite
easily by the definition of the encoding.

(if)

Assume that either P1 �̇L P2 with �̇L ∈ {∼̇L, ≈̇L} or P1 '̇L P2. Also suppose that
the relation S ⊆ �̇L contains the pair (P1, P2) and witnesses their bisimilarity. By
definition of TrL, the relation TrL((P1, P2),S) contains the pair (ξN :: P1, ξ

N :: P2).
It remains to show that TrL((P1, P2),S) is the required πξ-calculus bisimulation,
and, in case P1 '̇L P2, also that TrL((P1, P2),S) guarantees (ξN :: P1) ≈c (ξN :: P2).
By construction, given any pair (ξP :: P, ξQ :: Q) ∈ TrL((P1, P2), (Pπ , Qπ)) either
both or none of P and Q are led by a λ-abstraction. In both cases the proof of
TrL((P1, P2),S) ⊆ ∼ is based on a case analysis of the actions performed by ξP :: P .

Then assume that ξP :: P
ρ−−. ξP ′ :: P ′′.

If P has the shape λy.P ′, namely if ρ = [c] for some constant c, then the thesis is
an easy consequence of the fact that, by definition of the encoding, some ξQ :: λz.Q′

there exists such that (ξP :: λy.P ′, ξQ :: λz.Q′) ∈ TrL((P1, P2),S).
Suppose now that P is not led by a λ-abstraction. In this case we first appeal to the
symbolic transition of P which induced the concrete move labelled by ρ. Prop. 50
ensures that the hypotheses of Th. 49 are met, hence we retrieve a corresponding
transition from Pπ. By that, and by (Pπ , Qπ) ∈ S, we switch to investigate the
symbolic behaviour of Q, by invoking Th. 48, and possibly its weak version (in case
we are dealing with a τ -forgetting relation). At this point of the proof, Prop. 50
can be applied to guarantee that the symbolic step actually induces the concrete

move ξQ :: Q
ρ−−. ξQ′ :: Q′′ with (ξP ′ :: P ′′, ξQ′ :: Q′′) ∈ TrL((P1, P2),S), whether

or not P ′′ is led by a λ-abstraction. �

Appendix B

In the following we will refer to some of the main constructions and statements
presented in Appendix A.

Translation 3 (from open πξ-calculus to π-calculus)
Let S be a strong bisimulation relation contained in ∼ηO . Then

Trvξ (S) =
⋃

(ξvP ::P,ξvQ::Q)∈S Trξ
(
(ξv
P
σv :: P, ξv

Q
σv :: Q)

)

55

with

- σv variable substitution for both ξv
P

and ξv
Q

- Trξ((ξ
v
Pσ

v :: P, ξvQσ
v :: Q)) defined analogously as in Trans. 1, that is as the

set of pairs (Pπ , Qπ) such that

- Pπ ≡α P̂ (σc(ξv
P
σv)σn)

- Qπ ≡α Q̂(σc(ξv
Q
σv)σn)

- P̂ ∈ rsp(Im(σr(ξvPσ
v :: P)), [P]s(ξ

v
P σ

v ::P)σr(ξvPσ
v :: P))

- Q̂ ∈ rsp(Im(σr(ξvQσ
v :: Q)), [Q]s(ξ

v
Qσ

v ::Q)σr(ξvQσ
v :: Q))

- σn admissible name substitution for Im(σc(ξvPσ
v)) ∪ Im(σc(ξvQσ

v)). �

Translation 4 (from π-calculus to open πξ-calculus)
Let P1, P2 be π-calculus processes and let S be an open bisimulation containing
(P1, P2). Then define the relation TrO((P1, P2),S) as it follows.

TrO((P1, P2),S) =
⋃
S(Pπ,Qπ)

TrO((P1, P2),S(Pπ ,Qπ))

where

- S(Pπ,Qπ) is the subset of S of the shape
⋃
σπ
{(Pπσπ, Qπσπ)}

- TrO((P1, P2),S(Pπ ,Qπ)) is given by the set of pairs (ξvP :: P, ξvQ :: Q) such that,
letting i, j = 1, 2 and i 6= j

- P is a (Pi, Pr, RP , sP , σPσπ)-dual of Pπσπ

- Q is a (Pj , Qr, RQ, sQ, σQσπ)-dual of Qπσπ

- ξvP and ξvQ such that for all variable substitutions σv for both ξvP and ξvQ
it holds that ξv

P
σv = ξP and ξv

Q
σv = ξQ where ξP and ξQ are defined as

it follows

- ξP is an (∅, RP , sP , σPσπ)-environment for Pr
- ξQ is an (∅, RQ, sQ, σQσπ)-environment for Qr
- ξP and ξQ are compatible �

The observations collected below partially correspond to both Remark 42 and Re-
mark 46. Those comments will allow us to take advantage of the main theorems of
Appendix A while reasoning modulo arbitrary substitutions.

Remark 51 The following observations about Translations 3 and 4 do hold.

1. (on Trans. 3)
Let Pπ and Qπ be as in Trans. 3 and let σπ be any substitution from names to
names. By construction, for some Pr without homonymy either among bound
names or among free and bound names Pπσπ ≡α Pr where

- Pr ∈ rsp(Dm(σr(ξvPσ
v :: P))σP , [P]

s(ξvPσ
v ::P)

σ′P
σP)

- σP = σr(ξvPσ
v :: P)σ′′P (σc(ξvPσ

v)σn)σπ

- σ′
P
, σ′′

P
are, respectively, the refreshment of the bound names of P and

the refreshment of the names in Im(σr(ξvPσ
v :: P))

56

Similarly, for a suitable Qr without homonymy of names and suitable substi-
tutions σ′Q, σ

′′
Q, it holds that Qπσπ ≡α Qr where

- Qr ∈ rsp(Dm(σr(ξv
Q
σv :: Q))σQ, [Q]

s(ξvQσ
v ::Q)

σ′Q
σQ)

- σQ = σr(ξv
Q
σv :: Q)σ′′

Q
(σc(ξv

Q
σv)σn)σπ

2. (on Trans. 4)
Let (ξv

P
:: P, ξv

Q
:: Q) ∈ TrO((P1, P2),S(Pπ,Qπ)) then

- Pπσπ ≡α Pr ∈ rsp((Dm(sP))sP , [P]s(ξ
v
Pσ

v ::P)sP (σc(ξv
P
σv)σn)σπ)

- Qπσπ ≡α Qr ∈ rsp((Dm(sQ))sQ, [Q]s(ξ
v
Qσ

v ::Q)sQ(σc(ξvQσ
v)σn)σπ)

where

- Pr and Qr are without homonymy of names

- sP stays for the restriction substitution σr(ξvPσ
v :: P)

- sQ stays for the restriction substitution σr(ξvQσ
v :: Q)

- σv is a variable substitution for both ξv
P

and ξv
Q

- σn is an admissible name substitution for Im(σc(ξv
P
σv)) ∪ Im(σc(ξv

Q
σv))

3. The above observations guarantees that the main statements about opera-
tional correspondence recalled in Appendix A (Th. 48, Th. 49, and Prop. 50)
can be revisited by letting

- Pπ be substituted by Pπσπ

- Qπ be substituted by Qπσπ

- ξP be substituted by ξv
P
σv

- ξQ be substituted by ξv
Q
σv

- P−π be substituted by (Pπσπ)−

- etcetera. �

We can now prove the coincidence result for open semantics.

Proof of Theorem 39
For the proof of both the ‘if’ and the ‘only if’ directions, we suppose that a given
relation S witnesses the hypothesis. Then the actual statement is shown to hold by
transforming the relation S along the guide-lines described in Trans. 3 and Trans. 4.

(only if)

Assume that a relation S ⊆ ∼ηO there exists with (ξL :: P1, ξ
L :: P2) ∈ S. By

construction (P1, P2) ∈ Trvξ (S). We now show that Trvξ (S) ⊆ ∼O.

Letting (Pπ , Qπ) ∈ Trξ((ξvPσv :: P, ξvQσ
v :: Q)), it is a matter of proving that for all

substitutions σπ

whenever Pπσπ
απ−→ P ′π with bn(απ) fresh

then Qπσπ
απ−→ Q′π and (P ′π , Q

′
π) ∈ Trvξ (S)

57

The proof is by case analysis, and each case has the following structure.

Assume Pπσπ
απ−→ P ′π

=⇒ By Th. 48 and Remark 51 it follows that P
〈αP ,CP 〉−→ P ′ with [[CP]]ξv

P
σv and

a given relationship between αP and απ and between P ′π and the pair (ξvPσ
v, P ′).

Also, if the action αP uses a name as subject – i.e. if αP 6= τ, τ [x/y] – then by
Prop. 50 and Remark 51 it follows that the equivalence class of such a channel
name is defined in the environment ξvPσ

v. This fact partially satisfies the hypoth-
esis which are necessary for the forthcoming application of the revisited version of
Th. 49

=⇒ By [[CP]]ξv
P
σv and by Prop. 37 it follows that ξv

P
] 〈[CP]〉ξv

P
6= ε

=⇒ ξvP :: P
f−−.ηO ξv

P ′ :: P ′ with some precise relationship between αP and
f(Im(σv)) and hence between απ and f(Im(σv))

=⇒ By (ξvP :: P, ξvQ :: Q) ∈ S some ξv
Q′ :: Q′ there exists such that ξvQ :: Q

f−−.ηO
ξv
Q′ :: Q′ and (ξv

P ′ :: P ′, ξv
Q′ :: Q′) ∈ S

=⇒ Q
〈αQ,CQ〉−→ Q′ with ξv

Q
] 〈[CQ]〉ξv

Q
6= ε and a sharp relationship between αQ and

f(Im(σv)) and then, by transitivity, between αQ and απ

=⇒ By the hypothesis that σv is a variable substitution for ξv
Q

and by Prop. 37 it
follows that [[CQ]]ξvQσ

v

=⇒ By Remark 51 and Th. 49 it comes that Qπσπ
απ−→ Q′π with a relationship

between P ′π and Q′π which guarantees that (P ′π , Q
′
π) ∈ Trvξ (S). In fact it holds that

(ξv
P ′ :: P ′, ξv

Q′ :: Q′) ∈ S. Moreover, if απ is not an input action then just (P ′π , Q
′
π) ∈

Trξ((ξ
v
P ′σ

v :: P ′, ξv
Q′σ

v :: Q′)). Otherwise (P ′π , Q
′
π) ∈ Trξ((ξ

v
P ′σ :: P ′, ξv

Q′σ :: Q′))
for σ which coincides with σv on the common domain and extends it with a new
component {c/vm+1}. Such a component makes ground the last generated variable.

(if)

Assume now that the relation S ⊆ ∼O is given, and that (P1, P2) ∈ S. By construc-
tion (ξL :: P1, ξ

L :: P2) ∈ TrO((P1, P2),S). We now show that TrO((P1, P2),S) is a
strong bisimulation contained in ∼ηO .

Let (ξv
P

:: P, ξv
Q

:: Q) ∈ TrO((P1, P2),S(Pπ ,Qπ)). Also suppose that ξv
P

:: P
f−−.ηO

ξv
P ′ :: P ′ and let σ be any variable substitution for ξv

P ′

=⇒ P
〈αP ,CP 〉−→ P ′ with ξvP] 〈[CP]〉ξvP 6= ε and a fixed relationship between αP and

f(Im(σ))

=⇒ By Prop. 38 and Prop. 37 it holds that [[CP]]ξvPσ
v where σv = frag(σ, ξvP)

=⇒ By Remark 51 and Th. 49 it follows that Pπσπ
απ−→ P ′π with a precise rela-

tionship between P ′π and ξv
P ′ :: P ′ and between απ and αP , that is between απ and

f(Im(σ)). The ground observation f(Im(σ)) is in turn related to f(Im(σv)) in the
obvious way

=⇒ By (Pπ , Qπ) ∈ S it follows that Qπσπ
απ−→ Q′π with (P ′π, Q

′
π) ∈ S

=⇒ By Remark 51 and Th. 48 it comes that Q
〈αQ,CQ〉−→ Q′ with [[CQ]]ξvQσ

v and
a fixed relationship between Q′π and ξv

Q
σv :: Q′ and between αQ and απ, that is

between αQ and f(Im(σv))

58

=⇒ By Prop. 37 it comes that ξv
Q
] 〈[CQ]〉ξv

Q
6= ε. Hence the thesis follows. In fact

ξv
Q

:: Q
h−−.ηO ξvQ′ :: Q′ and by the assumed generality of σ and by Prop. 38 it derives

that the two functions f and h are point-wise equal. Moreover, by (P ′π , Q
′
π) ∈ S and

the assumption on σ it also holds that (ξv
P ′ :: P ′, ξv

Q′ :: Q′) ∈ TrO((P1, P2),S(P ′π,Q
′
π)).
�

59

Recent BRICS Report Series Publications

RS-97-52 Paola Quaglia. On the Finitary Characterization of π-
Congruences. December 1997. 59 pp.

RS-97-51 James McKinna and Robert Pollack.Some Lambda Calculus
and Type Theory Formalized. December 1997. 43 pp.

RS-97-50 Ivan B. Damg̊ard and Birgit Pfitzmann. Sequential Iteration of
Interactive Arguments and an Efficient Zero-Knowledge Argu-
ment for NP. December 1997. 19 pp.

RS-97-49 Peter D. Mosses. CASL for ASF+SDF Users. December
1997. 22 pp. Appears inASF+SDF’97, Proceedings of the
2nd International Workshop on the Theory and Practice of
Algebraic Specifications, Electronic Workshops in Comput-
ing, http://www.springer.co.uk/ewic/workshops/ASFSDF97.
Springer-Verlag, 1997.

RS-97-48 Peter D. Mosses.CoFI: The Common Framework Initiative
for Algebraic Specification and Development. December 1997.
24 pp. Appears in Bidoit and Dauchet, editors,Theory and
Practice of Software Development. 7th International Joint Con-
ference CAAP/FASE, TAPSOFT ’97 Proceedings, LNCS 1214,
1997, pages 115–137.

RS-97-47 Anders B. Sandholm and Michael I. Schwartzbach. Dis-
tributed Safety Controllers for Web Services. December 1997.
20 pp. To appear in European Theory and Practice of Soft-
ware. 1st Joint Conference FoSSaCS/FASE/ESOP/CC/TACAS,
ETAPS ’97 Proceedings, LNCS, 1998.

RS-97-46 Olivier Danvy and Kristoffer H. Rose. Higher-Order Rewrit-
ing and Partial Evaluation. December 1997. 20 pp. Extended
version of paper to appear inRewriting Techniques and Appli-
cations: 9th International Conference, RTA ’98 Proceedings,
LNCS, 1998.

RS-97-45 Uwe Nestmann.What Is a ‘Good’ Encoding of Guarded Choice?
December 1997. 28 pp. Revised and slightly extended version
of a paper published in5th International Workshop on Expres-
siveness in Concurrency, EXPRESS ’97 Proceedings, volume 7
of Electronic Notes in Theoretical Computer Science, Elsevier
Science Publishers.

