
B
R

IC
S

R
S

-97-37
G

rable
&

P
anconesi:

F
astD

istributed
A

lgorithm
s

forB
rooks-V

izing
C

olourings

BRICS
Basic Research in Computer Science

Fast Distributed Algorithms for
Brooks-Vizing Colourings
(Extended Abstract)

David A. Grable
Alessandro Panconesi

BRICS Report Series RS-97-37

ISSN 0909-0878 December 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/37/

Fast Distributed Algorithms for
Brooks-Vizing Colourings

(Extended Abstract)

David A. Grable∗

Institut für Informatik

Humboldt-Universität zu Berlin

D-10099 Berlin Germany

grable@informatik.hu-berlin.de

Alessandro Panconesi†

BRICS

University of Århus

DK-8000 Århus C, Denmark

ale@brics.dk

1 Introduction

Vertex colouring is a much studied problem in combinatorics and com-
puter science for its theoretical as well as its practical aspects. In this pa-
per we are concerned with the “distributed” version of a question stated
by Vizing, concerning a Brooks-like theorem for sparse graphs. Roughly,
the question asks whether there exist colourings using many fewer than
∆ colours, where ∆ denotes the maximum degree of the graph, provided
that some sparsity conditions are satisfied. In this paper we show that
such colourings not only exist, but that they can be quickly computed
by extremely simple distributed, randomized algorithms. Before stating
our results precisely, we review the relevant facts.

For any graph G of maximum degree ∆ with n vertices, the following
trivial algorithm computes a ∆+1 (list) colouring. Each vertex u initially
has a list, or palette, of deg(u) + 1 colours. The computation proceeds
in rounds. During each round, each uncoloured vertex, in parallel, first
performs a trivial attempt: it picks a tentative colour at random from its
palette and if no neighbour picks the same colour, the colour becomes
final and the algorithm stops for that vertex. Otherwise, the vertex’s
palette undergoes a trivial update—the colours succesfully used by the

∗Supported by Deutsche Forschungsgemeinschaft project number Pr 296/4-2.
†This research was done when visiting the Humboldt University in Berlin thanks

to financial support of the Alexander von Humboldt foundadtion.

neigbours are removed—and a new attempt is performed in the next
round.

Henceforth we shall refer to this as “the” trivial algorithm. The triv-
ial algorithm always computes a valid colouring regardless of the com-
position of the initial lists, and does so in O(logn) rounds with high
probability—that is, with probability approaching 1 as the number of
vertices increases [10, 13, 4].

It is apparent that the trivial algorithm is distributed, since each
vertex only relies on information from the neighbouring vertices. The
well-known distributed algorithm for the same problem given by Luby
[15] amends the trivial algorithm in the following way: at the beginning
of each round every uncoloured vertex is asleep. Each such vertex awakes
with probability p and executes a trivial attempt (in Luby’s paper p =
1/2). Then, whether or not the vertex awoke, the palette undergoes a
trivial update. At the end of the round the vertex goes back to sleep.

We shall refer to this variant of the trivial algorithm as the dozing-off
algorithm. The dozing-off algorithm has the same asymptotic perfor-
mance as the trivial algorithm, but its analysis just needs pairwise inde-
pendence. Luby used this fact to carry out a derandomization procedure
in the pram model.

Can better colourings—i.e. colourings using fewer colours—be com-
puted efficiently in a distributed setting? In 1948 Brooks gave a theorem
that characterizes the graphs which are not ∆–colourable: a graph is
∆–colourable if and only if it is neither an odd cycle nor a ∆ + 1 clique
(see, for instance, [2]).

The proof of Brooks’ theorem is actually a polynomial time sequen-
tial algorithm. ∆–colourings can also be quickly (i.e. in polylogarithmic
time) computed in the PRAM model [8, 11, 12]. In fact, a distributed
version of Brooks’ theorem can be derived from a certain locality prop-
erty of ∆-colourings, yielding the following: There is no o(n) random-
ized, synchronous protocol to ∆-colour paths, cycles or cliques. For all
other graphs, there is a randomized protocol which, with high proba-
bility, computes a ∆-colouring in polylogarithmically many rounds [17].
(The property in question, holding for graphs which are neither cliques,
paths nor cycles, is this: If G is ∆–coloured except for one last vertex,
it is possible to complete the colouring by a simple recolouring opera-
tion along an “augmenting” path of length O(log∆ n) starting from the
uncoloured vertex [17].)

It is an open problem whether randomization is necessary in all of the

2

above algorithmic results; the asymptotically best deterministic protocols
known to date need O(nε(n)) rounds, where ε(n) tends (very slowly) to
zero as the number of vertices grows [1, 18].

In a 1968 paper Vizing asked whether upper bounds for the chromatic
number better than those given by Brooks’ Theorem existed, provided
some sparsity conditions were satisfied. In particular, he asked what
happens for triangle-free graphs. We shall refer to colourings of triangle-
free graphs using significantly fewer than ∆ colours as Brooks-Vizing
colourings.

This existential problem was settled about two decades later. A. Jo-
hansson [9] showed that every triangle-free graph has chromatic number
O(∆/ log∆). This is best-possible up to a constant factor, since Bollobás
had shown the existence of graphs with arbitrarily high girth such that
χ(G) = Ω(∆/ log ∆) (the girth of a graph G is the size of the smallest
cycle therein) [3].

Johansson’s result, as well as an earlier result of Kim [14], which shows
that graphs of girth at least 5 have chromatic number (1+ o(1))∆/ log∆,
make use of certain distributed colouring algorithms, but their results
are only existential in the following sense. They show only that the
probability that the algorithm produces a valid colouring is positive.
Their analyses do not rule out the possibility of their algorithms failing
with a high probability. (But then, this was not their main concern.)

In this paper, we show that Brooks-Vizing colourings can be com-
puted efficiently even in a distributed setting. We present very simple
randomized, distributed algorithms, which are also easily implementable
on a pram and in the sequential setting, and demonstrate that they
produce the desired colourings with high probability.

Our algorithms are variants of the dozing-off algorithm. In fact, when
the input graph has no 4-cycles (girth 5 or greater) the algorithm is the
dozing-off algorithm modified so that the probability that vertices awake
is not constant but varies with the round. This probability, initially
very low, quickly rises to one, causing the algorithm to be behave as the
trivial one from that point on. For the general triangle-free (girth 4)
case, the algorithm adds a mechanism which forces the vertex degrees
of the uncoloured portion of the graph to remain roughly regular. This
regularity is extremely useful in the analysis, but unfortunately gives
the algorithm a somewhat high message and space complexity. It may
be, however, that this mechanism is unnecessary. The simplicity of the
algorithms is an appealing feature and we expect them to work quite well

3

in practice.
Although these algorithms display similarities to those in Kim’s work

[14], we have striven for speed and simplicity. Moreover, our analyses are
much simpler than those given there. It is perhaps worth remarking that
our analyses demonstrate that Brooks-Vizing colourings are not rare, for
the randomized colour assignments computed by the algorithm almost
always produces such a colouring. Furthermore, they highlight the role
played by the girth assumption.

Our result may be conveniently stated as follows: We give an al-
gorithm which, for any triangle-free, D-regular input graph G such that
D ≥ log1+δ n, where δ > 0 is any fixed constant, computes with probabil-
ity 1−o(1) a vertex colouring of G usingD/k colours, for any k ≤ α logD,
where α is a constant which depends on δ. Moreover, with probability

1 − o(1), the colouring will be completed within O
(
k + logn

logD

)
rounds

in the synchronous, message-passing distributed model of computation
(with no shared memory). Both of the above o(1) terms are functions
going to 0 with n, the number of vertices in the network.

The statement of the theorem allows some flexibility in the choice of
k and D. For instance, by choosing D ≥ nc/ log logn, where c > 1 is any
constant, and k = log log n, the algorithm will compute a (D/ log log n)-
colouring in just O(log log n) rounds. Or, by choosing D ≥ nc/

√
logn the

algorithm will compute a (D/
√

log n)-colouring in O(
√

logn) rounds. No-
tice also that the algorithm works for k = Ω(logD), thereby matching the
lower bounds of Bollobás and the existential statements of Johansson and
Kim. It should be pointed out however that our statement is weaker than
their existential statement insofar as it needs the additional assumption
D = Ω(log n). This, as well as the regularity assumption (also assumed
in [9, 14]), might in fact be an artifact of our analysis which relies on
large deviation inequalities that cease to give strong enough bounds for
lower values of D.

Although we stated our result in its most general form, in this abstract
we shall present a slightly weaker version, due to lack of space. Namely,
we shall show that the above statement holds with the running time
replaced by O(logn).

2 Girth 5 or more

In this section we assume the distributed network to be aD-regular graph
with girth at least 5. We’ll give a colouring algorithm for this situation

4

and analyse it. Then later, we will add a mechanism for dealing with the
presence of 4-cycles.

Each node of the network knows the value of D and of a positive real
k. The goal is a colouring with D/k colours. The protocol is as follows.

For each vertex u, in parallel:
A := {1, . . . , D/k}; p := 1/k. /* initialize palette and

wake-up parameter */
Repeat until u is coloured:

Awake with probability p.
If awake /* attempt to colour */

Choose a tentative colour t uniformly from A.
If no neighbour picked t during this round, make

colour t permantent and stop.
/* update palette and wake-up parameter */
A := A− {c | a neighbour of u coloured itself with c}.
if p < 1 then p := min

{
1, 1

1/p−1/e

}
.

The algorithm is exactly the dozing-off algorithm where the proba-
bility of awakening increases from round to round, until, after ek rounds,
p = 1. ¿From this point on, the algorithm is just the trivial algorithm.

In the analysis of the algorithm we keep track of the following random
variables:

• For each vertex u and round i, the size of u’s palette at round i;
denoted by ai(u);

• For each vertex u, colour γ and round i, the number of uncoloured
neighbours of u which have γ in their palettes; denoted by di(u, γ).

• For each vertex u and round i, the number of uncoloured neighbours
of u; denoted by degi(u).

Our goal here is to analyse the algorithm sufficiently to show that with
high probability there exist a round i = O(k) such that, for every vertex
u,

ai(u) > degi(u) + 1. (1)

This will occur after the algorithm has switched to its trivial phase. Since
the behaviour of the trivial algorithm in this situation is known [10, 13, 4],

5

we can then immediately conclude that the trivial algorithm will with
certainty complete the colouring and it will do so within O(logn) rounds
with high probability. As stated in the introduction, with a little bit
more work it is possible to show that the running time is actually O(k+
logn/ logD). Due to space limitations we shall content ourselves to carry
the analysis only up to the point where the termination condition (1)
holds. We remark that this is in any case the most difficult and interesting
part of the analysis.

In order to establish condition (1), we shall show that the random
variables ai(u), di(u, γ), and degi(u) are approximated very well by “ideal”
values ai, di and Di, which will be defined by means of suitable recur-
rences. After that is done, it is a simple matter to determine at what
point ai � Di, which implies condition (1). Indeed, we do this first.

Not surprisingly, the random variables evolve differently during the
dozing-off and trivial phases of the algorithm, prompting two sets of
recurrences for the ideal values. The first set applies for round i < ek,
during the dozing-off phase. Here,

ai+1 = ai exp(−1/e),

di+1 = di

(
1− ai

di

1

e

)
exp(−1/e), and

Di+1 = Di

(
1− ai

di

1

e

)
.

(2)

with initial conditions D0 = d0 = D and a0 = D/k.
The recurrences depend on the ratio di/ai, which, during the dozing-

off phase, satisfies the recurrence

di+1

ai+1
=
di
ai

(
1− ai

di

1

e

)
=
di
ai
− 1

e
.

Thus we immediately see that the ratio decreases in each step by the
constant 1/e. After ek = O(k) steps, we’ll no longer be in the situation
that ai < di. Observe that this number of steps is constant if k is.
Also notice that the wake-up probability p is in every round i defined to
be exactly equal to the inverse ratio ai/di, implying that the algorithm
switches from the dozing-off to the trivial phase in ek = O(k) steps. This
value of p was chosen in order to maximize the probability that a vertex
colours itself during the dozing-off phase.

After ek steps,

dek = aek = a0 exp(−ek/e) =
D

kek
.

6

Since, at all times, the vertex palettes must be nonempty, D/kek ≥ 1 is a
necessary condition (on k in terms of D). Asymptotically, this condition
is satisfied for all k = (logD)/c with c > 1 and not satisfied for k = logD.
Thus we see that k = O(logD) is a necessary condition for the algorithm
to work. This is in accordance with the lower bound given by Bollobás
for the existence of Brooks-Vizing colourings [3].

The ratio Di/di is initially 1, but increases by a factor of exp(1/e) in
each step. Therefore, Dek/dek = ek and we see that

Dek = D/k.

Thus at the end of the dozing-off phase, we are still quite far from at-
taining condition (1), so we must continue our analysis into the trivial
phase.

During the trivial phase, the ideal values obey the following recur-
rences:

ai+1 = ai exp

{
−di
ai
e−di/ai

}
,

di+1 = di
(
1− e−di/ai

)
exp

{
−di
ai
e−di/ai

}
, and

Di+1 = Di

(
1− e−di/ai

)
.

(3)

Once again, these recurrences depend on the ratio di/ai. Since

di+1

ai+1

=
di

ai

(
1− e−di/ai

)
<

(
di

ai

)2

, (4)

we see that this ratio goes to zero at a doubly exponential rate!
This implies thatDi decreases very much faster than ai—exactly what

we need for condition (1). To see this, bound ai and Di as follows (for
the second one, use the fact that e−x ≥ 1− x):

ai+1 ≥ ai exp

{
−di
ai
e−1

}
> ai exp

{
−di
ai

}
Di+1 ≤ Di

(
1−

(
1− di

ai

))
= Di

di
ai
.

(5)

¿From these recurrences we see that while Di also decreases doubly ex-
ponentially, the rate at which ai decreases is much slower and ever de-
creasing.

7

Since the ratio di/ai may be identically one at the beginning of the
trivial phase (i = ek), the inequality (4) would not be very useful if we
started there. Instead, take the values after one round of the trivial phase
(i = ek + 1). At that point we have aek+1 > D/kek+1, Dek+1 ≤ D/k and
ρ := dek+1/aek+1 ≤ 1− 1/e < 1.

Now, using Equation (4), we get dek+i/aek+i ≤ ρ2i−1
. Therefore, using

(5) repeatedly, we see that

Dek+i ≤ Dek ρ
2i+1−1 ≤ D

k
ρ2i+1−1,

while

aek+i ≥ aek+1 exp

{
−

i−2∑
j=0

ρ2j

}

≥ aek+1 exp

{
−

i−2∑
j=0

ρj

}

≥ D

kek+1
exp

{
− ρ

1− ρ

}
.

Thus within O(log k) additional rounds,

Di < cai (6)

for all constants c < 1. Also, if k = O(logD) then ai > 1 for every i,
which intuitively means that the algorithm never runs out of colours.

If we could show that the random variables degi(u), ai(u) and di(u, γ)
were arbitrarily close to the ideal values Di, ai and di then Equation (6)
would imply that the termination condition (1) holds. This is indeed the
case. Lack of space denies us the possibility of giving the entire proof of
the following theorem, but we will sketch its proof a bit later.

Theorem 1 With high probability

ai(u) = (1± ei)ai, di(u, γ) = (1± ei)di, and degi(u) = (1± ei)Di (7)

for all rounds i, colours γ and vertices u, where the error factors ei are
defined by

ei = Ci

√
kek log n

D
,

for a constant C > 1, and e0 = 0.

8

First, we show that the assumptions D = Ω(log1+δ n) and k =
O(logD) imply that ei’s are o(1)’s, thereby ensuring correct termina-
tion. Since we will need the statement of the Theorem to be true with a
small ei for all rounds i ≤ ek +O(log k), we would like

eek+O(log k) = Ck
1

√
log n

D
� 1,

which is just the condition Ck
2 logn � D, for suitable constants C1 and

C2. Assuming that D ≥ log1+δ n, for any δ > 0, this condition becomes
Ck

2 � D1+1/(1+δ), which is just that k ≤ α logD for an appropriately
small, but constant α.

So, if the ei’s behave as advertised in the Theorem, the statements
concerning the running time and the correctness of the algorithm follow.

In the next few pages, we sketch the proof of the Theorem. Although
the actual computations differ, the arguments for the dozing-off phase
and for the trivial phase are conceptually the same. The proof is by in-
duction on the round number i. The base case i = 0 holds with equality.
The induction step consists of two parts. First, it is shown that the ap-
proximate equality holds in expectation. That is, we first show that the
expectations are as promised: E[ai+1(u)] ∼ ai+1, E[di+1(u, γ)] ∼ di+1,
and E[degi+1(u)] ∼ Di+1. Then it is shown that that the random vari-
ables ai+1(u), di+1(u, γ) and degi+1(u) are sharply concentrated around
their expectations. The use of the asymptotic equality in place of ex-
plicit error factors is justified provided that the ei’s behave as stated in
the Theorem. We shall return to this later.

The concentration results are an important and non trivial part of
the proof but, unfortunately, they are quite involved. So we omit their
proofs from this extended abstract. They use a powerful large deviation
inequality [5], which has already proved useful in the algorithmic setting
[7, 6]. Their applications to the present situation are similar, but more
involved than, the applications given in the author’s [7]. The simplest of
the present cases, that of degi(u) ∼ Di for the trivial phase, is given as
an example in [5] and the reader is referred to it. The remaining ones
can be derived similarly, although they require a combination of old and
new techniques. We remark that the large deviation inequalities are the
source of the assumption on the size of D, for they cease to give strong
enough bounds when the degree is not high enough.

Next in our proof sketch is the derivation of the recurrences governing
the behaviour of the algorithm. This is done separately for the dozing-off
and trivial phase.

9

In what follows, we focus on an arbitrary round during the dozing-
off phase and assume by induction that the i-th version of Equation (7)
holds. To simplify notation, a, d, and D will denote the values ai, di,
and Di and a′, d′, and D′ will denote the values ai+1, di+1, and Di+1. We
will also omit explicit error factors like (1±ei) and just write asymptotic
equality.

By “u γ–colours” we will refer to the event that vertex u colours itself
succesfully with colour γ during the current round, and by “γ decays at
u” we will refer to the event that colour γ is deleted from u’s palette at
the end of the current round.

In the rest of the section, we focus on an arbitrary uncoloured vertex
u. During the dozing-off phase, a < d and the vertices awake with
probability p = a/d.

Lemma 2 During the dozing-off phase, for each uncoloured vertex u and
each colour γ in u’s palette,

Pr[u γ-colours] ∼ p

a

(
1− p

a

)d
∼ 1

d

1

e
.

The proof is straightforward and follows from the induction hypothesis
and the following fact (see for instance [16]).

Fact 3 Let A(n) and B(n) be such that A(n)2B(n) = o(1) (n tending to
infinity, as always). Then,

(1− A(n))B(n) = (1 + o(1))e−A(n)B(n).

¿From the lemma, again using Fact 3 and the induction hypothesis,
we see that,

Pr[u colours] =
∑
γ∈A(u)

Pr[u γ-colours] ∼ a

d

1

e
(8)

where A(u) is the current palette of u. Denoting by N(u) the current set
of uncoloured neighbours of u,

E[deg′(u)] =
∑

v∈N(u)

(1− Pr[u colours]) ∼ D

(
1− a

d

1

e

)
= D′,

since by induction |N(u)| = deg(u) ∼ D. This shows that the expec-
tation of deg′(u) is near the ideal value D′ and was what suggested the
recurrence

D′ = D

(
1− a

d

1

e

)
10

in the first place.
We now show that the palette sizes also have expectation asymptoti-

cally equal to their ideal values. As the neighbours of u colour themselves,
the colours they have used are removed from u’s palette. For each colour
γ in the palette, we see that, denoting by N(u, γ) the set of neighbours
of u whose palettes contain γ at the current round,

Pr[γ decays at u | u does not colour]

= Pr[some v ∈ N(u, γ) γ-colours | u does not colour]

The last event can be computed by considering the complementary event.
The probability that neither of two neighbours γ-colour is difficult in gen-
eral, but in the case where there are neither 3- nor 4-cycles, we see that
the events “x does not γ-colour” and “y does not γ-colour” are “essen-
tially” independent, since γ-colouring only depends on the (independent)
tentative colour choices made by each vertex and its neighbours and since
any two vertices x and y have no neighbours in common except u. The
same is true for any number of neighbours of u. This can be made rigor-
ous and we can conclude that

Pr[γ decays at u | u does not colour]

∼ 1−
∏

v∈N(u,γ)

Pr[v ∈ N(u, γ) does not γ-colour | u does not colour]

∼ 1− exp(−1/e).

(9)

The proof, which follows from Fact (3) and the IH, is omitted. Then,
again by induction,

E[a′(u)] =
∑
γ∈A(u)

(1− Pr[γ decays at u]) ∼ a exp(−1/e)

which suggested that palette decay during the dozing-off phase is gov-
erned by the recurrence

a′ = a exp(−1/e).

Now we turn to the d′(u, γ)’s. For each colour γ, the graph Gγ is
defined as the graph induced by the vertices whose palettes contain γ.
The probability that a vertex u must be removed from Gγ is, recalling

11

Equations (8) and (9),

Pr[u disappears from Gγ]

= Pr[u colours] + Pr[γ decays at u and u does not colour]

= Pr[u colours] + Pr[γ decays at u | u does not colour](1− Pr[u colours])

∼ a

d

1

e
+

(
1− a

d

1

e

)
(1− exp(−1/e))

= 1−
(

1− a

d

1

e

)
exp(−1/e).

Since, by induction,

E[d′(u, γ)]

=
∑

v∈N(u,γ)

(1− Pr[u disappears from Gγ])

∼ d

(
1− 1

d

1

e

)
exp(−1/e),

suggesting that the random variables di(u, γ)’s should be approximated
well by the solution to the recurrence

d′ = d

(
1− a

d

1

e

)
exp(−1/e).

We can now go back to the problem of error propagation and derive
the recurrence for the error terms ei given in the Theorem. Assume by
induction that at round i each of a(u), d(u, γ), and d(u) has a cumulative
error factor of (1± ei). In each of the expectation computations, we did
one of the following operations a small constant number of times: we used
the induction hypothesis, we used Fact 3, we made transformations like
1/(1+o(1)) = (1+o(1)) and ea(1+o(1)) = ea(1+o(1)). All together, these
operations imply that each expectation has an error factor (1± c1ei), for
some constant c1.

Next we apply the concentration results to show that, with high
probability, each random variable deviates from its mean by no more
than a certain amount, which may be interpreted as another error fac-
tor. As it turns out, of the three concentration results, the one with
the worst error factor is the palette size. We will use that error factor,
namely c2

√
(log n)/ai uniformly. In fact, we will bound this factor in

12

each round by the value in the last round, which gives the worst error:
c2

√
(kek log n)/D. Thus,

ei+1 = c1ei + c2

√
kek logn

D
.

Solving this recurrence gives the error term stated in the Theorem—
namely,

ei = Ci

√
kek log n

D
,

for an appropriate constant C > 1.

After the algorithm switches to the trivial phase, the recurrences for
the ideal values take on new forms, reflecting the fact that pi = 1 instead
of ai/di. Their derivations are conceptually the same, however.

Start again with the probability that a vertex colours itself with colour
γ. Namely,

Pr[u γ-colours] ∼ 1

a

(
1− 1

a

)d
∼ 1

a
e−d/a.

Thus,

Pr[u colours] =
∑
γ∈A

Pr[u γ-colours] ∼ e−d/a

Again both asymptotic equalities follow from Fact 3. This implies that
the expected number of neighbours of u which remain uncoloured in the
next round is asymptotically equal to D(1 − e−d/a), which led to the
recurrence

D′ = D(1− e−d/a).
To derive the recurrence for the palette sizes we again use the fact that
the events “v γ-colours” are, when the girth is at least 5, essentially
independent for any set of neighbours of u.

Pr[γ decays at u | u does not colour]

= Pr[some v ∈ N(u, γ) γ-colours | u does not colour]

= 1− Pr[no v ∈ N(u, γ) γ-colours | u does not colour]

∼ 1−
∏

v∈N(u,γ)

Pr[v does not γ-colour | u does not colour]

∼ 1−
(

1− 1

a
e−d/a

)d
∼ 1− exp

{
−d
a
e−d/a

}
.

13

Thus, the expected number of colours in u’s palette which survive is
asymptotically equal to
a exp

{
−(d/a)e−d/a

}
which led to the recurrence

a′ = a exp

{
−d
a
e−d/a

}
.

Finally, for the di(u, γ)’s we have

Pr[u disappears from Gγ]

= Pr[u colours] + Pr[γ decays at u and u does not colour]

∼ e−d/a + (1− e−d/a)
(

1− exp

{
−d
a
e−d/a

})
= 1−

(
1− e−d/a

)
exp

{
−d
a
e−d/a

}
,

which led to

d′ = d
(
1− e−d/a

)
exp

{
−d
a
e−d/a

}
.

Again, the next step in the proof is to prove the concentration results.
The situation here is essentially the same, but slightly simpler than in
the dozing-off phase.

Then to finish up one has to consider the error factors. Again, this
works out to be almost exactly the same as in the dozing-off phase, giving
an error factor of the same form—namely

ei = Ci

√
kek log n

D
,

where only the constant C differs.
This finishes the proof of the analysis of the trivial phase down to the

point where condition (1) holds. Thereafter, the analysis of the trivial
algorithm completes the proof [10, 4, 13].

3 Girth 4

Now we allow the input graph to have cycles of length 4, but we still
require it to be triangle-free. Having cycles of length 4 affects the analysis
in the following fundamental way: it doesn’t affect the probability that a

14

vertex colours itself, but it does affect the probability that colours decay
from its palette.

To see why, consider an extreme example, the complete bipartite
graph Kd,d with bipartition (A,B). If every vertex has a palette of size
a, the probability that a particular colour γ decays from the palette of a
particular vertex u ∈ A can be computed as follows.

Pr[γ decays at u | u does not colour]

= 1− Pr[no v ∈ B γ-colours |—]

= 1−Pr[some w ∈ A picks t(w) = γ |—]
−Pr[no vertex at all picks γ |—]

= 1−
(

1−
(
1− p

a

)d)
−
(
1− p

a

)2d

∼ 1

e
− 1

e2
≈ 0.233

(Here we used p = a/d, as in the dozing-off phase.) This is strictly less
than the probability of the same event in the absence of 4-cycles, namely
1− exp(−1/e) ≈ 0.308.

In general, when 4-cycles are allowed, the probability of colour decay
is a function of the local topology. Since the graph may not have the
same local topology everywhere, the rate of colour decay may vary from
vertex to vertex and even from colour to colour, since it is the topology
of Gγ, the graph induced by vertices with colour γ in their palettes, that
counts.

One thing is true however, the presence of 4-cycles can only lower the
probability of decay. This is proven in the following Lemma.

Lemma 4 In an (almost) d-regular triangle-free graph with palettes of
size (almost) a, for every vertex u and colour γ, Pr[γ decays at u |
u does not colour] ≤ 1− exp

{
−pd

a
e−pd/a

}
.

Proof The proof compares the probability that the colour γ decays at
vertex u in the given graph with the same probability in a graph with no
4-cycles.

Since only the first and second neighbourhoods of u can affect whether
γ decays at u, we ignore the rest of the graph. Similarly, edges between
second neighbours play no role and may be ignored. With this local
perspective, the graph consists of u, u’s neighbours N(u), and second
neighbours w, each of which is adjacent to a fixed set of first neighbours.

15

If the graph were to contain no 4-cycles, the graph seen from this local
perspective would simply be a depth 2 tree rooted at u.

Starting with the given graph, one can easily split each second neigh-
bour into a set of degree 1 vertices (leaves), producing a 4-cycle-free graph
(tree) where each first neighbour keeps the same degree. The other way
around, one could start with just such a tree and merge leaves one after
another into composite second neighbours to produce the given graph.

The proof follows this second process. We start with the tree where
the degrees of the first neighbours of u, the root, are the same as in
the given graph. We know already that for the tree the probability that
γ decays is asymptotic to 1 − exp

{
−pd

a
e−pd/a

}
. We show that as we

merge leaves into composite second neighbours, the probability that γ
decays cannot increase. Thus, in the orignial graph, the probability that
γ decays is at most that in the 4-cycle-free graph.

We can make one further simplification: We can ignore all neigh-
bours of u which have not chosen γ as their tentative colour and all
second neighbours which are only adjacent to such first neighbours. So,
throughout we will condition on knowing that u does not colour and
knowing the set X of neighbours of u which tentatively colour them-
selves γ. This conditioning will be represented by a dash (—).

If u’s tentative colour is γ, the fact that u does not colour tells us
that X is not empty, and additionally that no vertex in X can colour
itself and therefore that γ does not decay at u, regardless of the topology
of the second neighbourhood. Thus, we may assume that u’s tentative
colour was not γ and hence that any of the vertices in X might colour
themselves γ and thereby cause γ to decay at u.

So, consider an intermediate situation: some of the leaves have al-
ready been merged, and now we need to merge a leaf w1, adjacent to
neighbour v1, with a (possibly already composite) second neighbour w2.
We can assume that w2 is not adjacent to v1, since otherwise this op-
eration would create a duplicate edge, none of which exist in the given
graph.

16

Pr[γ decays at u |—]

= Pr
[
(v1 γ-colours) or

⋃
v∈X\v1

(v γ-colours)
∣∣∣ —

]
= Pr

[
v1 γ-colours

∣∣∣ —
]

+ Pr
[⋃
v∈X\v1

(v γ-colours)
∣∣∣ —

]
− Pr

[
(v1 γ-colours) and

⋃
v∈X\v1

(v γ-colours)
∣∣∣ —

]

Considered individually, the merge operation changes neither the value
of Pr[v1 γ-colours | —] nor that of Pr[

⋃
v∈X\v1

(v γ-colours) | —]. As
for

Pr
[
(v1 γ-colours) and

⋃
v∈X\v1

(v γ-colours)
∣∣∣ —

]
=

Pr
[
v1 γ-colours

∣∣∣ —
]
Pr
[⋃
v∈X\v1

(v γ-colours)
∣∣∣ (v1 γ-colours) and —

]
,

again, the probability that v1 γ-colours remains unchanged. But the last
probability increases, since in the new merged situation, knowing that
v1 γ-colours tells us that w1 ≡ w2 does not tentatively choose γ. This
slightly increases the probability that one of the vertices in X adjacent
to w2 γ-colours since it removes a possible obstruction.

Thus, after merging w1 with w2, the joint probability increases, de-
creasing the probability that γ decays at u, as desired. Since the same
is true after each merge operation, this probability in the given graph,
where all leaves are merged as needed, is at most the probability of the
same event in the 4-cycle-free graph. 5

Although this would seem to help, the 4-cycles make the analysis very
difficult because they systematically destroy the regularity of the graphs
Gγ and the uniformity of the palette sizes.

One way to correct this unfortunate state of affairs is to apply the
following kamikaze approach: Each vertex normalizes the probability of
colour decay of each colour in its palette by artificially removing colours
from its palette even if no neighbour has used the colour successfully.
By doing this with the correct probability, the effective decay probability
can be made to be exactly 1− exp

{
−(pd/a)e−pd/a

}
.

17

The algorithm given in the previous section is amended in the fol-
lowing way: each vertex maintains a complete description of its neigh-
bourhood out to distance 2. This allows each vertex u to compute for
each colour γ the natural probability pu,γ of decay. This is done before
tentative colours are chosen. The round then proceeds as before. At
the end, each colour γ which was not naturally removed is artificially
removed with probability

1− exp
{
−(pd/a)e−pd/a

}
− pu,γ

1− pu,γ
.

Finally, each vertex broadcasts its updated palettes to all neighbours out
to distance 2.

With this additional balancing mechanism, the expectations for the
γ-degrees and palette sizes are exactly as they were in the analysis of the
previous section. The concentration results are also affected in no sig-
nificant way by the independent artificial colour removals. We therefore
get identical performance bounds, with the exception that the commu-
nication and space complexity of the algorithm are somewhat increased.

4 Conclusions

We have given a fast, distributed algorithm for vertex colouringD-regular
triangle-free graphs using D/k colours, for any k = O(logD), as long as
D ≥ log1−δ n.

The analysis prompts several interesting questions. First of all, is the
lower bound on D really necessary or is it an artifact of our analysis?

Another possible improvement would be the removal of the regularity
assumption to deal with irregular graphs, perhaps with some condition
on the minimum degree.

Another question is whether the balancing mechanism used in deal-
ing with girth 4 graphs is necessary at all; it seems counter-intuitive to
remove colours from the palette when no neighbour has used them.

Additionally, our methods can cope with a limited number of triangles
in the graph. An interesting extension both algorithmic and existential
would be to characterize classes of non-triangle-free graphs which admit
Brooks-Vizing colourings. For instance, we know that line graphs can be
coloured with roughly ∆/2 colours by very fast distributed algorithms
[7], but a more complete characterization would be desirable.

18

These questions might be tackled from a theoretical standpoint, but
the best course of action might be a careful experimental study of the
algorithm presented in this paper.

Acknowledgement

Thanks to Micha l Karoński, Tomasz Luczak and Andrzej Ruciński for
comments helpful to the presentation of this result.

References

[1] B. Awerbuch, A.V. Goldberg, M. Luby, and S. Plotkin, Network decom-
position and locality in distributed computing, in Proceedings of the 30th
Symposium on Foundations of Computer Science (FOCS 1989), pages
364-369, IEEE, Research Triangle Park, North Carolina.

[2] B. Bollobás, Graph Theory, Springer Verlag, New York, 1979.

[3] B. Bollobás, Chromatic number, girth, and maximal degree, Discrete
Math. 24 (1978), 311–314.

[4] S. Chaudhuri and D. Dubhashi, Probabilistic recurrence relations revis-
ited, Theoretical Computer Science, to appear.

[5] D.A. Grable, A large deviation inequality for functions of independent,
multi-way choices, Combinatorics, Probability and Computing, to appear.
Available at “http://www.informatik.hu-berlin.de/∼grable/ldi.ps”.

[6] D.A. Grable, On random greedy triangle packing, Electronic Journal of
Combinatorics 4 (1997), R11, pp.19.

[7] D.A. Grable and A. Panconesi, Nearly optimal distributed edge colouring
in O(log log n) rounds, Random Structures and Algorithms 10 (1997),
385–405. Extended Abstract in Proceedings of the Eight Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 97), pages 278-285,
New Orleans.

[8] P. Hajnal and E. Szemerédi, Brooks coloring in parallel, SIAM Journal
of Discrete Math. 3 (1990), 74–80.

[9] A.R. Johansson, Asymptotic choice number for triangle-free graphs,
preprint, DIMACS, September 30, 1996.

[10] Ö. Johansson, Personal communication, May 1997.

19

[11] N. Karchmer and J. Naor, A faster parallel algorithm to color a graph
with ∆ colors, Journal of Algorithms 9 (1988), 83–91.

[12] H.J. Karloff, An NC-algorithm for Brooks theorem, Theoretical Com-
puter Science 68(1) (1989), 89–103.

[13] R.M. Karp, Probabilistic recurrence relations, in Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing (STOC 91), pages
190–197, New Orleans.

[14] J.H. Kim, On Brooks’ Theorem for sparse graphs, Combinatorics, Prob-
ability and Computing 4 (1995), 97–132.

[15] M. Luby, Removing randomness in parallel without processor penalty,
Journal of Computer and System Sciences, 47(2) (1993), 250–286.

[16] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[17] A. Panconesi and A. Srinivasan, The local nature of ∆-coloring and its
algorithmic applications, Combinatorica 15(2) (1995), 255–280.

[18] A. Panconesi and A. Srinivasan, On the complexity of distributed network
decomposition, Journal of Algorithms 20 (1996), 356–374.

20

Recent BRICS Report Series Publications

RS-97-37 David A. Grable and Alessandro Panconesi.Fast Distributed
Algorithms for Brooks-Vizing Colourings (Extended Abstract).
December 1997. 20 pp. To appear inThe Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’98.

RS-97-36 Thomas Troels Hildebrandt, Prakash Panangaden, and Glynn
Winskel. Relational Semantics of Non-Deterministic Dataflow.
December 1997. 21 pp.

RS-97-35 Gian Luca Cattani, Marcelo P. Fiore, and Glynn Winskel. A
Theory of Recursive Domains with Applications to Concurrency.
December 1997. ii+23 pp.

RS-97-34 Gian Luca Cattani, Ian Stark, and Glynn Winskel. Presheaf
Models for theπ-Calculus. December 1997. ii+27 pp. Appears
in Moggi and Rosolini, editors,Category Theory and Computer
Science: 7th International Conference, CTCS ’97 Proceedings,
LNCS 1290, 1997, pages 106–126.

RS-97-33 Anders Kock and Gonzalo E. Reyes.A Note on Frame Distri-
butions. December 1997. 15 pp.

RS-97-32 Thore Husfeldt and Theis Rauhe.Hardness Results for Dy-
namic Problems by Extensions of Fredman and Saks’ Chrono-
gram Method. November 1997. i+13 pp.

RS-97-31 Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian
Lund. Formal Modeling and Analysis of an Audio/Video Proto-
col: An Industrial Case Study UsingUPPAAL. November 1997.
23 pp. To appear inThe 18th IEEE Real-Time Systems Sympo-
sium, RTSS ’97 Proceedings.

RS-97-30 Ulrich Kohlenbach.Proof Theory and Computational Analysis.
November 1997. 38 pp.

RS-97-29 Luca Aceto, Augusto Burguẽno, and Kim G. Larsen. Model
Checking via Reachability Testing for Timed Automata. Novem-
ber 1997. 29 pp.

RS-97-28 Ronald Cramer, Ivan B. Damg̊ard, and Ueli Maurer. Span Pro-
grams and General Secure Multi-Party Computation. November
1997. 27 pp.

