
B
R

IC
S

R
S

-97-31
H

avelund
etal.:

F
orm

alM
odeling

and
A

nalysis
ofan

A
udio/V

ideo
P

rotocol

BRICS
Basic Research in Computer Science

Formal Modeling and Analysis of
an Audio/Video Protocol:
An Industrial Case Study Using UPPAAL

Klaus Havelund
Arne Skou
Kim G. Larsen
Kristian Lund

BRICS Report Series RS-97-31

ISSN 0909-0878 November 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/31/

Formal Modeling and Analysis of an
Audio/Video Protocol:

An Industrial Case Study Using UPPAAL

Klaus Havelund
Arne Skou

Kim Guldstrand Larsen
BRICS∗, Aalborg University, Denmark
{havelund,ask,kgl}@cs.auc.dk

Kristian Lund
Bang & Olufsen, Denmark

klu@bang-olufsen.dk

November, 1997

Abstract

A formal and automatic verification of a real-life protocol is presented. The
protocol, about 2800 lines of assembler code, has been used in products from the
audio/video company Bang & Olufsen throughout more than a decade, and its pur-
pose is to control the transmission of messages between audio/video components
over a single bus. Such communications may collide, and one essential purpose of
the protocol is to detect such collisions. The functioning is highly dependent on
real-time considerations. Though the protocol was known to be faulty in that mes-
sages were lost occasionally, the protocol was too complicated in order for Bang &
Olufsen to locate the bug using normal testing. However, using the real-time ver-
ification tool UPPAAL, an error trace was automatically generated, which caused
the detection of “the error” in the implementation. The error was corrected and the
correction was automatically proven correct, again using UPPAAL. A future, and
more automated, version of the protocol, where this error is fatal, will incorporate
the correction. Hence, this work is an elegant demonstration of how model check-
ing has had an impact on practical software development. The effort of modeling
this protocol has in addition generated a number of suggestions for enriching the
UPPAAL language. Hence, it’s also an excellent example of the reverse impact.

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

1 Introduction

Since the basic results by Alur, Courcoubetis and Dill [1, 2] on decidability of model
checking for real–time systems with dense time, a number of tools for automatic ver-
ification of hybrid and real–time systems have emerged [5, 10, 8]. These tools have
by now reached a state, where they are mature enough for application on industrial
case–studies as we hope to demonstrate in this paper.

One such tool is the real–time verification tool UPPAAL1 [5] developed jointly by
BRICS at Aalborg University and Department of Computing Systems at Uppsala Uni-
versity. The tool provides support for automatic verification of safety and bounded
liveness properties of real–time systems, and it contains a number of additional fea-
tures including graphical interfaces for designing and simulating system models. The
tool has been applied successfully to a number of case–studies [13, 3, 4, 12, 7] which
can roughly be divided in two classes: real–time controllers and real–time communi-
cation protocols.

Industrial developers of embedded systems have been following the above work
with great interest, because the real–time aspects of concurrent systems can be ex-
tremely difficult to analyse during the design and implementation phase. One such
company is Bang& Olufsen – having development and production of fully integrated
home audio/video systems as a main activity.

In 1996, BRICS and Bang& Olufsen (B&O) agreed to collaborate on a case study
based on one of the company’s existing protocols for audio/video device control. The
protocol was of interest for three reasons: Firstly, it contained an unexplained error
which occasionally caused data loss. The source of this error was unknown to ev-
eryone, including B&O, prior to the exercise. That is, normal testing had not been
sufficient to identify the wrong code. Our goal should be to explain the error. Sec-
ondly, the protocol documentation was very low level (consisting solely of assembler
listings and flow charts) – so the company could expect an improved documentation as
a byproduct of the work. Thirdly, B&O is about to move (a corrected version of) the
protocol to a different platform; thus the case–study will test the benefits of the mod-
eling and verification abilities of UPPAAL in a realistic development process. Finally,
the company had no problems in publishing the results in full detail afterwards. Al-
though the protocol is designed for use in audio/video networks, it is a general purpose
protocol applicable also in other contexts.

This paper reports the preliminary results of our collaboration. We describe how
the UPPAAL tool has been applied in constructing a model of the current protocol im-
plementation. The model was developed via 5 major iteration steps during 3 months,
where each new step was motivated by further clarification of the implementation –
obtained by simulation, trial verification, discussions and code inspection. In the final
model, accepted by B&O as valid with respect to the current implementation, we iden-
tified a timing error in the collision detection of the protocol implementation (via di-
agnostic information provided automatically by UPPAAL). Finally, a corrected version

1See URL: http://www.docs.uu.se/docs/rtmv/uppaal/index.shtml for information about UPPAAL.

2

of the protocol was suggested and afterwards successfully verified. For each model
version, the verification was performed on a suitably reduced model, in order to be
manageable by the tool while still allowing the error to be identified.

During the development of models, we found that the notion of timed automata and
their graphical representation served extremely well as communication means between
the industrial protocol designer and the tool expert doing the simulation and verifica-
tion. In addition, the graphical simulation features of UPPAAL lead to fast detection of
several (obvious) errors in the early models.

The resulting protocol documentation consists of 9 timed automata (a few pages of
drawings). This is shorter by an order of magnitude than the original documentation,
i.e. a few pages of timed automatons versus 2800 lines of assembler code and 3 pages
of flow charts. Most of the original information was immediately available – either via
the flowcharts or through discussions. However, a few times we had to walk through
the assembler code in order to obtain precise information. The lack of a model (formal
or informal) and the fact that the diagnostic trace2 of the protocol consisted of close
to 2000 transitions–steps, indicates that the error probably would not have been found
without the tool assistance. In fact, by using the diagnostic information from the tool,
it was possible to provoke the error in B&O’s laboratory. The paper is organized as
follows: In sections 2 and 3, we present the UPPAAL tool and the B&O protocol. In
section 4 we present our model of the existing protocol, and in sections 5 and 6 we
present the identification of the protocol error and its correction. Section 7 provides
concluding remarks, evaluates the UPPAAL tool in retrospective and points out further
work.

2 The UPPAAL model and tool

UPPAAL is a tool box for symbolic simulation and automatic verification of real–timed
systems modeled as networks of timed automata [2] extended with integer variables.
More precisely, a model consists of a collection of non–deterministic processes with
finite control structure and real–valued clocks communicating through channels and
shared integer variables. The tool box is developed in collaboration between BRICS at
Aalborg University and Department of Computing Systems at Uppsala University, and
has been applied to several case–studies [13, 3, 4, 12, 7].

The current version of UPPAAL is implemented in C++, XFORMS and MOTIF and
includes the following main features:

• A graphical interface based on Autograph [6] allowing graphical descriptions of
systems.

• A compiler transforming graphical descriptions into a textual programming for-
mat.

2guaranteed by UPPAAL to be the shortest such.

3

• A simulator, which provides a graphical visualization and recording of the possi-
ble dynamic behaviors of a system description. This allows for inexpensive fault
detection in the early modeling stages.

• A model checker for automatic verification of safety and bounded–liveness prop-
erties by on–the–fly reachability analysis.

• Generation of (shortest) diagnostic traces in case verification of a particular real–
time system fails. The diagnostic traces may be graphically visualized using the
simulator.

A system description (or model) in UPPAAL consists of a collection of automata
modeling the finite control structures of the system. In addition the model uses a finite
set of (global) real–valued clocks and integer variables.

Consider the model of figure 1. The model consists of two components A and
B with control nodes{A0, A1, A2, A3} and{B0, B1, B2, B3} respectively. In addition
to these discrete control structures, the model uses two clocksx andy , one integer
variablen and a channela for communication.

y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0 y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4 n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5

x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1

A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0
(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2 A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0
(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)

c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1 B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2 B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

Figure 1: An example UPPAAL model

The edges of the automata are decorated with three types of labels: aguard, ex-
pressing a condition on the values of clocks and integer variables that must be satisfied
in order for the edge to be taken; a synchronizationactionwhich is performed when
the edge is taken forcing as in CCS [15] synchronization with another component on a
complementary action3, and finally a number ofclock resetsandassignmentsto inte-
ger variables. All three types of labels are optional: absence of a guard is interpreted

3Given a channel namea, a! anda? denote complementary actions corresponding tosendingrespec-
tively receivingon the channela.

4

as the conditiontrue, and absence of a synchronization action indicates an internal
(non–synchronizing) edge similar toτ–transitions in CCS. Reconsider figure 1. Here
the edge betweenA0 andA1 can only be taken, when the value of the clocky is greater
than or equal to3. When the edge is taken the actiona! is performed thus insisting on
synchronization with B on the complementary actiona? ; that is for A to take the edge
in question, B must simultaneously be able to take the edge fromB0 to B1. Finally,
when taking the edge, the clocky is reset to0. The edge betweenA2 andA3 can only
be taken ifn equals5.

In addition, control nodes may be decorated with so–calledinvariants, which ex-
press constraints on the clock values in order for control to remain in a particular node.
Thus, in figure 1, control can only remain inA0 as long as the value ofy is no more
than6.

Formally, states of a UPPAAL model are of the form(l, v), wherel is a control
vector indicating the current control node for each component of the network andv
is an assignmentgiving the current value for each clock and integer variable. The
initial stateof a UPPAAL model consists of the initial node of all components4 and an
assignment giving the value0 for all clocks and integer variables. A UPPAAL model
determines the following two types oftransitionsbetween states:

Delay transitionsAs long as none of the invariants of the control nodes in the current
state are violated, time may progress without affecting the control node vector
and with all clock values incremented with the elapsed duration of time. In figure
1, from the initial state〈(A0, B0), x = 0, y = 0, n = 0〉 time may elapse3.5 time
units leading to the state〈(A0, B0), x = 3.5, y = 3.5, n = 0〉. However, time
cannot elapse5 time units as this would violate the invariant ofB0.

Action transitionsIf two complementary labeled edges of two different components
are enabled in a state then they can synchronize. Thus in state〈(A0, B0), x =
3.5, y = 3.5, n = 0〉 the two components can synchronize ona leading to the
new state〈(A1, B1), x = 0, y = 0, n = 5〉 (note thatx , y , andn have been
appropriately updated). If a component has an internal edge enabled, the edge
can be taken without any synchronization. Thus in state〈(A1, B1), x = 0, y =
0, n = 5〉, the B–component can perform without synchronizing with A, leading
to the state〈(A1, B2, x = 0, y = 0, n = 6〉.

Finally, in order to enable modeling of atomicity of transition–sequences of a par-
ticular component (i.e. without time–delay and interleaving of other components)
nodes may be marked ascommitted(indicated by ac–prefix). If one of the com-
ponents in a state is in a control node labeled as being committed, no delay is allowed
to occur and any action transition (synchronizing or not)must involve the particu-
lar component (the component is so–to–speak committed to continue). In the state
〈(A1, B1), x = 0, y = 0, n = 5〉 B1 is committed; thus without any delay the next tran-
sition must involve the B–component. Hence the two first transitions of B are guaran-

4 indicated graphically by a double circled node.

5

teed to be performed atomically. Besides ensuring atomicity, the notion ofcommitted
nodes also helps in significantly reducing the space–consumption during verification.

In this section and indeed in the modeling of the audio/video protocol presented in
the following sections, the values of all clocks are assumed to increase with identical
speed (perfect clocks). However, UPPAAL also supports analysis of timed automata
with varying and drifting time–speed of clocks. This feature was crucial in the model-
ing and analysis of the Philips Audio–Control protocol [3] using UPPAAL.

3 Informal protocol description

In this section we provide an informal presentation of the device control protocol,
which is used in existing B&O audio/video equipments. The description is split into
protocol environment, protocol syntax, and dynamic protocol rules as advocated in
[11].

Audio Center

Broadcast Bus

Other RoomsMain Room

MX-TV

VX7000-VCR

Figure 2: Example B&O configuration

3.1 Protocol environment

The audio/video components in a B&O system are integrated through a broadcast net-
work, called thebus, for command exchange as indicated in figure 2. Examples of
commands are start and stop of a VCR initiated via a remote control5. Because the
bus is shared, there is a risk of collision between component transmissions, and the
protocol rules must ensure that collisions are recognized by all involved components in
order to prevent data loss or duplication.

5Typical devices are TV-sets, VCRs, radios, tape recorders, CDs, active loudspeakers etc.

6

3.2 Protocol syntax and encoding

The components exchange information via so–calledframes, where each frame con-
sists of a number ofT-messagesfollowing the abstract syntax:

frame::= T5{T1|T2|T3}≥15T4

So, aframeconsists of aT5, followed by a sequence of at least 156 symbols over
the set{T1, T2, T3} and terminated by aT4. TheTi’s have the following roles:T5

indicates the start of a frame (used for bus reservation);T4 indicates the termination of
a frame (used for bus release); andT1, T2, andT3 are used for the actual frame data.
The detailed rules for bus reservation and release are given in section 3.3.

Each T-message (Ti) is represented on the bus as voltage levels (0 Volts and 5 Volts)
according to the pattern in figure 3. The figure shows that theTi’s are separated by 0V
for 1562µs – the so-called protocolperiod. TheTi’s are identified by the length of
the 5V signal between the 0V periods. Besides theTi’s, there is an additional pattern
called ajamming signal, which is defined as a 0V signal for 25 ms.

1562 ∗ i µs

0 (0 V)

1562 µs

1 (5 V)

1562µs

Figure 3: Physical representation of aTi message.

Each component outputs to and reads from the bus via a one–bit register, where 0
represents 0V, and 1 represents 5V. When two or more components are accessing the
bus, the 0V has priority, that is, the bus changes states according to a logicalandas
described in figure 4. For the remainder of this paper, we use 0 and 1 to denote both
the register values and the voltage levels of the bus.

current bus state component output, component output,
new bus state new bus state

0 (0V) 0,0 1,0
1 (5V) 0,0 1,1

Figure 4: Rules for changes of bus state

6The header size of a frame. A header consists of (format,address,command).

7

3.3 Protocol rules

Below we describe (in an informal way) the different rules, which must be obeyed
when the bus is accessed by a component. We only deal with the sender aspects of a
component, as the receiver part is straightforward. Please observe that each component
has its own clock – running independently of all other clocks in the system. In order
to structure the descriptions, we define the following meta phases for a component:
The idle phase, where it waits for a new frame to become ready for transmission, the
initialization phase, where it waits for bus reservation, thetransmissionphase, where
the frame transmission takes place, and thecollision handling phase, which is entered
after a collision detection.

Bus Reservation RuleA network component reserves the bus by issuing aT5 and
releases the bus by issuing aT4 or by detecting a collision and issuing a jamming
signal. That is, if a component has issued aT5, all other components consider
the bus as being reserved.

Frame Gap RuleA network component must ensure the duration of at least 50 ms be-
tween its transmitted frames. However, if a component has generated a jamming
signal, it may resend its (destroyed) frame immediately after the jamming signal.

Frame Initialization RuleWhen a frame becomes ready for transmission (in the idle
phase), the sending component delays for781µs (thereaction delay), enters the
initialization phase, and waits for bus reservation. When reservation is possible
(i.e. aT5 has not been detected on the bus), the component must wait for addi-
tional 2 periods and check that the bus state is 1 during the final781µs of these
2 periods. If this is not the case, bus reservation is retried. Otherwise, another
781µs is awaited, and the transmission phase is entered, starting the transmission
of aT5.

Bus Sample RuleA sender must sample the bus contents for each period (S1-points
in figure 5) and in the middle of each period (S2-points in figure 5).

Bus Output RuleA sender must issue output to the bus in the beginning of each
sample period (theW -points in figure 5). For a given period, the condition
0 < (W − S1) < 600µs must be satisfied.7 In the actual model, we have
estimated the quantity(W − S1) to 40µs — the so-calledoutput-delayof the
protocol.

Collision Detection RuleA sending component must check the bus for collision at
eachS2-point (see figure 5). For a given period,s1 ands2 denote the bus values
sampled at pointsS1 andS2. Furthermore,pn andpf denote the values output to
the bus from the component at pointsW of the given period and its predecessor.
A transmission is collision free, if the conditionpf = s1 ∧ pn = s2 is satisfied

7Due to the physical laws of how fast the bus can change its state.

8

for eachS2-point. If this is not the case, the sender enters the collision handling
phase.

Collision Handling RuleDue to the priority between voltage levels, a collision can
only occur, when 0 is sampled from the bus. Moreover, if the duration of such
an (inconsistent) 0 signal is less than 3 periods, the rule is that the component
must issue a jamming signal and thereafter reenter the initialization phase. If
the duration is at least 3 periods, another component is jamming. The rule is that
the sending (non-jamming) component must wait for 18 periods after the 0 signal
has disappeared from the bus, and thereafter reenter the initialization phase. This
delay gives a jamming component the possibility to retransmit its frame without
further collisions.

pf s2pn

781µs 40µs

W

s1

S2 S1 WS1S1 W S2 S2 S2S1 W

s1: bus sample atS1

pn: present bus output at W
pf : previous bus output at W

s2: bus sample atS2

Figure 5: Relative ordering of the variables involved in the collision detection per-
formed at the rightmostS2-point

Transmission Stop RuleWhenever a collision has been detected, the component must
stop from issuing further bus outputs (and enter the collision handling phase). In
this way, it becomes possible to detect if the collision is caused by the jamming
of another component.

Detection Stop RuleThe final collision detection during frame transmission is the de-
tection performed 781µs after the first 0 signal of the terminating symbolT4. Put
in another way: When the detection has successfully passed both the period of
the leading 0 ofT4 and also the successor period, the detection must be stopped.
This rule avoids ’false’ collisions, i.e. collisions, that are detectedafterthe final
0 of a frame.

Protocol CorrectnessA protocol implementation is correct with respect to collision
if the following two conditions are satisfied: (1) if the frame transmitted by a
senderX is destroyed (by another sender), then senderX shall detect this; and
(2) if one sender detects a collision, then all other simultaneously transmitting
senders should detect it.

9

4 A validated formal model of the protocol

From the informal description given in the previous section it is by no means easy to
determine whether the protocol is correct, i.e. satisfies theProtocol Correctnesscriteria.
Thus, in this section we develop a model of the protocol in the UPPAAL language in
order to enable a formal automated verification of its correctness using the UPPAAL

tool set. We will refer to this model asvalidated, meaning that it has been approved by
B&O as being a correct abstraction of the existing implementation.

The model is – as all models – anabstractionof the real implemented protocol in
the sense that it leaves out details regarded as unimportant for the verification task. In
our case, an additional challenge in choosing abstraction is the need to reduce the state
space to search, and hence to reduce time and space consumption during the automatic
verification.

The construction of a model was an iterative process. Several issues had to be
right. First of all, the model should be valid, reflecting the code in the protocol, and
not do something different. Second, the model should be as abstract as possible to
make verification efficient, but detailed enough in order to catch the error, the nature
of which we were not aware. Third, the correctness criteria should itself be valid,
reflecting a desired property; and fourth, the correctness criteria should be such that
the yet unknown error could be caught. The correctness criteria went through a couple
of iterations, and was constantly under debate.

We present the complete validated model of the protocol, and from this we shall
then derive a reduced model to which the UPPAAL verifier is applied. This reduction is
done basically by limiting the number of frames a sender can transmit; and also by lim-
iting the contents of the individual frames: the number of contained T-messages, and
their kind. Even with these reductions the protocol will turn out to exhibit erroneous
behavior.

4.1 Overview

The protocol is modeled in UPPAAL as a network of 9 timed automata (figure 6), which
can be divided into three groups: a bus, a sender system named A, and a sender system
named B. Note that there are no frame-receivers, as these are not regarded important
for the verification task in hand. The sender systems are completely symmetric in their
construction, hence, we shall only describe one such, namely system A.

The sender system A consists of four automata: a sender SenderA, a detector
DetectorA, a frame generator FrameGeneratorA and an observer ObserverA. The
protocol itself (which is the one implemented in assembler), is here modeled by the
sender and the detector. The sender is the key component of the system, and is respon-
sible for transmitting the frames over the bus, while the detector, which is activated
from the sender at S2-points, represents the collision detection algorithm.

The frame generator and observer are part of what we will call theenvironment,
hence in principle not components of the implemented protocol. The frame generator
basically generates the 0’s and 1’s of a frame to be output by the sender, hence it models

10

6

�� --

6

�
��	

@
@@R

@
@@R

@
@@R
@
@@R

�
��	
�
��	
�
��	

A observe BobserveB new PnB frame

zero

one

zero

one

B T4

DetectorA

A Pf
A Pn

A S2
A S1

A res
A err

SenderA
Bus

A Pn
B Pn

ObserverA

A Pf
A Pn
A S1
A S2

A diff A Pn A no
A msg

A stop
A eof

A start

FrameGeneratorA

A T4

B Pn B no
B msg

B stop
B eof

B start

FrameGeneratorB ObserverB

B Pf
B Pn
B S1
B S2

B diff

SenderB

DetectorB

B Pf
B Pn

B S2
B S1

B res
B err

A c
A S2
A S1
A Pn
A Pf

A err
A res

B start

B c
B S2
B S1
B Pn
B Pf

B err
B res

A start
A stop
A eof

B stop
B eof

A frame A reset BresetA new Pn

B checkA check

Figure 6: The Protocol

the signals coming for example from a remote control unit. The observer is purely used
to formulate the correctness criteria.

The components communicate via channel synchronizations and via shared vari-
ables. The figure illustrates the channel connections by arcs going from one component
(the one that does a send “! ”) to another (the one that does a receive “?”). As an exam-
ple, SenderA reads the current value of the bus by receiving on either channelzero
(value is 0) or channelone (value is 1), whichever is enabled. In addition, for each
component it is shown (written inside the box) which variables it accesses in which
manner. A variable x is in bold (x) if it is assigned to, and in normal font (x) if it is
only read from. Finally, if a variable is local, it is in italic (x). Note, that by convention
a variable may be mentioned in several components if they share it. In a few cases,
variables that are only initialized in a component have been omitted for clarity.

4.2 The bus

The status of the bus is decided by two variables,A Pn andB Pn, representing the bus
registers, as shown in figure 7. The two variables (initialized to 1) are set by the sender
systems at W-points by the sending system performing one of the assignmentsA Pn
:= 0 or A Pn := 1 . The senders can sample the actual bus contents by synchroniz-
ing on channelszero andone respectively.

4.3 The frame generator

The frame generator, figure 8, is the component that concretely sets the bus by assign-
ing values 0 and 1 to the variableA Pn on request from the sender at its W-points. The

11

A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1

A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0
zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!

B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0
zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!

A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1
one!one!one!one!one!one!one!one!one!one!one!one!one!one!one!one!one!

c:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initialize

activeactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactive

BusBusBusBusBusBusBusBusBusBusBusBusBusBusBusBusBus

Figure 7: The Bus

generator is initialized by anA frame! action from the sender, where after each new
assignment toA Pn is triggered by anA new Pn! action from the sender, until con-
trol returns to thestart node. The generator decides what values to assign each time
it is triggered by the sender. AnA reset! action from the sender resets the frame
generator in case a collision has been detected. Of course one can argue that assigning
to A Pn is not part of the environment; and we could certainly let the generator just
produce 0’s and 1’s, and let the sender perform the assignments to the bus registers. In
fact, such a model existed on our way to the current model, which is however smaller
in terms of number of variables used.

BesidesA Pn, three other externally visible variables are assigned to:A eof ,
A stop andA start . First, the variableA eof is set to 1 as soon as the lastT4

message in a frame has been transmitted. The sender will then stop transmitting. Sec-
ond, according to theDetection Stop Rule, the last collision detection is performed 781
µs after the 0 period beginning the lastT4 message, and is hereafter disconnected. This
is modeled by letting the generator assign the value 1 to the variableA stop at this
point. Finally, according to theBus Reservation Rule, a precondition for SenderB to
begin transmission of a new frame is that noT5 message has been output by SenderA
trying to reserve the bus. Hence, an accurate model would here let SenderB sample
the bus to detectT5’s. This complicates the model unnecessarily, and as an abstraction,
we let system A set the variableA start to 1 when system A has transmitted aT5 (to
keep the graph simple: at every output of a 0 ending a T-message), and clear it again
after the lastT4, when the bus is released. SenderB can then read this variable; and
vice versa.

Three local variablesA no , A msg andA T4 are used to control the flow of the
generator. A frame consists of a sequence of T-messages, which we number from 1
and up. The current T-message number is stored in the variableA no . The variable
A msgcontains the remaining length (in terms of periods) of the current message; that
is: the remaining number of 1’s to be output. Recall, that theT5 start message consists
of 1’s for ten periods (of 1562µs) or simply ten 1’s; hence this variable is initialized to

12

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7
A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0

A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?

A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1

A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0

A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?
A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1
A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10
A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0
A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0
A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6

A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16
A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20
A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8
A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1

c:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continue

c:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stop

firstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirst

msgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsg

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

lastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlast

c:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msg

Frame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_A

Figure 8: The Generator

10. Finally, the variableA T4 is set to 1 when the lastT4 message is transmitted, just
to invoke the exit of the frame generation.

As long as there are messages to transmit, control returns to themsg node. From
there the upper right loop is entered each time a 0 is output, and at the same time a
non-deterministic choice is made of a new message (length). Note that the lengths
of T-messages (in terms of periods, and hence the number of 1’s to be output) are as
follows: T1 : 2, T2 : 4, T3 : 6, T4 : 8, andT5 : 10. The model is limited to transmit
minimum 17 and maximum 20 messages (including the startingT5 and the endingT4).
This is to limit the search space. The lower right loop is entered for each 1 output to the
bus, calculating the value of theA stop variable each time: when there are less than
seven 1’s left to be output of the lastT4 message, collision detection is disconnected.

Note, that the frame generator can be regarded as providing three procedures (the
channels), which will be “called” from the sender. The intention is that when the
sender “calls” one of these procedures, the sender waits until the “procedure’s return”.
To model such procedure–calls (which are to be performed atomically) in UPPAAL,
we have used UPPAAL’s committed nodes. This is even more the case for the detector
described below.

13

4.4 The detector

The detector represents the collision detection algorithm, and is to be regarded as a pro-
cedure, which, according to theCollision Detection Rule, is “called” from the sender
at S2-points, through anA check! action. As “arguments” it takes the sampless1

ands2 represented by the global variablesA S1 andA S2; and the outputspf andpn
represented by the global variablesA Pf andA Pn, where after it checks the relation-
ship between these values. The result of the check is written into the variablesA err
andA res . BasicallyA err counts the number of 0’s sampled, whileA res is set to
0 if no action is to be taken, 1 if sender A should jam, and finally 2 if another sender
(B in this case) is jamming. In the latter two cases, sender A should react. The de-
tector is fully made up of committed nodes, hence it consumes no time, and “returns”
instantly to thewait call node after being activated. The graph corresponds closely
to a flowchart extracted from the assembler code. The reader is not supposed to grasp
the details.

A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1

A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0

A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1 A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0
A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3

A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0
A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3
A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1

A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0

A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1

A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0
A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3

A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0
A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3
A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1

A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0

A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1

A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0

A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1

A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0

A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0

A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0
A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3
A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1

A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3
A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2

c:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pf

c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1

c:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pn

c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2
c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1

c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2

wait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_call

c:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_res

Detector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_A

Figure 9: The Detector

14

4.5 The sender

The sender is responsible for triggering outputs to the bus, and is the main and most
complicated component, see figure 10. It has a single clock, namedA c , which mainly
is used to model the timer interrupts that arrive with intervals of 781µs. The sender-
nodes can be divided into three groups: theinitialization phase, thetransmission phase,
and thecollision response phase(entered when a collision has been detected, and fur-
thermore a response has been decided).

Initialization phase. This is the upper part of the diagram. The nodesex start
andother started model the first part of theFrame Initialization Rule(related to
the Bus Reservation Rule), which specifies that no frame can be transmitted if aT5

message coming from another sender, B in this case, has been detected on the bus.
Recall, that this detection is modeled (abstracted) with theB start variable being set
to 1 by FrameGeneratorB.

The loop at nodeother started represents the fact that in case aT5 hasbeen
detected, then we wait until aT4 message is received, releasing the bus. This waiting
is done by once every 3124µs to check whether theT4 message has been received;
here at this abstract level modeled byB start being equal to 0 again, where after we
proceed with the precondition check.

The nodesex silence1 andex silence2 model the remaining part of the
Frame Initialization Rule, where it is specified that the sender must wait further two
periods (2*1562µs) after theT5 reservation check; and in the last 781µs of the second
period, the bus must be silent (1). This is modeled by waiting 3*781 = 2343µs, and
then check the bus value at the beginning and at the end of the remaining 781µs
interval. Note how the bus is sampled by synchronizing on eitherzero? (bus value is
0) orone? (bus value is 1).

Transmission phase.This is the mid part of the diagram. The transmission starts in
nodetransmit in case the precondition checked in the initialization phase is satis-
fied. The transition to thecheck eof node initializes the frame generator
(FrameGeneratorA) via theA frame! action. The sender now enters a loop, where
each iteration represents a period of 2*781 = 1562µs. Basically four variables are
assigned to during one iteration of this loop:A Pn in W-points (as we have seen, by
FrameGeneratorA), A Pf , to hold the previousold value ofA Pn, and finallyA S1
andA S2 to hold the samples in respectively S1-points and S2-points, as recorded in
theBus Sample Rule.

In the nodecheck eof it is examined whether anend of framehas been reached,
in which case thestop node is entered, and according to theFrame Gap Rule, 50
ms must then pass before a new frame is transmitted. Nodecheck eof furthermore
represents an S1-point whereA S1 is sampled if the frame has not been finished.

15

A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0

A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1

A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0
A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0

A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40
A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1

A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40
A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0
A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!

A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?
A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0 A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781

A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0
A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0
A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1
A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124
B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124
B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?

A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?
A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1

A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!
A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0
A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

holdholdholdholdholdholdholdholdholdholdholdholdholdholdholdholdhold
(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)

c:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPf

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

jamjamjamjamjamjamjamjamjamjamjamjamjamjamjamjamjam
(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)

newPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPn
(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)

c:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eof

transmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmit
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

ex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jam
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

until_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silence
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

stopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstop
(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)

c:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_start

other_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_started
(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)

ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1
(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)

ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

c:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idle

samplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesample
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

c:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_check

Sender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_A

Figure 10: The Sender

16

After the sampling, in nodenewPn, 40 µs elapses according to theBus Output
Rulebefore a new value is output, assigned toA Pn by FrameGeneratorA, which is
triggered with theA new Pn! action. Note that in case the variableA err differs
from 0, it means that a collision has been detected, and according to theTransmission
stop Rule, transmission should stop, here modeled by just outputting 1’s to the bus.
In the nodesample , A S2 is sampled, reaching nodecall observe . Here the
observer and the collision detection, in case not disconnected, are activated. In the
ex jam node the resultA res of the collision detection is examined, and collision
response is begun in case it’s different from 0, i.e. either is 1 or 2, as described in the
next paragraph.

Collision response phase.This is the lower part of the diagram. Recall that the value
of A res decides the response. When 1, SenderA must jam for 25 ms as stated in the
Collision Handling Rule. When 2, another (SenderB) must be jamming, and we must
wait for the bus to be silent, where after 18 periods (28116µs) must pass according to
the same rule.

5 Error detection using UPPAAL

In this section we shall describe how the error was found in the validated protocol just
presented in the previous section. First, the correctness criteria will be formulated, and
second, the result of the verification of this criteria, an error trace, will be explained.

5.1 The correctness criteria

The correctness criteria is informally stated in theProtocol Correctnessstatement. It
says, that (1) if the frame transmitted by a sender X is destroyed (by another sender),
then sender X shall detect this; and (2) if one sender detects a collision, then every
other simultaneously transmitting sender should detect it. In order to formulate rule
(1), we must formulate what it means for a frame to be destroyed. We define a frame
as destroyedif sampled values differ from output values. Hence, we introduce an
observer automaton observing this for each sender, and figure 11 shows the observer
for SenderA.

Recall, that this observer is communicated to from the sender in terms of an
A observe! action at each S2-point. In receiving this signal, the observer sets the
variableA diff to 1 if and only if there is a mismatch between sampled values and
output values. That is, if eitherA Pf 6= A S1 or A Pn 6= A S2. This is formulated
slightly different in the automaton since UPPAAL does not allow negation in edge
guards. Note, that we cannot use DetectorA to observe the relationship between sam-
pled and output values, since this is one of the components we want to verify. With the
observer, we are sure to know when output 1’s have been destroyed by 0’s from another
sender. It can easily be shown, that a frame has only been destroyed if at the end of its

17

A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?
A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1
A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0
A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1

A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?
A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0
A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1

A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?
A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1
A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2

comparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecompare

Observer_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_A

Figure 11: The Observer

transmissionA diff equals 1.

The correctness criteria can now be formulated as follows:

A[] (A_eof == 1 imply
(A_diff == 0 and B_res == 0))

In order to understand this property, note thatA eof is set to 1 when A’s frame
has been sent, thatA diff is set to 1 if A’s frame has been destroyed, and finally, that
B res is set to 1 if B has detected a collision. The property then says, that when-
ever (A[]) a frame has been sent (A eof equals 1), the sent frame must be intact
(A diff equals 0), and other senders (B in this case) must not have discovered a col-
lision (B res equals 0). A symmetric property is also verified for sender system B.

5.2 The error trace

In order to obtain a fast feed-back (few minutes) during the debugging of the protocol,
we worked with a reduced model, where basically each sender only transmitted a single
frame ofT1 messages, surrounded by aT5 and aT4. This was considered harmless as
the purpose was to locate an existing error rather than to prove some property univer-
sally true. The verifier rejected the stated correctness criteria as being true, and figure
12 illustrates a condensed version of the error trace produced by UPPAAL8 in terms of
a bus–value diagram. UPPAAL required 6,27 minutes of computation and 32 M bytes
of memory on a Sparc 10.

It appeared to be theDetection Stop Rulethat was unhealthy: collision detection
seemed to be disconnected too early with the result of messages being lost. The trace
describes a scenario, where SenderA sends a frame of exactly 15T1 messages, while
SenderB sends 16T1 messages. Hence, the two frames are different, although they
are equal up the the lastT1 of A.

8The error trace produced by UPPAAL contained 1998 basic transition–steps.

18

L

c
e

fd

a b

T1

T1

T4

T1
jamming

A

B

N

Figure 12: The error trace visualized

SenderB starts exactly 40µs after SenderA. Precisely this delay, which fatally
equals the delay between a senders S1-sampling and its bus output, allows the two
senders to proceed without any of them discovering their simultaneous bus access.
To see this, consider figure 12 which shows how all the 0-periods of the two frames
are positioned relative to each other: at point (a) SenderA samples S1 and is ready
to output a 0, but the output happens in point (b) due to the output delay (which is
also 40µs). In point (b) SenderB now also is ready to sample its S1 value. Now, if
SenderA outputs its 0beforeB‘s sampling, then B will sample a 0 while expecting a
1, and B will then recognize the collision. However, if SenderA outputs its 0afterB‘s
sampling, then no collision will be detected by B.

Hence, there is a non-deterministic outcome of each pair of A and B 0-periods:
either A will output before B samples, and a collision is detected by B, or A will output
after, and no collision will be detected. This mutual ignorance of the collision continues
until sender A terminates its lastT1 message, as illustrated by figure 12, and explained
in the following.

The figure in fact illustrates the beginning of the lastT4 message of SenderA,
together with the beginning of yet another (the 16th)T1 message of SenderB. Up to
that point B has sampled before A has output and no collision has been detected. Now,
however, at point (b), sender A comes first and outputs a 0, and this is detected by B in
point (d) when the collision detection is activated (B err := B err + 1). In point
(e), B then decides to jam (B res := 1), which happens in point (f). This is in fact
after the last collision detection performed by A in point (L). Hence, sender A never
observes the collision, while sender B does. Consequently, A’s message is lost and is
not retransmitted.

Put differently, and simpler, since a sender disconnects its collision detection early
in its T4 message, other senders can start jamming after that point without it being de-
tected. The trace violates as wellA diff == 0 asB res == 0 at the point where
A eof == 1 : sender A’s frame is destroyed (without A detecting it), and sender B
has detected the collision.

A question is: “how important is it that sender B starts exactly 40µs after A?”.
Well, in the case where both senders send onlyT1 messages, itis important, since if
the delay islessthan 40, no collision will ever be detected, and in case the delay is
above 40, collision will be detected immediately by both. This is true in our model.
In reality, however, clocks in the various audio/video components may have slightly

19

different, and changing, speeds, so in practise senders do not need to start exactly 40
µs apart in order to cause the error.

6 Correcting the protocol

Thus, as explained in the previous section, the source of the error was identified as the
too early disconnection of the collision detectionjust afterthe 0beginningthe lastT4

message. That is: the last check is performed 781µs after this 0 has been turned back
into a 1, at point (L) in figure 12. This allows another sender to start jamming after this
moment without it being detected by the sender having disconnected.

The reason for disconnecting at that early moment is to prevent a frame from being
sent twice, since if a collision is detected too late, the frame may in fact have come
though, since the collision may not be frame destroying, and a retransmission will then
be a duplication. As an example, think of a frame with an information contents like:
“go one channel forward”. However, it has apparently been disconnected to early, and
hence, a solution to the problem is to move the disconnection to a later moment, but
not too far since we still want to avoid a frame duplication.

A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16
A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20
A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8
A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0

A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?
A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1
A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10
A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0
A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0
A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0

A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1

A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1

A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0

c:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msg

lastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlast

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

msgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsg

firstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirst

Frame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_A

Figure 13: Generator withA stop:=1 moved

20

The solution is to move forward and perform the last collision detection 781µs
beforethe 0endingthe lastT4 message, at point (N) in figure 12. Hence, the collision
detection is then only disconnected during the last 0 of the whole frame. In our model,
this correction must be introduced in the frame generators, and figure 13 shows the new
FrameGeneratorA.

The modification consists of moving the assignmentA stop := 1 to a later
point, namely to the edge going from nodemsg to nodelast . That is, when the last
0 in the lastT4 message is output. Consequently, the previous assignment toA stop
must be removed resulting in the lower right loop edge leaving and returning to node
msg. This edge was before broken into a number of edges over committed nodes,
see figure 8. The observer is also disconnected when the collision detection is (is not
shown).

With these modifications, the model was verified correct with respect to the same
correctness criteria as presented for the previous model. It required 30 minutes of
computation and 90 M bytes of memory on a Sparc 10. The model verified was down-
scaled to a version where each sender only transmitted one frame, and where sender A
only transmittedT1 messages (surrounded by aT5 and aT4 of course), while sender B
could transmit the whole range of T-messages.

7 Conclusions

The case study clearly showed how model checking can be a help in tracking down
undesired behavior in a highly non-deterministic real-time system. The example il-
lustrated the conditions of areal-life problemin the sense that the source of the error
(that messages were occasionally lost) was unknown to us, and hence it was not clear
at what abstraction level the model should be formulated. This question of abstraction
level was also central in the formulation of the correctness criteria. Another kind of
abstraction, performed in a second round, consisted of reducing the obtained model to
sub-models that could be verified within reasonable time and space. It would be use-
ful to have a workbench which could support easy derivation of verifiable sub-models
from a singlefull model. It turned out, that all sub-models were obtained from the full
model by adjusting three different parameters: (1) whether or not a sender transmitted
several frames, or just a single frame; (2) how many messages were sent in a single
frame; and finally (3) what messages could be transmitted in a single frame.

Choosing the right abstractions were mainly an activity based on intuition, and the
adjustment of the parameters mentioned was in addition based on experiments with the
model checker. Of course, with such abstractions, one cannot ensure that the protocol in
its full complexity is correct even if the model is verified to be. However, such a model
can be used toreject the protocol in case errors are found, and this is what happened.
Hence, model checking can be seen as a particular advanced kind of debugging where
all execution paths in a limited world are examined, rather than some execution paths
in a complete world, as in traditional testing. Furthermore, often the abstractions are
of such a harmless kind, that even though the correctness of the model does not imply

21

the correctness of the protocol, itdoesincrease our confidence in its correctness.
Concerning the error trace, it contained 1998 transition steps, in fact guaranteed to

the be shortest trace leading to a state breaking the property to be verified. Examining
such a long trace in the simulator turns out to be impracticable, and hence, it was done
in an ad hoc fashion (using emacs and its facilities). Research has been initiated to
provide means for trace examination, for example by defining a trace simplification
language.

Concerning the language for writing atomic edges between nodes, one could con-
sider a Pascal-like programming language, with functions, procedures, control struc-
tures like loop and case constructs, and, of course, general datatypes like enumerated
types, arrays and records. The Murphi-language [14] – applied to a protocol verifica-
tion in [9] – could be a good candidate for such a language, and further research will ex-
plore this path. As a general comment on the graphical language for writing transition
systems it was clearly concluded, that this formalism was ideal in the communication
between the tool expert and the protocol designer. The simulator additionally turned
out to be of a good help when developing and validating the model before applying the
verifier.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for Real-Time Systems.
In Proc. of Logic in Computer Science, pages 414–425. IEEE Computer Society
Press, 1990.

[2] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. InProc. of
ICALP’90, volume 443 ofLecture Notes in Computer Science, 1990.

[3] Johan Bengtsson, David Griffioen, Kare Kristoffersen, Kim G. Larsen, Fredrik
Larsson, Paul Pettersson, and Wang Yi. Verification of an Audio Protocol with
Bus Collision Using UPPAAL. In Proc. of CAV’96, volume 1102 ofLecture Notes
in Computer Science. Springer–Verlag, 1996.

[4] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. U PPAAL — A Tool Suite for Symbolic and Compositional Verification of
Real-Time Systems. InProc. of the 1stWorkshop on Tools and Algorithms for the
Construction and Analysis of Systems, volume 1019 ofLecture Notes in Computer
Science. Springer–Verlag, May 1995.

[5] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. U PPAAL in 1995. InProc. of the 2nd Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, number 1055 in Lecture Notes in
Computer Science, pages 431–434. Springer–Verlag, March 1996.

[6] A. Bouali, A. Ressouche, and V. Roy R. de Simone. The FC2Toolset.Lecture
Notes in Computer Science, 1102, 1996.

22

[7] P.R. D’Arenio, J.-P. Katoen, T. Ruys, and J. Tretmans. Modelling and Verify-
ing a Bounded Retransmission Protocol.In Proc. of COST 247, International
Workshop on Applied Formal Methods in System Design, 1996.

[8] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO-
NOS.In Proc. of7th International Conference on Formal Description Techniques,
1994.

[9] K. Havelund and N. Shankar. Experiments in Theorem Proving and Model
Checking for Protocol Verification. In M-C. Gaudel and J. Woodcock, editors,
FME’96: Industrial Benefit and Advances in Formal Methods, volume 1051 of
Lecture Notes in Computer Science, pages 662–681. Springer–Verlag, 1996.

[10] Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio Control
Protocol. InProc. of CAV’95, volume 939 ofLecture Notes in Computer Science.
Springer–Verlag, 1995.

[11] Gerard Holzmann.The Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[12] H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and Analysis of a Collision
Avoidance Protocol Using SPIN and UPPAAL. InThe Second Workshop on the
SPIN Verification System, volume 32 ofDIMACS, Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical Society, 1996.

[13] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of
a Gear-Box Controller: an Industrial Case Study using UPPAAL. In preparation.,
1997.

[14] R. Melton, D.L. Dill, C. Norris Ip, and U. Stern. Murphi Annotated Reference
Manual, Release 3.0. Technical report, Stanford University, Palo Alto, California,
USA, July 1996.

[15] R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs,
1989.

23

Recent BRICS Report Series Publications

RS-97-31 Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian
Lund. Formal Modeling and Analysis of an Audio/Video Proto-
col: An Industrial Case Study UsingUPPAAL. November 1997.
23 pp. To appear inThe 18th IEEE Real-Time Systems Sympo-
sium, RTSS ’97 Proceedings.

RS-97-30 Ulrich Kohlenbach.Proof Theory and Computational Analysis.
November 1997. 38 pp.

RS-97-29 Luca Aceto, Augusto Burguẽno, and Kim G. Larsen. Model
Checking via Reachability Testing for Timed Automata. Novem-
ber 1997. 29 pp.

RS-97-28 Ronald Cramer, Ivan B. Damg̊ard, and Ueli Maurer. Span Pro-
grams and General Secure Multi-Party Computation. November
1997. 27 pp.

RS-97-27 Ronald Cramer and Ivan B. Damg̊ard. Zero-Knowledge Proofs
for Finite Field Arithmetic or: Can Zero-Knowledge be for Free?
November 1997. 33 pp.

RS-97-26 Luca Aceto and Anna Inǵolfsdóttir. A Characterization of Fini-
tary Bisimulation. October 1997. 9 pp. To appear inInforma-
tion Processing Letters.

RS-97-25 David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen,
and Sven Skyum. Searching Constant Width Mazes Captures
the AC0 Hierarchy. September 1997. 20 pp. To appear in
STACS ’98: 15th Annual Symposium on Theoretical Aspects of
Computer Science Proceedings, LNCS, 1998.

RS-97-24 Søren B. Lassen.Relational Reasoning about Contexts. Septem-
ber 1997. 45 pp. To appear as a chapter in the bookHigher Or-
der Operational Techniques in Semantics, eds. Andrew D. Gor-
don and Andrew M. Pitts, Cambridge University Press.

RS-97-23 Ulrich Kohlenbach. On the Arithmetical Content of Restricted
Forms of Comprehension, Choice and General Uniform Bound-
edness. August 1997. 35 pp.

RS-97-22 Carsten Butz. Syntax and Semantics of the logicLλωω. July
1997. 14 pp.

RS-97-21 Steve Awodey and Carsten Butz.Topological Completeness for
Higher-Order Logic. July 1997. 19 pp.

