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Abstract

We demonstrate the usefulness of higher-order rewriting techniques for
specializing programs, i.e., for partial evaluation. More precisely, we
demonstrate how casting program specializers as combinatory reduction
systems (CRSs) makes it possible to formalize the corresponding pro-
gram transformations as meta-reductions, i.e., reductions in the internal
“substitution calculus.” For partial-evaluation problems, this means that
instead of having to prove on a case-by-case basis that one’s “two-level
functions” operate properly, one can concisely formalize them as a com-
binatory reduction system and obtain as a corollary that static reduction
does not go wrong and yields a well-formed residual program.

We have found that the CRS substitution calculus provides an ade-
quate expressive power to formalize partial evaluation: it provides suffi-
cient termination strength while avoiding the need for additional restric-
tions such as types that would complicate the description unnecessarily
(for our purpose). We also review the benefits and penalties entailed by
more expressive higher-order formalisms.

In addition, partial evaluation provides a number of examples of
higher-order rewriting where being higher order is a central (rather than
an occasional or merely exotic) property. We illustrate this by demon-
strating how standard but non-trivial partial-evaluation examples are
handled with higher-order rewriting.

*Basic Research in Computer Science (Centre of the Danish Research Foundation).
TBuilding 540, Ny Munkegade, DK-8000 Aarhus C, Denmark; (danvy@brics.dk).
Laboratoire de I'Informatique du Parallélisme.
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1 Introduction

Most programs are overly general: they usually run with some invariants (e.g.,
part of their input is constant). Partial evaluation aims at specializing pro-
grams with respect to these invariants [5, 13]. According to Kleene’s S)"-
theorem [15], specializing a program with respect to [an invariant] part of its
input is computable, and running the corresponding specialized program on
the remaining input should yield the same result as running the source pro-
gram on the complete input, provided of course that the source program, the
partial evaluator, and the residual program all terminate. The practical appeal
of partial evaluation is that specialized programs are usually more efficient, so
that running them amortizes the cost of partial evaluation.

What we find curious is that while in effect the renewal of partial evaluation
originates in the area of rewriting techniques [14], there has been virtually
no work to continue bridging the two areas. In this article we address this
by formalizing the rewriting technique underlying standard partial-evaluation
examples. Our prime target is the removal of interpretive overhead. In that
view, any program traversing a data structure is an “interpreter” for that
data structure (Abelson makes this point comprehensively in his foreword to
“Essentials of Programming Languages” [11]). We thus focus on inductive
data types and the associated functionals (or “derivors”).

Our starting-point is the following analogy:



e In partial evaluation (PE) we specialize programs by performing part of
them “in advance.” This is achieved by using “two-level functions” that
perform a mix of static evaluation and dynamic code generation.

e In rewriting we model (functional) programs by rewrite systems with a
special “application” operator which is the root symbol of all (functional)
rewrite rules. Since each application means we have to do work, we are
interested in reducing the number of applications that are built, ideally
to zero. We can do this using higher-order techniques in the framework
of combinatory reduction systems (CRSs).

By recasting PE in the CRS formalism we should thus be able to exploit
the meta-reductions in CRSs to perform the static reductions of our two-level
functions.

Road map: The rest of the article is organized as follows: Section 2 reviews
the two-level programming technique used in partial evaluation. Section 3
provides the necessary background in combinatory reduction systems, show-
ing how simple program transformations can be cast as higher-order rewrite
systems. Section 4 presents our synthesis between rewriting and partial evalu-
ation, culminating with the detailed description of how to derive a specializer,
and exemplified by a formal treatement of a classical example of specialization,
a continuation-passing style (CPS) transformation for the A-calculus. Section 5
concludes and briefly mentions some related work and future directions.

2 Partial Evaluation

In this section we illustrate partial evaluation through two examples: a first-
order one and the higher-order one of traversing binary trees. The latter one
hints at the style of transformation techniques used in the following sections.

2.1 A first-order example

So what is specialization? Specializing a program amounts to parameterizing
it with code-generating (two-level) functions and running it. Let us demon-
strate this with a first-order example: natural numbers and the exponentiation
program, which is standard in partial evaluation. It is expressed as a simple
conditional recursive equation as follows:

z ifn=1
2" =< 22 x "2 if n even
D otherwise



Seen as a function definition, i.e., reading the equation from left to right,
the exponentiation program is a derivor: it decomposes — or interprets — the
exponent, in a trail of multiplications. Our aim is to specialize this derivor
with respect to a particular exponent, which we achieve by interpreting the
static exponent, in a trail of residual multiplications.

Here is the annotated derivor, where we have overlined the static parts
that we can compute immediately when n becomes available:

B x ifn=1
2" =1 "2 x "2 if n even
A otherwise

Such a program is variously known as a generating extension [13] or a backquote
interpreter [11] in the literature.

In any case, repeatedly evaluating the overlined subexpressions of z° gives
the residual expression X ((z x ) X (z x z)), which is in normal form since
there are no further overlined expressions to evaluate. The trail of residual
multiplications is all that remains of the static reductions.

2.2 A higher-order example

Consider the data type aBT of binary trees over some (unspecified) type a:
aBT := Leaf(a) | Node(aBT,aBT)
and its associated fold functional Fold typed as follows:
Fold : (a = p)x(Bxp—p)—aBT —

As is customary in functional programming, we instantiate this fold functional
with two functions: one for processing the leaves, and one for processing the
nodes. For example, the application

Fold ( Az.1, X{l,r).(l+7))

yields a function computing the number of leaves in a binary tree.

As is customary in partial evaluation, we instantiate this fold functional
with three two-level functions: one for processing the leaves and one for pro-
cessing the nodes, plus one to initialize the static computation. As before we
overline static parts, here As and applications.! Supplying a given binary tree

! An application is denoted by the space between two subexpressions, so x y is a static
application whereas z y is not.



to this fold function yields a residual program where the interpretive over-
head of the fold function has been eliminated. For example, given unspecified
function names L and N, the expression

Fold~ (Az.Lz , Xl,7).Nlr)

yields a residual program combining L and N in a way that is isomorphic to
the structure of the given binary tree. Applying the above to a binary tree
such as

Node(Node(Leaf (1), Leaf (2)), Leaf (3))
yields the residual program
N (N (L1)(L2)) (L3)

which is well-formed since neither overlines nor (-, -)-pairs remain.

3 Combinatory Reduction Systems and Functional
Programming

In this article, we use Klop’s Combinatory Reduction System (CRS) formalism.
In this section we first summarize the definition of CRSs [16, 18] before relating
them to functional programming with a simple example demonstrating the use
of higher-order rewriting to express improvements to functional programs.

3.1 Combinatory Reduction Systems

The following is a brief summary of the definition of CRSs. To avoid nota-
tional overloading of ordinary parentheses, we slightly modify the standard
presentation of CRSs [18, §11-12]. We write -.- and -[-] instead of [-]- and -(-)
for abstraction and meta-application, respectively.

3.1.1. Definition (many-sorted CRS). Assume a signature ¥ of ranked
symbols F"  variables z, and ranked meta-variables z" (in both cases the
superscript n is the rank).

1. CRS terms have the form
t o= x| zt | F*"(t1,...,tn)

and must be closed (that is, fv(t) = {} where fv(z) = {z}, fv(z.t) =
fv(t) \ {z}, and fv(F™) = |J;_, fv(¢;)). The three forms are respectively
called wvariable, abstraction, and construction.



. CRS meta-terms extend CRS terms to
tu=x | xt | F"(t1,...,tn) | 2"[t1,...,tn]
The new form is called a meta-application.

. An assignment o specifies how to eliminate meta-applications that use
specific meta-variables. It is a collection of pairs (z2"[x1,...,z,],t') with
distinct z;; o(t) is the resulting term where everywhere in ¢, 2" [t1, . .., ]
is replaced by t'{zy := t1,...,2, = t,} (which denotes an ordinary
simultaneous substitution). The assignment o is safe if

vz,7' : fv(o(z)) Nbv(o(Z) = @

(with bv(+) denoting the bound variables of a preterm defined inductively
as bv(z) = @, bv([z]t) = {z} Ubv(t), and bv(F"(f)) = bv(z"(f)) =
Uiz v (t:)-

. CRS rules, written £ — r, are constructed from two meta-terms ¢ and r
with the following additional restrictions:

(a) £ (the left-hand side) must be a “pattern:” a construction where
all meta-applications have the form z"[x1, ..., x,| with distinct x;,
and

(b) r (the right-hand side) can only contain meta-applications with
meta-variables occurring in the left-hand side.

The rewrite rule £ — r is safe for an assignment o if ¢ and r (considered
as preterms) satisfy

Vz € mv(p) Vz € fv(o(z)) : = ¢ (bv(£) Ubv(r))
(with mv(-) denoting the meta-variables of a term).

. We say that a term ¢t matches a pattern £ if an assignment o exists such
that ¢ = o(¢) (the intuition being that each pattern meta-application
z"[x1,...,Ty] becomes part of the assignment of o). The assignment
must be safe (we can ensure this by renaming).

. The rules define the CRS rewrite relation: s — t iff s and t are identical
except for one subterm: In s, it must be o(¢) for some assignment o, the
“redex.” In ¢, it must be o(r), the “contractum.”  The rule must be
safe for the assignment (again we can ensure this by renaming).

. A sorted CRS is the subsystem obtained by restricting terms to be “well-
sorted” according to some syntax specification, and assigning to each
meta-variable a sort that it must match.



We use the usual abbreviations for CRSs. In particular, we omit the rank
superscript and abbreviate F!(z.F!(y.t)), FO(), and z°[], as Fxy.t, F, and z,
respectively. We also exploit conventions introduced in syntax productions to
bind meta-variables to sorts and introduce infix binary constructors.

We do not delve further into the exciting details of the properties of rewrit-
ing systems in general and CRS in particular but refer the reader to the com-
prehensive literature on the subject [17, 18]. Instead we go straight to our
basic example.

3.1.2. Example (2-level A-calculus). The 2-level A-calculus, denoted A, is
the single-sorted CRS over the A-terms

E =22 | A\.E | EgE1 | A\z.E | By Eg

where concatenation denotes “application” (the invisible infix application func-
tion symbol sometimes written as @), Eg E; is “overlined application” (also
@), and both associate to the left as usual. Its rewrite rules read

(\z.E[z]) B — E[E] (B)
(Az.E[z]) E — B[E]. (B)

(The subset with no overlines and with just 5 as reduction is the usual AS-
calculus denoted A [2].)

Thus as a CRS, X has the constructors !, Xl, @?, and @2, with the
restriction on \!(¢) and bY (t) that ¢t must be a CRS abstraction z.t'.

3.1.3. Definition (abstract rewriting). Binary relations are denoted by
arrows. Relational composition is written ? . ?; the inverse of — is <, its

transitive reflexive closure is —», and its normalisation function is — (the
restriction of — to just the reductions ending in a normal form). Two relations
commute if (<T . ?) - (? . T), a relation — is confluent if —» self-commutes.

Finally a relation is convergent if it is confluent and terminating, i.e., has no
infinite reduction sequences.

3.1.4. Definition (CRS restrictions). A CRS is left-linear if all meta-variables
occurring in each left-hand side are distinct. A CRS is non-overlapping if it

is impossible for a symbol in a term to be part of two redexes in the term. A
CRS is orthogonal if it is left-linear and non-overlapping. A constructor CRS’s
symbols are in two disjoint sets: functions that occur at the root of left-hand
sides and constructors that do not. Finally, a CRS is a term-rewriting system
(TRS) if all meta-variables used in rules are nullary.



3.1.5. Example. X is a left-linear and non-overlapping (hence orthogonal)

constructor CRS (with functions @, @ and constructors A, A) but not a TRS.
3.1.6. Theorem. Orthogonal CRSs are confluent [16, 18].

3.1.7. Example. X is orthogonal, hence confluent.

3.2 Comparing to functional programs

First-order functional programs are usually said to correspond to left-linear
constructor TRSs. We observe that untyped higher-order functional program-
ming corresponds to adding § to the underlying formalism, thus interpreting
the special relationship between the application function symbol and the A
constructor.

Functional programming languages do not enforce orthogonality but usu-
ally obtain uniqueness of the result by fixing a deterministic reduction strategy,
permitting only one rule at any point according to some priority principle.
However, typically the model used for programming does not enforce a partic-
ular reduction strategy, so therefore program transformations do benefit from
being orthogonal because they involve reducing out of the usual order (such
reductions are typically called “non-standard”).

3.2.1. Example (binary tree folding, functional style). A binary tree of
integers has two sorts: trees,

T = Leaf(1) | Node(Ty,Ts)

and integers, I. “Folding” over the tree means replacing each Node(Ti,T2)
with an application N T; To and each leaf Leaf (1) with L 1, as discussed in
section 2.2. A typical “functional program” rewrite system to do this is the fol-
lowing (left-linear constructor) TRS over trees extended with the symbol Fold:

Fold(v,N, Leaf (1)) - L 1 (1)
Fold(L,N, Node(T1,T2)) — N (Fold(L,N,T1)) (Fold(L,N, Tz)) (2)

For any tree T this system rewrites Fold(L, N, T) to the folding of T with L
and N. Running it? on an example term gives

Fold(L, N, Node(Node(Leaf (1), Node (Leaf (2), Leaf (3))),
Node(Node(Leaf (4), Leaf (5)), Leaf (6))))
— N (N (L1)(N (L2)(L3)))(N (N (L4)(L5))(L6))

2All examples were run with the CRS implementation of the second author’s PhD the-
sis [26, chapter6], adapted to the present syntax.



as should be expected.

Assume now that we wish to flatten trees just as we programmed it in
the previous section, converting the tree to a list of the leaf integers. The
following makes Flatten(T) rewrite to this effect when combined with Fold
and A to achieve the function reduction (thus this program is higher-order):

Flatten(T) — Fold( Aia.Cons(i,a) , Acicaa.ci(c2 a) , T ) Nil (3)
Running the system on an example term gives

Flatten(Node(Node(Leaf (1), Node(Leaf (2), Leaf (3))),
Node(Node(Leaf (4), Leaf (5)), Leaf (6))))
—» Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Cons(6, Nil)))))).

The inconvenience of the above system (and of functional programming
in general) is that the only rule doing actual rearrangement is 3: the folding
itself does nothing but build applications. This can be fixed by exploiting the
possibilities of the CRS formalism for matching functions in any rule rather
than just in §. In the next example, we thus reconsider flattening.

3.2.2. Example (binary tree folding, CRS). Consider binary trees as be-
fore with the additional auxiliary symbols L' and N2. We then define folding
by pattern matching on the functions to let the CRS formalism do the work
of unfolding the leaf- and node-functions; furthermore we add a root function
applied by the wrapper Fold':

Fold'(\t.R[t],L,N, T) — R[Fold (L, N, T)] (4)
Fold(\i.L[i],N, Leaf (T)) — L[T] (5)
Fold(L, Ast.N[s, t], Node(T1,T2)) — (6)

N[Fold(L, Ast.N[s, t],T1), Fold (L, Ast.N[s, ], T2)]

Then flattening is merely dispersing yet another “continuation” wrapped in
special (-,-) brackets which are pattern-matched by the fold functions:

Flatten(T) — Fold'( M\x.x(Az.(z, Nil)), Ni.L i, Nlr.N L7, T) (7)
L A (A\z.(z,B)) — Cons(A,B) (8)
N ABC— A (M.(v,BC)) 9)

Notice that there are two levels of functions involved: the function constructed
with an explicit ) in the arguments to Fold’, and the function encoded by the L
and N rules. The solution is elegant and very efficient since all the constructed
abstractions are known to have the form Az.(z, A) where z is not free in A, so
substitution is not costly — in fact we exploit this in the pattern of (8) where



B is not written as B[z] because we know it does not contain a free occurrence
of z. Folding the sample tree gives the same result as in the previous example,
of course. The only remaining inconvenience is the fact that we still have to
prove that all (-) brackets are eliminated.

4 Synthesis

In this section we apply the higher-order rewriting technology discussed in
the last section to partial evaluation, and we formalise the notion of a pro-
gram specializer accordingly. We use this to prove a general theorem of well-
annotatedness of specializers when given in the form of two-level derivors.

We first set the scene in section 4.1 by defining the notion of “derivor”
formally, and proving the properties we need, before stating our main example
in section 4.2, the continuation-passing style transformation, and showing how
concisely it is accounted for using higher-order rewriting. Finally, section 4.3
presents our main result: how one can mechanically transform a two-level
derivor into a specializer where all “administrative reductions” are achieved
through the CRS substitution calculus. The transformation can even be used
as a test of well-annotatedness since it only works if the two-level derivor was
“well-annotated” to start with.

4.1 Derivors

We only consider syntax-directed program transformations. They are usually
specified compositionally in the following sense.

4.1.1. Definition. A constructor CRS is compositional if each function sym-
bol is compositional in one of its arguments, i.e., if it has a distinguished
argument such that the distinguished argument of all function constructions
in the right-hand side of rules is always a strict subterm of the distinguished
argument of the function construction on the left-hand side. Only one ex-
ception is permitted (to facilitate “root” rules): if a function symbol occurs
only on left-hand sides, then the rules where it occurs are exempted from the
constraint.

4.1.2. Example. The system of Example 3.2.2 is compositional: the symbol
Fold’ occurs only on the left-hand side, in (4) and the occurrences of Fold in
the other two rules, (5) and (6), are compositional in the third argument.

4.1.3. Lemma. A compositional constructor CRS is terminating.

Proof. We first consider the case with just one function F™, compositional in

10



the first argument, and one constructor C". Consider

[F(T1, .- Ta)] = TS W [T1] @ - - - @ [T0] (10)
[C™(T1,...,Tp)] = [T1] W - & [Th] (11)
|F™(T1,...,Tp)| = L+ |T1| + -+ + |Tp] (12)
|C™(T1,. .., T)| = 1+ |T1| + -+ + [T (13)

where | denotes a multiset and & is multiset union. This interprets any term
t into a multiset expression obtained as (the normal form of) [t]. Now the
compositionality condition ensures that for every rewrite ¢ — s in the original
system, [t] >* [s], where >* is the multiset ordering induced by ordinary
natural number comparison > (so one multiset is larger than another where
one of its elements is replaced by any number of smaller elements). Since >*
is terminating [9], so is the CRS. The argument generalises easily to systems
with any number of functions and constructors, and terms with a function
symbols only in the left-hand side of rules contribute a single element with
value equal to the sum of all subterm sizes, multiplied by the largest number
of copies made of a subterm by any single rule. O

Now we can characterize the program transformers under consideration.

4.1.4. Definition. A derivor is an orthogonal and compositional constructor
CRS where the normal forms contain only constructors.

4.1.5. Example. The interpretation system used in the proof of Lemma 4.1.3
is a derivor if + and W are seen as constructors.

4.1.6. Theorem. Derivors are convergent.
Proof. Use Theorem 3.1.6 and Lemma 4.1.3. O

With this we can express an interesting class of systems, which is directly
relevant to partial evaluation.

4.1.7. Definition. A two-level derivor is a derivor producing A-terms (of
Definition 3.1.2) with the restrictions that @ does not occur on any left-hand
side and that X is a constructor. A well-annotated two-level derivor is one
producing A-terms for which the -normal form is a A-term, i.e., all overlines
are eliminated.

Two-level derivors have interesting properties: first of all it is easy to see
that “static reduction does not go wrong,” which is mandatory in partial
evaluation [13].

4.1.8. Proposition. For any two-level derivor, D, DU X is confluent.

11



Proof. The restrictions on the occurrences of @ and \ ensure that the com-
bined system remains orthogonal. O

However, it remains difficult to prove well-annotatedness and termination of
a two-level derivor because § has the full Turing-complete power in it. Both
can be proven if one restricts the permitted 5 to a subset known to terminate,
such as the simply typed A-calculus. Then the entire construction of A-terms
has to be shown well-typed, a property that is easy to lose by even minute
changes to the system. (This is related to why we have chosen CRSs as our
basis formalism; we comment on this in the conclusion.)

Both properties can be shown for the first-order flatten in Example 3.2.1
but are trivial for the higher-order flatten of Example 3.2.2 since it produces
no overlines at all. We exploit this property in the following example.

4.2 The call-by-value CPS transform

Compiler implementors are always in search for a good intermediate language,
i.e., a language that is both simple, concise, and expressive. The A-calculus is
such a candidate, but it is too expressive in that A-terms can be evaluated with
various reduction strategies (call-by-name, by-value, etc). There is however
a sublanguage of the A-calculus that is insensitive to its order of evaluation:
the sub-language of continuation-passing style (CPS). A CPS transformation
translates A-terms into CPS (and in so doing, it encodes an evaluation or-
der). As such, it is useful in compilers both for functional languages such as
Scheme [4, 19, 30] and ML [1, 20] with a translation encoding “eager” seman-
tics, and for pure languages such as Haskell [10, 23] with a transformation
encoding “lazy” evaluation. There is therefore a strong interest in having
efficient CPS transformations.

The traditional way amounts to (1) performing the translation following
Plotkin’s seminal specification [25]; and (2) performing so-called “administra-
tive reductions” to simplify the resulting term. A more direct way, however,
exists that combines (1) and (2) in one pass [6]. This method is crucially
higher-order and two-level. Two-level because it combines static simplifica-
tions and dynamic code generation; and higher-order because it is expressed
in the A-calculus. The technique used to obtain this system resembles the tech-
nique we used in the flattening Example 3.2.2: The derivor is an interpreter
that traverses its input A-term, in a trail of continuations. The idea is to spe-
cialize the interpreter with respect to a particular A-term. The corresponding
derivor also traverses the fixed A-term, in a trail of dynamic continuations.
The result of specialization is a A-term in continuation-passing style.

4.2.1. Definition (Call-by-Value CPS transformation). The eager, or
Call-by-Value, CPS transformation can be expressed as a derivor over the

12



two-sorted syntax

Vo= (14)
E =V | NE| EE | \xE | By E; | CPSI(E) | (E) (15)

(the first sort just contains variables) with rules

CPS1(E) — Mk.(E) (Am.km)
{

(A\z.Elz]) = M.k Az Ak.(E[z]) (Am.km))

) (16)
V) = Ak v (17)
) (18)
(EoE1) — Ak.(Eo) (Am.(E1) (An.mn(Aa.k a))) (19)

(where we exploit the sorting to ensure that (17) is only applied to variables).

The CPS1 system is obviously a two-level derivor. It is possible to prove its
well-annotatedness and termination directly using a typing argument [6, 24].
Instead, let us integrate the “administrative” (B-contractions in the transfor-
mation, making it truly one-pass in a rewriting sense; this will mechanically
lead us to Sabry and Felleisen’s “compacting” CPS transformation [27]. That
this integration is well-defined is clear from Proposition 4.1.8. What remains
is to express the transformation as a derivor that does not require “post-
processing” in the form of static reductions or erasure to make it obvious that
it cannot generate static applications or static abstractions.

4.3 Deriving specializers

4.3.1. Definition. A two-level derivor is a specializer if its normal forms are
A-terms.

A specializer thus encodes static reductions into the derivor (so specializers
are trivially well-annotated). The “Holy Grail of Partial Evaluation” follows:

4.3.2. Corollary. Specializers are convergent (since they are derivors).

So merely expressing a program transformation as a two-level derivor
whose normal forms are A-terms ensures both that “static reduction does
not go wrong” and that static normal forms (i.e., specialized programs) exist
and are unique.

The remainder of this section is devoted to show how one can mechanically
obtain a specializer from a well-annotated two-level derivor and vice versa.

4.3.3. Theorem. Let D be a two-level derivor. Then there is a specializer
realizing g . ﬁﬁﬂ if and only if D is well-annotated.

13



Before we prove this by actually constructing the specializer, let us illus-
trate the method for our example system. First we observe that the problem-
atic function symbol is (-) because it has the (normalization function) type
XA — X — X which is of order 2, and we want to change it to make the result
belong to A. The technique we use is to uncurry the uses of (-) to obtain
something which has the type A x (A — A) — X and thus creates no over-
lines anywhere. This is expressed by the representation shift from the curried
(B1)” (Am.Eg[m]) to the uncurried (E1, Am.Eo[m]) which gives the following set
of rules (the first one again for initialisation):

CPS2(E) — Ak.(E, Am.km) (20)

(v, \k.F[k]) — F[V] (21)
(Oa.Blz], Xe.Fk]) — Az Ak (B[], Mm.km)] (22)
(BoBy, N.F[k]) = (B0, Mm.(E1, An.mn(Aa.Fla]))) (23)

This is sufficient since there are now no @s on any right-hand side and all As
are eliminated by (-, ).

4.3.4. Proposition. CPS2 is a specializer.

Proof. CPS2 is clearly a compositional derivor, hence (-,-) is well-defined as
a normalisation function with with type A x (A — X) — A; from this the
proposition follows, which is easy since in the constructor CRS with (-, ), the
only function symbol is closed with respect to the sub-X system with terms

Au=z | Az.A | AgAq | (A, Az.A) (24)

which degenerates to A for normal forms because all possible variations of
(A, Az.A) match one of (21-23). O

This integration of administrative reductions into the CPS transformation is
known for several years now [6, 27, 28]. What we have done here is to derive it
using our rewriting account of partial evaluation. In particular, the resulting
term need no post-processing (such as erasing remaining annotations).

Even systems with higher-order types can be handled by first reducing the
type order with supercombinator extraction [12], which one could call “meta-
M-lifting” since it is targeted at lifting out all higher-order applications of @.
This is, in fact, what we did with the tree flattening Example 3.2.2, and what
we use in the following general construction.

Proof of Theorem 4.3.3.
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Case =. Given the two-level derivor, D, and a specializer, S, such that E) =

5) . ?H Then D is well-annotated because we know static reduction will

finish with a term containing no @s.

Case <. Given D a well-annotated two-level derivor. Then 5> . ﬁﬁ% is a

function into A. Let us specify how to transform the rules D into a
specializer. Clearly, the problem is to get rid of @s on the right-hand
sides. Thus we have three subcases:

Base subcase: If there are no @s at all then the system is already a
specializer because all As must be eliminated in some way by the
system even without (3) because no B-redexes are created.

Uncurry: If the system has a rule of the form
F'(t) = \k.s
then add the new rule
F™(T) — FPHY(T, 0k.E)
with Fi a fresh function symbol, and replace the rule with
FMY(E Nk.E[K]) — &

where s’ is obtained from s by replacing

e all occurrences of k t', for some ¢/, by E[t/], and

e all occurrences of (F(t')) t”, for some t',¢", by Fi(t',t").
with E a new meta-variable (of the appropriate sort).

A-lift step: If the system has a rule of the form
F(t) — C{\k.s}

which was not generated by uncurrying and where C{-} is a non-
empty context, then add the (generic) rule

A?(\z.z[z],T) — 2|1
and replace the rule with
F'(t) — C{\k.s'}
where s’ is obtained by replacing in s all occurrences of k t by

A%(k,t).
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The iteration terminates (with a number of iterations corresponding to
the order of the involved two-level types). The resulting system has no
@s left because the well-annotated D cannot have other instances of @
which would not be S-reducible.

From the two cases we conclude that 5> . ﬁﬂﬂ is a specializer if and only if the

two-level derivor D is well-annotated. O

5 Conclusion

Foremost we report a success: using higher-order rewriting, we have been
able to formalize the partial-evaluation technique of two-level programming,
and we have illustrated it with two non-trivial examples: flattening a binary
tree in Section 3 and the so-called “one-pass” CPS transformation in Section 4.
The immediate benefit, from a partial-evaluation point of view, is obvious: the
formalization comes with a generic proof technique to establish the correctness
of program specialization. A dual benefit also holds, from the rewriting point
of view: the idea of tapping into a source of examples where being higher-order
is what makes the examples work.

Why CRSs? One question immediately arises: Why have we used CRSs
rather than any of the other formalisms for higher-order rewriting? In partic-
ular the complexity of Definition 3.1.1, due to the fact that it is “stand-alone,”
seems excessive. The major reason was that we have found CRSs were very
easy to understand in an informal and intuitive way, first of all due to Klop,
van Oostrom, and van Raamsdonk’s survey [18]. Once we had worked with
a few examples, CRSs have posed few problems. It is perhaps an significant
factor here that program transformation is a very “syntactic” activity and the
purpose of CRSs was to provide a syntactic theory of systems with binding [16].

One could instead use a formalism founded on known systems: such are
usually much more concisely defined (for better and worse). A good candidate
for this is HRS [22] where the “substitution calculus” used to describe the me-
chanics of rewrite steps is Church’s A\™ (simply typed A-terms with ). Two
difficulties need to be overcome: (1) The notion of “binding” in HRSs is more
semantic, which makes it nonobvious to work with free variables as we did in
(14), something most program transformers do. (2) The syntactic constructors
of the source language need to be typed in HRSs to ensure that the notion
of substitution is well-defined. The (weaker) “calculus of developments” used
by CRSs guarantees that substitution terminates no matter which construc-
tions are used so no special considerations are needed [31]. One could see the
demand for typing as an advantage, in particular in our last proof where the
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“uncurrying” is type directed: it would be nice if the underlying formalism
provided support for system transformations involving type changes.

An even more drastic approach would be to use a formalism where the
substitution calculus is a “plug-in” such as HORS [32]: this could provide for
more advanced notions of “static”’reduction, for example including arithmetic
as needed by the first-order “power” example. One worry remains, however:
the typed systems (including HRSs) work on #n-long normal forms. It is not
clear to which extent this interferes with the transformations and syntactic
constraints we have discussed.

Related work. We only know of three lines of work relating rewriting and
partial evaluation, and none that establish a common ground between them.
(They focus more on highlighting the fact that TRSs can be seen as a fully
functional programming language but did not exploit rewriting technology for
the formalization of partial evaluation.) (1) In his M.Sc. thesis [3], Bondorf
investigated the (self-applicable) partial evaluation of TRSs. He thus wrote a
partial evaluator for TRSs, using a TRS. (2) Sherman and Strandh [29] use
partial evaluation to optimize the implementation of term-rewriting systems.
(3) Dershowitz [8] uses rewriting as the basic mechanism for abstracting and
instantiating program schemas. Furthermore, higher-order systems such as
A-prolog or Elf can also be used for program transformation. For example,
Danvy and Pfenning have formalized the CPS transformation in EIf [7].

Future work. In addition to the understanding better the role of types in
higher-order rewriting, we plan to investigate the relation to specific published
notions of reduction and A-lifting, specifically 2-level A-lifting [21].

Acknowledgements. We thank the anonymous RTA 98 referees for per-
ceptive comments, and Tobias Nipkow for encouraging us not to stop at CRSs
to formalize partial evaluation.
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