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Abstract

We construct a model for FPC, a purely functional, sequential,
call-by-value language. The model is built from partial continuous
functions, in the style of Plotkin, further constrained to be uniform
with respect to a class of logical relations. We prove that the model
is fully abstract.

1 Introduction

The problem of finding an abstract description of sequential functional com-
putation has been one of the most enduring problems of semantics. The
problem dates from a seminal paper of Plotkin [25], who pointed out that
certain elements in Scott models are not definable. In Plotkin’s example, the
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function

por(x, y) =

 true if x or y = true
false if x and y = false
⊥ otherwise

where ⊥ denotes divergence, cannot be programmed in the language in the
language PCF, a purely functional, sequential, call-by-name language with
booleans and numbers as base types. The problem is called the “sequen-
tiality problem” because, intuitively, the only way to program por involves
evaluating boolean expressions in parallel.

There are, of course, plenty of elements in the Scott model of PCF that
cannot be programmed: the domains have uncountably many elements.
Nevertheless, the por function is worse: it causes two terms in the lan-
guage PCF to be distinct denotationally even though the terms cannot
be distinguished by any program. When similar examples do not exist—
in other words, when denotational approximation coincides with operational
approximation—the denotational model is said to be fully abstract. Shortly
after Plotkin’s paper, Milner proved that there was exactly one fully abstract
model of PCF meeting certain conditions [16]. Until recently, all descriptions
of this fully abstract model have used operational semantics (see, for instance,
[19, 34]). New constructions using games semantics [2, 10, 20] and logical
relations [22, 33] have yielded a more abstract understanding of PCF.

The sequentiality problem is enduring because it is robust. For instance,
changing the reduction strategy of PCF from call-by-name to call-by-value
makes no difference: versions of the “parallel or” function reappear in the
standard Scott model (albeit at higher type). Even for languages that lack
an explicit base type, e.g., the polymorphic λ-calculus with recursion, the
known Scott models contain parallel elements that cause a failure of full
abstraction.

This paper extends the logical-relations approach to another setting. It
constructs a model for a call-by-value, purely functional, sequential language
called FPC. FPC includes a base type with one convergent value, strict prod-
ucts, strong (categorical) sums, functions, and recursive types. Full abstrac-
tion for FPC is interesting for at least two reasons:

1. FPC can be regarded as the purely functional, non-polymorphic sub-
language of Standard ML [17]: recursive types and sums are the basis
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of datatype declarations, and both Standard ML and FPC are call-by-
value. By studying FPC, we learn more about programming languages
like Standard ML.

2. FPC can serve as an expressive metalanguage for denotational seman-
tics [8, 26]. FPC, for instance, has enough expressive power to encode a
call-by-value version of PCF (the base type of numbers can be encoded
via a recursive type). Given a fully abstract translation [29] from a
language into FPC, the model of FPC yields a fully abstract model of
the language.

The relations used in the construction of the model for FPC tease apart
the structure of Sieber’s relations for PCF [33]. Sieber’s model of PCF, and
the fully abstract model of PCF using Kripke relations [22], begin from a class
of relations at any flat base type (e.g., the partial order of natural numbers
with a divergent ⊥ element below every other element). Sieber’s definition
of the relations is simple to state.

Definition 1 Suppose A ⊆ B ⊆ {1, . . . , n}, and let SnA,B be

{(d1, . . . , dn) | (∀i ∈ A. di 6= ⊥) =⇒ (∀i, j ∈ B. di = dj)}.

Then R is an n-ary sequentiality relation if R is the intersection of rela-
tions of the form SnA,B.

These relations thus have an elegant semantic definition: nothing in the
definition refers to the terms or operations of PCF. They also seem to say
something about sequential computation: if certain elements of a tuple must
converge, then other elements must converge. (It is helpful to think of the
elements of a relation as potential results of a function.) One can easily show
all PCF terms preserve the sequentiality relations, and that por does not
preserve the sequentiality relation S3

{1,2},{1,2,3}. It must therefore be the case
that por is not definable.

Sieber’s definition of “sequentiality relation” seems to be limited to flat
base types. It does not make sense to check for equality at functional type,
and the relations say nothing about more complicated partial order struc-
tures. It is difficult to see how, for instance, to extend directly the definition
to complex sums such as int⊕ (int⇒ int).

Instead of directly extending Sieber’s relations, our relations break down
sequentiality relations into two components. The first captures the sequen-
tial behavior of termination: if certain elements in a tuple in the relation
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terminate (are non-bottom), then certain other elements in the tuple must
terminate. The second captures the behavior of sums: if certain elements
in a tuple lie in one side of a sum type, other components must lie in the
same side of the sum type. This is much like Sieber’s definition in asking for
equality of all B-indexed elements of a tuple in SnA,B. The interesting case
comes when this second component of relations is lifted to types other than
sums: when, for example, the tuple is a tuple of elements in a function type.
In essence, the second component of relations encodes a form of “computa-
tion tree,” stating which subtuples of a tuple form consistent traces of the
computation so far.

We begin by introducing the language FPC, the main language of study in
this paper. We then describe the form of the relations, showing the decompo-
sition into the two portions described above. We follow the O’Hearn-Riecke
construction for PCF [22] and lift the relations to Kripke relations, using a
definition found in [13]. It will be these relations that will be used to define a
category in which a model of FPC can be constructed. The Kripke relations
will be used to establish the full abstraction of the model.

2 The Language FPC

FPC as described in [8, 26] is a call-by-value, purely functional language
with a single base type unit, sums, products, functions, and recursive types.
More familiar base types, such as booleans or natural numbers, can be easily
constructed in the language.

FPC has types given by the grammar

s, t ::= unit | (s⊕ t) | (s⊗ t) | (s⇒ t) | α | (rec α. t)
where α ranges over a collection of type variables. Types are identified
up to renaming of type variables bound by rec. The raw terms of FPC are
given by the grammar

M,N, P ::= x | (λx : t. M) | (M N) |
〈〉 | 〈M,N〉 | (proji M) | (injiM) |
(case M of inj1(x).N or inj2(x).P ) |
(introrec α. s M) | (elimrec α. s M)

A typing judgement is a formula of the form Γ ` M : t where M is a term,
t a type, and Γ is a typing context, i.e., a finite function from variables to
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types. Rules for deriving typing judgements appear in Table 1. In the type
rules, we assume that all types are closed.

Evaluation rules for FPC appear in Table 2. In the rules, we use the
notation M [N/x] to denote capture-free substitution of N for x in M . Notice
that function application in FPC is call-by-value: arguments to functions
must be values before they are substituted into bodies of functions. The
operational approximation relation can then be defined as follows:

Definition 2 M vFPC N if for any context C[·] such that C[M ] and C[N ]
are closed, well-typed terms, C[M ] ⇓ V implies C[N ] ⇓ V ′ for some V ′.

Note that we observe termination at any type.
FPC is a very sparse language: there is no recursion nor even any obvious

divergent computations. Nevertheless, it still has enough computing power
for many applications. For instance, Plotkin [26] and Gunter [8] show how
to build recursion operators using recursive types. For a slightly simpler
example, one can encode a sequencing operation: (M ;N) stands for the term
((λx : s. N) M), where x does not occur free in N . Indeed, the semantics
of many programming languages—including non-functional languages—can
be given by translation to FPC. FPC’s main deficiency as a metalanguage
for denotational semantics is a lack of parametric polymorphism (as in the
Girard–Reynolds calculus [7, 27]), which precludes a good representation of
abstract data types.

3 Category of Meanings

In this section we construct a category suitable for interpreting FPC. Through-
out the section, DCPO denotes the category of dcpos and partial continuous
functions, where a dcpo is a directed-complete poset (not necessarily possess-
ing a least element).

The category is built from objects that have both dcpo structure and
relational structure. The relations are defined in two stages. First, we show
how to define base relations suitable for modeling the language. Second,
we lift the relations to Kripke relations of varying arity. The category of
meanings will use Kripke relations; morphisms will be continuous functions
that additionally preserve the Kripke relational structure.
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Table 1: Type Rules for FPC.

Γ, x : t ` x : t

Γ ` 〈〉 : unit

Γ, x : s `M : t
Γ ` (λx : s. M) : (s⇒ t)

Γ `M : (s⇒ t) Γ ` N : s
Γ ` (M N) : t

Γ `M : s Γ ` N : t
Γ ` 〈M,N〉 : (s⊗ t)

Γ `M : (s1 ⊗ s2)
Γ ` (proji M) : si

Γ `M : si
Γ ` (injiM) : (s1 ⊕ s2)

Γ `M : (s1 ⊕ s2) Γ, x : si ` Ni : t
Γ ` (case M of inj1(x).N1 or inj2(x).N2) : t

Γ `M : s[rec α. s/α]
Γ ` (introrec α. sM) : (rec α. s)

Γ `M : (rec α. s)
Γ ` (elimrec α. sM) : s[rec α. s/α]
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Table 2: Evaluation Rules for FPC.

〈〉 ⇓ 〈〉

(λx : s. M) ⇓ (λx : s. M)

M ⇓ (λx : s. M ′) N ⇓ V ′ M ′[V ′/x] ⇓ V
(M N) ⇓ V

M1 ⇓ V1 M2 ⇓ V2

〈M1,M2〉 ⇓ 〈V1, V2〉

M ⇓ 〈V1, V2〉
(proji M) ⇓ Vi

M ⇓ V
(inji M) ⇓ (inji V )

M ⇓ (inji V ) Ni[V/x] ⇓ R
(case M of inj1(x).N1 or inj2(x).N2) ⇓ R

M ⇓ V
(introrec α. s M) ⇓ (introrec α. s V )

M ⇓ (introrec α. s V )
(elimrec α. s M) ⇓ V
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3.1 Base relations

The basic relations of the model come in two varieties: termination re-
lations and computational relations. Both kinds of relations range over
elements of a dcpo. Following [13, 22], it will be helpful to represent relations
by finite, total functions from indices to values instead of as tuples of values.
Of course, there is no real difference between the two presentations, but the
functional version will be easier to extend to Kripke relations later on.

Termination relations are defined using simple implicational theories. Let
w be a finite set of indices. Then a w-termination theory is a set of impli-
cations of the form (d1, . . . , dn ` d) where d1, . . . , dn, d ∈ w and n ≥ 1.
Intuitively, each implication states a property similar to the Sieber’s se-
quentiality relations: if a function halts on the indices in the argument,
it must halt on the index in the result. Indeed, the termination part of
Sieber’s relations SnA,B can be encoded: if A ⊆ B ⊆ w, A = {d1, . . . , dk},
and B = {d1, . . . , dk, dk+1, . . . , dn} then SwA,B corresponds to the implications
(d1, . . . , dk ` dk+1), . . . , (d1, . . . , dk ` dn).

For w′ ⊆ w, we say that w′ |= (d1, . . . , dn ` d) if d1, . . . , dn ∈ w′ implies
d ∈ w′. If T is a set of such implications, we say that w′ ⊆ w is a T -model
if w′ |= ψ for all ψ ∈ T . There is an alternative characterization of T -models
that can be helpful in proving facts about termination relations (a closely-
related characterization can be found in [35], page 22). Suppose w is a finite
set and X ⊆ P(w). Then X is a closure system if w ∈ X, ∅ ∈ X, and X
is closed under intersection.

Proposition 3 Suppose w is a finite set. Then X ⊆ P(w) is a closure
system iff there is a w-termination theory T such that X is the set of T -
models.

Proof: For the easy direction, suppose T is a w-theory. Then obviously w

and ∅ are T -models. To see closure under intersection, suppose w1, w2 are
T -models. Suppose (d1, . . . , dn ` d) ∈ T , and di ∈ w1 ∩ w2 for all i. Then
d ∈ w1 and d ∈ w2, hence d ∈ w1 ∩ w2. Thus, w1 ∩ w2 is also a T -model.

For the other direction, suppose X is a closure system. Define the theory
T by

(d1, . . . , dn ` d) ∈ T iff for all w′ ∈ X, w′ |= (d1, . . . , dn ` d).

Let Y = {w′ | w′ is a T -model}; we want to show that X = Y .
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It is obvious that X ⊆ Y : if w′ ∈ X, then by construction it satisfies all
the formulas in T and hence is a T -model. Conversely, suppose w′ 6∈ X. Let

w0 =
⋂
{w1 ∈ X | w′ ⊆ w1}.

Since X is closed under finite intersections, and the set above is finite because
w is, w0 must be in X. But since w′ 6∈ X and w′ ⊆ w0, it must be the case
that there is a d ∈ w0 such that d 6∈ w′. Also, because w′ 6∈ X, it cannot
be the empty set. Now consider the formula (w′ ` d). This is a legal
formula because w′ has at least one element. Note that (w′ ` d) ∈ T , and
w′ 6|= (w′ ` d). Thus, w′ 6∈ Y , completing the proof.

The proof is similar to a part of Sieber’s proof that the sequentiality relations
are precisely those that are closed under the operations of PCF (see [33]).

Termination theories are the building blocks of the first kind of relations,
the termination relations. Let T be a w-termination theory, and D be a
dcpo. A T -termination relation on D is a set of the form

R ⊆
⋃

w′ is a T -model

[w′ →t D],

where [w′ →t D] denotes the set of all total (set-theoretic) functions from w′

to D, such that the following properties hold:

1. Non-emptiness: R is non-empty.

2. Directed completeness: R is directed complete, where f v g iff f, g
have the same domain w′ and for all d ∈ w′, f(d) v g(d) in D.

3. Downward closure: For any f ∈ R with domain w′ and T -model
w′′ ⊆ w′, (λd ∈ w′′. f(d)) ∈ R.

Here, (λd ∈ w′′. f(d)) stands for the function with domain w′′, whose return
value is f(d); thus, an element of a termination relation R is a function
from a subset of indices to elements of the dcpo. To get some intuition, it
is again helpful to think of indices as possible arguments to a function, and
the elements as the return values of the function. An element of R then
represents a “related” set of values returned by a function.

One subtlety in this definition is thev relation: we only compare elements
of R that have the same domain. The definition of ⊗ on relations does not
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produce a directed complete relation if we regard the elements of R as partial
functions and compare elements with different domains. A second subtlety
arises from the first and third conditions. These two conditions imply that
the empty function is always an element of R, which is necessary to prove
that divergent terms always respect the relations.

Of course, functions represented by terms in FPC may have much more
complex behavior: they may test some of their arguments and branch based
on the results. At the ends of branches are “related” values returned by the
function, but there need be no relationship between the values returned by
different branches. To model this behavior, we use computational relations.
We first need a preliminary definition. Let T be a w-termination theory.
Then S is a T -computational theory if S is a set of finite sets of T -
models, i.e., each element of S has the form {w1, . . . , wk}, and satisfies the
following conditions:

• If w′ is a T -model, then {w′} ∈ S;

• If {w1, . . . , wk} and {w′1, . . . , w′l} are in S, and wi,j = (wi ∩ w′j), then
{w1,1, . . . , wk,l} ∈ S; and

• If {w1, . . . , wk} and {w′1, . . . , w′l} are in S, and for all i and some j,
w′i ⊆ wj , then

{w1, . . . , wj−1, w
′
1, . . . , w

′
l, wj+1, . . . , wk} ∈ S.

The elements of S are called path sets for reasons that will become clear in
a moment.

The path sets permit the definition of computational relations, which just
lifts a termination relation to a partial function on indices. Suppose S is a
T -computational theory and R is a T -termination relation on D. Define the
computational relation RS by

RS = { f ∈ [w →p D] | there exists {w1, . . . , wk} ∈ S such that
f(d) ↓ iff d ∈ wi for some i, and for all i,
(λd ∈ wi. f(d)) ∈ R }

where [w →p D] represents the set of partial set-theoretic functions from the
set w to the set D. The computational relations are reminiscent of Moggi’s
analysis of call-by-value via monads [18], and they will play a similar role in
the semantics below.
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It is useful to think of elements of RS as the interpretation of a term given
some environment. A computation branches based on its inputs and returns
some final results at the end. Each set in {w1, . . . , wn} represents a path
in that computational tree; the answers returned at the end of a path must
be consistent, hence the restriction of the function to (λd ∈ wi. f(d)) must
be in R. We can now see from where the three conditions on computational
theories come. The first condition says that a potential path set that does
no branching is a valid path set; the second says path sets can be combined;
the third says that an element of a path set may be replaced by finer-grain
path set, which amounts to adding a set of branches to a non-branching part
of the computation.

3.2 Extension to Kripke relations

We could build a category of meanings directly using termination and com-
putational theories; we would probably not get a fully abstract model (see the
discussion in Section 6). Instead, we extend the relations to Kripke relations
of varying arity [13]. Kripke relations of this kind begin from an index cat-
egory whose objects are finite sets and whose morphisms are total functions
(not necessarily all of them).

Definition 4 Suppose C is an index category. A C-termination theory
is a family

T = {Tw | w ∈ Ob(C), Tw is a w-termination theory },

such that, for any ϕ : v
C−→ w, if w′ is a Tw-model, then { d ∈ v | ϕ(d) ∈ w′ }

is a T v-model.

A Kripke relation is a set of termination relations that must fit together.

Definition 5 Let C be an index category, T be a C-termination theory, and
D be a dcpo. A C, T -termination relation on D is a family of sets

R = {Rw | w ∈ Ob(C), Rw is a Tw-termination relation on D}

satisfying the

Kripke monotonicity condition:
For any f ∈ Rw with domain w′ and ϕ : v

C−→ w, then
(λd ∈ v′. f(ϕ(d)) ∈ Rv, where v′ = { d ∈ v | ϕ(d) ∈ w′ }.
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Computational theories also extend straightforwardly to the Kripke case:

Definition 6 Let C be an index category and T be a C-termination theory.
Then S is a C, T -computational theory if S is a set, indexed by objects
w of C, of Tw-computational theories.

If S is a C, T -computational theory and R is a C, T -termination relation on
D, we let Rw

S denote the computational relation built from Rw and Sw.

3.3 A category for interpreting FPC

We now have enough machinery to build the category SR (for sequentiality
relations).

• Objects. An object A consists of a dcpo |A| and a C, T -termination
relation A(T, S) on |A| for each C-termination theory T and C, T -
computational theory S. Objects must also satisfy the

Concreteness Condition:
For any d ∈ D, (λi ∈ w. d) ∈ A(T, S)w.

• Morphisms. A morphism f : A→ B is a partial continuous function
f : |A|⇀ |B| satisfying the

Uniformity Condition:
For all C, C-termination theories T , C, T -computational theories
S, and h ∈ A(T, S)w, (h; f) ∈ B(T, S)wS , where (h; f) denotes
diagrammatic composition of h and f .

Composition and identities are inherited from DCPO. It is straightforward
to check that SR is indeed a category; the only slightly non-obvious step
is checking that composition is uniform, for which one needs the closure
properties of path sets. Moreover, the category is dcpo-enriched, meaning
that for any objects A,B, the set of morphisms HomSR(A,B) is a dcpo; the
morphisms are ordered

f v g iff
for any a ∈ |A|, f(a)↓ implies that g(a)↓ and f(a) v g(a) in |B|

where f(a)↓ means that f(a) is defined.
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3.4 Interpretation of FPC

The basic constructions needed for interpreting FPC are the following:

Void object:
|void | = {}
void(T, S)w = {∅}

Unit object:
|unit| = {>}
unit(T, S)w = { (λd ∈ w′.>) | w′ is a Tw-model }

Products:
|A⊗B| = |A| × |B| (cartesian product)
(A⊗B)(T, S)w = {〈g, h〉 | g ∈ A(T, S)w, h ∈ B(T, S)w,

and g, h have same domain}

Coproducts:
|A⊕B| = |A| ⊕ |B| (disjoint union)
(A⊕B)(T, S)w = { f | (∃g ∈ A(T, S)w.f = (g; inj 1)) ∨

(∃h ∈ B(T, S)w.f = (h; inj 2)) }

Exponentiation:
|A⇒ B| = HomSR(A,B),

(A⇒ B)(T, S)w = { f | ∀ϕ : v
C−→ w, g ∈ A(T, S)v.
(λd ∈ v. (f(ϕ(d)) (g(d)))) ∈ B(T, S)vS}

The definition of exponentiation on relations follows the one in [13, 22]. Note
that the definition of the relational component of unit captures much of the
intuition we set out for termination relations.

One may check that void , unit are objects and ⊗, ⊕, and⇒ are bifunctors
(where⇒ is contravariant in the first argument as usual). To interpret FPC,
a bit more structure is required. It is not hard to show that⊕ is a coproduct,
and the usual constructions on pairs (projections and pairing) also define
morphisms. Also, the category is a partial cartesian closed category in the
sense of [5]. This provides all the structure to interpret FPC types and terms
except those involving recursive types.

The interpretation of recursive types requires adapting standard results
from domain theory (see, for instance, [1, 8]) to SR. Recursive types are
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interpreted via a colimit construction. Given objects A,B, f is an embed-
ding projection pair (ep-pair for short) if f = (f e : A→ B, fp : B → A),
(f e; fp) = idA, and (fp; f e) v idB. An expanding sequence is a tuple

({Dn | n ≥ 0}, {fmn | fmn : Dn → Dm is an ep-pair, n ≤ m}),
such that fnn = idDn and for any n ≤ k ≤ m, f emn = (f ekn; f

e
mk) and fpmn =

(fpmk; f
p
kn). Given an expanding sequence as above, define the object D by

|D| = {〈x0, x1, . . .〉 | xi ∈ Di and ∀n ≤ m, xn = f pmn(xm)}
D(T, S)w = {h ∈ [w′ →t D] | w′ is a Tw-model, and there exist

hi ∈ Di(T, S)w with domain w′,
such that h = 〈h0, h1, h2, . . .〉 and
for all n ≤ m, hn = (hm; f pmn)}.

This is indeed an object in SR.
The embedding-projection pairs (µem : Dm → D,µpm : D → Dm), defined by

µpm(〈x0, x1, . . .〉) = xm

µem(d) =
〈⊔

k≥m,0(f
p
k0(f

e
km(d))),

⊔
k≥m,1(f

p
k1(f

e
km(d))), ..

〉
make the object D into a colimit of the expanding diagram. The only non-
standard part of the proof lies in showing that µem and µpm satisfy the unifor-
mity property.

Recursive types make the interpretation somewhat complex [8, 26]. The
meaning of a possibly open type is a functor from its free variables to the
category SR. The functor, though, may be covariant in some of its arguments
and contravariant in others. For instance, the type expression (α ⇒ β) has
α occurring contravariantly and β occurring covariantly. We follow recent
tradition (see [6, 24]) and convert a type with n-variables into one with 2n

variables: ~α occurring only negatively and ~β occurring only positively. For
instance, the type (α⇒ α) gets converted to the type (α⇒ β).

The meaning of a type is a functor (SRop)n× (SR)n → SR. The defini-
tion on objects is

[[unit]]( ~A, ~B) = unit

[[rec α. s]]( ~A, ~B) = FIX([[s]](X :: ~A, Y :: ~B))

[[s⊕ t]]( ~A, ~B) = ([[s]]( ~A, ~B)⊕ [[t]]( ~A, ~B))

[[s⊗ t]]( ~A, ~B) = ([[s]]( ~A, ~B)⊗ [[t]]( ~A, ~B))

[[s⇒ t]]( ~A, ~B) = ([[s]]( ~B, ~A)⇒ [[t]]( ~A, ~B))
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where FIX is an operation on functors that generates a canonical colimit
(it can be easily expressed as a colimit of an expanding sequence starting
from the void object, using the functor to build the subsequent elements of
the chain). We omit the full definition here, and the definition of [[s]] on
morphisms. When acting on ep-pairs, the functor [[s]] is continuous in the
sense described in [1]. The canonical maps

intro : FIX(G(X, Y ))→ G(FIX(G(X, Y )), F IX(G(X, Y )))
elim : G(FIX(G(X, Y )), F IX(G(X, Y )))→ FIX(G(X, Y ))

which define an isomorphism, are used to give meaning to the intro and
elim term constructors.

The meaning of terms can then be given using the combinators of the
category. Suppose Γ `M : s. If

Γ = x1 : t1, ..., xn : tn,

define [[Γ]] = [[t1]] ⊗ . . . ⊗ [[tn]]. (If Γ is empty, [[Γ]] is the object unit). Then
[[Γ ` M : s]] is a morphism in SR. We omit the full definition here. For
notational convenience, if ∅ ` M : s, we write [[M ]] for the corresponding
element [[∅ `M : s]]> ∈ [[s]].

4 Examples

Even though the semantic category SR is arguably complicated, it does
support simple reasoning about definability of FPC terms.

4.1 Parallel convergence testing is not definable

Consider the partial continuous function

f : (unit ⇒ unit)⊗ (unit ⇒ unit)→ unit

defined

f〈g, h〉 =

{
> if g(>)↓ or h(>)↓
undefined otherwise.

f appears to need to do its calculation “in parallel.” We would like to prove
that f is not a morphism in the category, which will immediately imply that
f is not definable.

15



The argument follows the proof of Sieber (also due to Plotkin, see [3])
that por is not definable. In this case, we need to exhibit an index category
C, a choice of C-termination theory T , and a C, T -computational theory
S. Pick C to be the category with just one index set w = {1, 2, 3}, Tw
to be the theory with just one implication (1, 2 ` 3), and S to be the set
{ (w′) | w′ is a Tw-model }. Let h : unit → unit be the function that returns
> given >, and h′ : unit → unit be the empty partial function. Also, let

g1 = 〈h, h′〉, g2 = 〈h′, h〉, g3 = 〈h′, h′〉.
Returning to standard tuple notation for relations, we claim

(g1, g2, g3) ∈ ((unit ⇒ unit)⊗ (unit ⇒ unit))(T, S)w.

To prove the claim, one may show (h, h′, h′), (h′, h, h′) ∈ (unit ⇒ unit)(T, S)w

by a simple case analysis. But

(f(g1), f(g2), f(g3)) 6∈ unit(T, S)wS ,

so f is not uniform. Thus, f cannot be a morphism, and hence it cannot be
definable.

4.2 Sieber’s last example is not definable

The second example is essentially the last example in [33], an example mod-
ified from [4]. Let

• bool be the object (unit ⊕ unit), and

• A = (unit ⇒ bool)⊗ (unit ⇒ bool).

Let true denote inj 1(>) ∈ bool and false denote inj 2(>) ∈ bool. Consider
the morphisms g1, g2, g3, g4 : A→ unit defined by

g1〈h1, h2〉 '


> if h2(>) = true
> if h1(>) = true and

h2(>) = false
undefined otherwise

g2〈h1, h2〉 '
{
> if h1(>) = false
undefined otherwise

g3〈h1, h2〉 '
{
> if h2(>) = false
undefined otherwise

g4〈h1, h2〉 ' undefined
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We claim that any f : (A⇒ unit)→ unit where

f(g1) = >, f(g2) = >, f(g3) = >, f(g4) ↑

is not definable in FPC.
The proof of nondefinability requires a nontrivial use of path sets, and

follows the ideas in [33]. Pick C to be the trivial index category C with
object w = {1, 2, 3, 4}. Let Tw be the termination theory Tw with just one
implication (1, 2, 3 ` 4). Let S be the set of path sets {w1, . . . , wn} such that

1. Each wi is a Tw-model;

2. If i 6= j, then wi, wj are disjoint;

3. If 1 ∈ wi and 2 ∈ wj , then i = j; and

4. If 1 ∈ wi and 3 ∈ wj , then i = j.

It is not hard to prove that this is a C, T -computational theory, and that

(g1, g2, g3, g4) ∈ (A⇒ unit)(T, S)w.

However, it is evident that

(f(g1), f(g2), f(g3), f(g4)) 6∈ unit(T, S)wS

because of the last two conditions on the path sets. Thus, there is no such
definable f .

5 Full Abstraction

We prove full abstraction for FPC by considering a different language called
Finite FPC. A model of Finite FPC lives in the same category SR. We prove
that all elements of the model of Finite FPC are definable by terms. Terms
in Finite FPC have representatives in FPC, which will be used to establish
full abstraction.

The proof of full abstraction follows the structure of the proof in [22].
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5.1 Finite FPC

Finite FPC is a simplification of FPC. It has types given by the grammar

s, t ::= void | unit | (s⊕ t) | (s⊗ t) | (s⇒ t)

Finite FPC thus differs from FPC in not having recursive types and in having
void. The raw terms are given by the grammar

M,N, P ::= x | Ω | (λx : t. M) | (M N) | 〈〉 |
〈M,N〉 | (proji M) | (injiM) |
(case M of inj1(x).N or inj2(x).P )

Note that there is no recursion on terms in the language, only a divergent
term Ω at all types. Rules for deriving typing judgements are as in Table 1
with three exceptions: the rules for elim and intro are omitted and the rule
for divergence

Γ ` Ω : s

is added. The language has the evident interpretation in the category SR
using the objects and morphisms described in the previous section.

5.2 Construction of relation

To prove that all elements of the model of Finite FPC are representable
by terms, we will consider a particular index category C, particular C-
termination theory T , and particular C, T -computational theory S. Define
the index category to be the set of sets of the form

[s1, . . . , sn] = |[[s1]]⊗ . . .⊗ [[sn]]|.

Morphisms are the projections [s1, . . . , sn+k] → [s1, . . . , sn]. For any object
w = [s1, . . . , sn] of C, let s = (s1 ⊗ . . .⊗ sn) and

Xw = {w′ ⊆ w | there is a closed M : (s⇒ unit)
such that [[M ]](d)↓ iff d ∈ w′ }.

The path sets in Sw are defined by

{w1, . . . , wk} is a path set
if there is an M : (s⇒ k̄) such that [[M ]](d) = i iff d ∈ wi,
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where

n̄ = (unit⊕ . . .⊕ unit)︸ ︷︷ ︸
n

and 1 = inj 1(>), 2 = inj 2(inj 1(>)), and so on. It is then not hard to
establish the following

Lemma 7 The set X = {Xw | w ∈ Obj(C) } defines a C-termination
theory T by taking Xw to be a set of models. Moreover, S is a C, T -
computational theory.

The proof uses the alternative characterization of T -models given by Propo-
sition 3.

The next lemma is the main one needed for full abstraction. It proves
that every element of the computational relations is represented by a term
in Finite FPC.

Lemma 8 Suppose w = [s1, . . . , sn] and s = (s1 ⊗ . . .⊗ sn).
Then g ∈ [[t]](T, S)wS iff there exists a closed M : (s⇒ t) such that g = [[M ]].

The proof proceeds by induction on the structure of t.

5.3 Main results

Theorem 9 (Adequacy) Suppose M is a closed FPC term of type s. Then

M ⇓ V iff [[M ]]↓ .

Proof: (Sketch) A standard inclusive predicates argument; see [26] for the
outline of the proof.

Theorem 10 (Full Abstraction) Suppose M,N are FPC terms. Then

[[M ]] v [[N ]] iff M vFPC N.

Proof: (Sketch) The difficult direction to prove is the (⇐) direction. Sup-
pose M,N : s and [[M ]] 6v [[N ]]. Then there exist closed terms P s

n : s → sn,
where sn is a Finite FPC type, such that [[P M ]] 6v [[P N ]] (any void’s in the
type sn are replaced by (rec α. α)). The terms P s

n are also used in [30]. By
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Lemma 8, there exists an f ∈ [[sn ⇒ unit]] such that f([[P M ]]) is defined
and f([[P N ]]) is not. We know by the concreteness condition that

g = (λd ∈ [ ]. f) ∈ [[sn ⇒ unit]](T, S)[].

Thus, g is definable by a term Q : (unit ⇒ sn ⇒ unit). Then the context
C[·] = (Q 〈〉 (P [·])) distinguishes M and N , completing the proof.

6 Related Work

We have shown how to construct a fully abstract model for call-by-value
FPC. It is the first model of a call-by-value language, or one with sums,
or one with recursive types to use the logical-relations approach pioneered
by Sieber. Our model also supports a simple form of reasoning for showing
that certain values are not definable, and yields insight into the structure of
sequential computation.

There are other ways to build fully abstract models for FPC. For instance,
Riecke and Viswanathan [31, 32] give a dcpo-based model for call-by-value
FPC. The construction uses Milner’s syntactic methods of [16]. This con-
struction sheds little light into the structure of FPC, except that the model
validates least fixpoint reasoning.

Games semantics has also been applied to full abstraction questions for
FPC. In [15], McCusker builds a model of call-by-name FPC. The sums in this
model are separated: applying the injection operations to the meaning of a
divergent computation returns a convergent value (on which a case expression
can branch).

Until recently, it was not known how to adopt games models to the call-by-
value setting. Honda and Yoshida have bridged that gap, devising a model
for call-by-value PCF using games semantics [9]. The model loosens the
restrictions of the original games semantics [2, 10, 20] to include strategies
that start with the opponent’s answer rather than a question. Intuitively,
this means that the value supplied to a call-by-value function is immediately
available without interrogation by the player. The basic definitions are quite
different from our logical-relations-based model, and the games model sheds
light on the process nature of sequentiality.

20



7 Discussion

Much of the complexity of our model of FPC lies in the use of Kripke rela-
tions. On the one hand, since all examples of reasoning in the model seem
to require only the “base” relations, it would be interesting to determine
when base relations were sufficient. This kind of result might be analogous
to Sieber’s result that sequentiality relations suffice for proving facts about
PCF up to third-order types [33]. On the other hand, recent results of Ralph
Loader suggest that one must go beyond base relations to achieve full abstrac-
tion. We conjecture that the following problem is undecidable: given a type
in Finite FPC, can one decide how many elements there are in the model of
that type? If we remained only with the “base” relations, the problem would
be decidable. The related decision problem for PCF was first pointed out
in [12]; see [11, 22] for a further discussion. Loader shows that the decision
problem for PCF over the single boolean base type is undecidable [14]. We
expect that the proof will carry over to Finite FPC.

We have some hope that the relational account can be adapted to ex-
tensions of FPC with other kinds of effects other than simple functional
branching, such as continuation-based control operations. We also believe
that there is a relationship between “single-threading” of state [21, 23] and
sequentiality; it would be interesting to see if our model can be adapted to
model a single-threaded global state. One strength of the current model is
its clean separation of values and computations. We conjecture that only
the definition of “computational relations” must change to reflect the new
settings.

Other extensions seem more difficult. For instance, we began by trying
to find a similar relation-based model for a linear type system, but ran into
technical difficulties. Extending FPC with a notion of local state, as in
Idealized Algol [28] or Standard ML [17], also seems to be difficult. One
interesting, though non-trivial, direction would be to extend the language
with parametric polymorphism. A different kind of relations would be needed
in this instance to model parametricity.
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