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Abstract. In this paper we develop an approach to model-checking for
timed automata via reachability testing. As our specification formalism,
we consider a dense-time logic with clocks. This logic may be used to
express safety and bounded liveness properties of real-time systems. We
show how to automatically synthesize, for every logical formula ¢, a so-
called test automaton T, in such a way that checking whether a system
S satisfies the property ¢ can be reduced to a reachability question over
the system obtained by making T, interact with S.

The testable logic we consider is both of practical and theoretical interest.
On the practical side, we have used the logic, and the associated approach
to model-checking via reachability testing it supports, in the specification
and verification in UPPAAL of a collision avoidance protocol. On the
theoretical side, we show that the logic is powerful enough to permit the
definition of characteristic properties, with respect to a timed version of
the ready simulation preorder, for nodes of deterministic, 7-free timed
automata. This allows one to compute behavioural relations via our
model-checking technique, therefore effectively reducing the problem of
checking the existence of a behavioural relation among states of a timed
automaton to a reachability problem.

1 Introduction

Model-checking of real time systems has been extensively studied in the
last few years, leading to both important theoretical results, setting the
limits of decidability [AD94, HK94, HKPV95], and to the emergence
of practical tools as HyTech [HHWT95], Kronos [OY93] and UPPAAL
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*** Basic Research in Computer Science.



[BLL'95], which have been successfully applied to the verification of real
sized systems [BGK196, HWT95].

The main motivation for the work presented in this paper stems from
our experience with the verification tool UPPAAL. In such a tool, real-time
systems are specified as networks of timed automata [AD94], which are
then the object of the verification effort. The core of the computational
engine of UPPAAL consists of a collection of efficient algorithms that can
be used to perform reachability analysis over a model of an actual system.
Any other kind of verification problem that the user wants to ask UPPAAL
to perform must be encoded as a suitable reachability question. A typical
example of such a problem is that of model checking. Experience has
shown that it is often convenient to describe desired system properties as
formulae of some real-time variant of standard modal or temporal logics
(see, e.g., [AH94, HNSY94, LLW95]). The model-checking problem then
amounts to deciding whether a given system specification has the required
property or not.

The way model-checking of properties other than plain reachability
ones may currently be carried out in UPPAAL is as follows. Given a
property ¢ to model-check, the user must provide a test automaton T, for
that property. This test automaton must be such that the original system
has the property expressed by ¢ if, and only if, none of the distinguished
reject states of T, can be reached when the test automaton is made to
interact with the system under investigation.

As witnessed by existing applications of this approach to verification
by model-checking (cf., e.g., [JLS96]), the construction of a test automa-
ton from a temporal formula or informally specified requirements is a task
that, in general, requires a high degree of ingenuity, and is error-prone. It
would therefore be useful to automate this process by providing a compi-
lation procedure from formulae in some sufficiently expressive real-time
logic into appropriate test automata, and establishing its correctness once
and for all. Apart from its practical and theoretical interest, the existence
of such a connection between specification logics and automata would also
free the average user of a verification tool like UPPAAL from the task of
having to generate ad hoc test automata in his/her verifications based on
the model-checking approach. We envisage that this will help make the
tool usable by a larger community of designers of real-time systems.

1.1 Results

In this paper we develop an approach to model-checking for timed au-
tomata via reachability testing. As our specification formalism, we con-



sider a dense-time logic with clocks, which is a fragment of the one pre-
sented in [LLW95]. This logic may be used to express safety and bounded
liveness properties of real-time systems. We show how to automatically
synthesize, for every logical formula ¢, a so-called test automaton T, in
such a way that checking whether a system S satisfies the property ¢ can
be reduced to a reachability question over the system obtained by mak-
ing T, interact with S. More precisely, we show that S satisfies property
@ iff none of the distinguished reject nodes of the test automaton can
be reached in the combined system S || T, (Thm. 5.2). This result is
obtained for a model of timed automata with urgent actions and the
interpretation of parallel composition used in UPPAAL.

The logic we consider in this paper only allows for a restricted use
of the boolean ‘or’ operator, and of the diamond modality of Hennessy-
Milner logic [HM85]. We argue that these restrictions are necessary to
obtain testability of the logic, in the sense outlined above (Propn. 5.4).
Indeed, as it will be shown in a companion paper [ABBL97], the logic
presented in this study is remarkably close to being completely expressive
with respect to reachability properties. In fact, a slight extension of the
logic considered here allows us to reduce any reachability property of a
composite system S || T' to a model-checking problem of S.

Despite the aforementioned restrictions, the testable logic we consider
is both of practical and theoretical interest. On the practical side, we have
used the logic, and the associated approach to model-checking via reach-
ability testing it supports, in the specification and verification in UPPAAL
of a collision avoidance protocol. This protocol was originally analyzed in
[JLS96], where rather complex test automata were derived in an ad hoc
fashion from informal specifications of the expected behaviour of the pro-
tocol. The verification we present here is based on our procedure for the
automatic generation of test automata from logical specifications. This
has allowed us to turn logical specifications of the expected behaviour of
the protocol into automata, whose precise fit with the original properties
is guaranteed by construction.

On the theoretical side, we show that the logic is powerful enough
to permit the definition of characteristic properties [S194], with respect
to a timed version of the ready simulation preorder [LS91, BIM95], for
nodes of deterministic, 7-free timed automata (Thm. 8.4). This allows
one to compute behavioural relations via our model-checking technique,
therefore effectively reducing the problem of checking the existence of a
behavioural relation among states of a timed automaton to a reachability
problem. As the version of ready simulation we consider preserves the



properties expressible in the logic studied in this paper (Thm. 8.2), our
model-checking technique may be used to automatically justify abstrac-
tion steps in hierarchical system verifications.

1.2 Related Literature

This study establishes a connection between a logical property language
for the specification of safety and bounded liveness properties of real-time
systems and the formalism of timed automata. Our emphasis is on the
reduction of the model-checking problem for the logic under consideration
to an intrinsically automata-theoretic problem, viz. that of checking for
the reachability of some distinguished nodes in a timed automaton. The
blueprint of this endeavour lies in the automata-theoretic approach to the
verification of finite-state reactive systems pioneered by Vardi and Wolper
[VW86, VW94, Var96]. In this approach to verification, the intimate
relationship between linear time propositional temporal logic [Pnu77] and
w-automata is exploited to yield elegant and efficient algorithms for the
analysis of specifications, and for model-checking. The work presented
in this paper is not based on a similarly deep mathematical connection
between the logic and timed automata (indeed, it is not clear that such
a connection exists because, as shown in [AD94], timed Biichi automata
are not closed under complementation), but draws inspiration from that
beautiful theory. In particular, the avenue of investigation pursued in
this study may be traced back to the seminal [VW86].

A characteristic formula construction for timed bisimulation over 7-
free timed automata is presented in [LLW95]. Apart from the aforemen-
tioned references, the use of characteristic formulae in the computation
of behavioural relations is advocated in, e.g., [CS91].

The recent paper [SVD97] presents a generalization of the classical
theory of testing for Mealy machines to dense real-time systems. In partic-
ular, the authors of op. cit. give a test generation algorithm for black-box
conformance testing of timed I/O automata. These automata are 7-free,
deterministic timed automata that satisfy some additional requirements
guaranteeing their testability, and their behaviour can be completely char-
acterized, up to bisimulation equivalence, by a finite collection of finite
sequences of actions and delays. The deep connections between this work
and the results presented in this paper are still to be explored. We re-
mark, however, that the characteristic formula construction we present
for 7-free deterministic timed automata may be seen as a logical formu-
lation of a complete set of experiments, in the sense of [SVD97|, that
capture a timed version of ready simulation.



1.3 Road-map of the Paper

The paper is organized as follows. We begin by introducing timed au-
tomata and timed labelled transition systems (Sect. 2). The notion of
test automaton considered in this paper is introduced in Sect. 3, together
with the interaction between timed automata and tests. We then proceed
to present a real-time logic suitable for expressing safety and bounded
liveness properties of real-time systems (Sect. 4). The step from logical
properties to test automata is discussed in Sect. 5, and its implementation
in UPPAAL in Sect. 6. Section 7 is devoted to a brief description of the
specification and verification of a collision avoidance protocol using the
theory developed in this paper. The construction of characteristic for-
mulae with respect to timed ready simulation for nodes of deterministic,
T-free automata is the topic of Sect. 8. The paper concludes with a men-
tion of some further results we have obtained on the topic of this paper,
and a discussion of interesting subjects for future research (Sect. 9).

2 Preliminaries

We begin by briefly reviewing the timed automaton model proposed by
Alur and Dill [AD94].

2.1 Timed Labelled Transition Systems

Let A be a finite set of actions ranged over by a. We assume that A
comes equipped with a mapping - : A — A such that @ = a for every
a € A. We let A, stand for AU{7}, where 7 is a symbol not occurring in
A, and use p to range over it. Following Milner [Mil89], 7 will stand for
an internal action of a system. Let N denote the set of natural numbers
and R>g the set of non-negative real numbers. We use D to denote the
set of delay actions {e(d) | d € R>o}, and £ to stand for the union of A,
and D.

Definition 2.1. A timed labelled transition system (TLTS) is a structure
T = (S, L, s, —) where S is a set of states, s° € S is the initial state, and
—C S x L xS is a transition relation satisfying the following properties:

) d
— (TIME DETERMINISM) for every s,s’,s” € S and d € Ry, if s A o
d
and s <% s”, then s’ = s";

dy+d
— (TIME ADDITIVITY) for every s,s” € S and dy,da € R, s ldivda) oo

. e(d e(d:
iff 5 ) o 223”, for some s’ € S;



0
— (0-DELAY) for every s,s’' € S, s O i s — o,

Following [Wan90], we now proceed to define versions of the transition
relations that abstract away from the internal evolution of states as fol-
lows:

. *
s=s iff Is". s— -5
e(d . . .
s g s’ iff there exists a computation

s=50 -5 -2 ... s, =5 (n>0) where
(@) Vie{l,.,n}. a=1ora; €D

(b) d=Y {di|ai=e(d)}

By convention, if the set {d; | a; = €(d;)} is empty, then > {d; | a; =

e(d;)} is 0. With this convention, the relation L coincides with Ny
i.e., the reflexive, transitive closure of —. Note that the derived transi-
tion relation == only abstracts from internal transitions before the actual
execution of action a.

Definition 2.2. Let 7; = (X}, L, s), —;) (i € {1,2}) be two TLTSs.
The parallel composition of 71 and 73 is the TLTS

7-1 H 7-2 = <21 X 227DU {T}7 (8(1)58(2))7 —>>

where the transition relation — is defined by the rules in Table 1. In
Table 1, and in the remainder of the paper, we use the more suggestive
notation s || s’ in lieu of (s, s’).

This definition of parallel composition forces the composed TLTSs to syn-
chronize on actions (all but 7-actions) and delays, but with the particu-
larity that delaying is only possible when no synchronization on actions
is. This amounts to requiring that all actions in A be urgent. The reader
familiar with TCCS [Wan90] may have noticed that the above definition
of parallel composition precisely corresponds to a TCCS parallel compo-
sition in which all the actions in A are restricted upon. The use of this
kind of parallel composition yields closed systems, of the type that can be
analyzed using UPPAAL [BLL 95|, and is inspired by the pioneering work
by De Nicola and Hennessy on testing equivalence for processes [DNH84].
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where s;, 5%, s” are states of T; (i € {1,2}),

17 %

a,a € Aandd,t ERZO'

Table 1: Rules defining the transition relation — in 77 || T2

2.2 Timed Automata

Let C be a set of clocks. We use B(C) to denote the set of boolean
expressions over atomic formulae of the form x ~ p, x — y ~ p, with
z,y € C, p € N, and ~€ {<,>,=}. A time assignment, or valuation,
v for C is a function from C' to R>q. For every time assignment v and
d € R>p, we use v + d to denote the time assignment which maps each
clock z € C to the value v(z)+d. For every subset of clocks C’, [C" — 0Jv
denotes the assignment for C' which maps each clock in C’ to the value
0 and agrees with v over C\C'. Given a condition g € B(C) and a time
assignment v, the boolean value g(v) describes whether g is satisfied by
v or not.

Definition 2.3. A timed automaton is a tuple A = (A, N,ng,C, E)
where N is a finite set of nodes, ng is the initial node, C is a finite set of
clocks, and E C N x N x A, x 2¢ x B(C) is a set of edges. The tuple
e = (n,Ne, K, re, ge) € E stands for an edge from node n to node n, (the
target of e) with action p, where 7. denotes the set of clocks to be reset
to 0 and g, is the enabling condition (or guard) over the clocks of A. For
every node n and action u, we use E(n,u) to denote the set of edges
emanating from n whose action is pu.

Ezxample 2.4. The timed automaton depicted in Figure 1 has five nodes
labelled ng to n4, one clock x, and four edges. The edge from node n; to
node no, for example, is guarded by x > 0, implies synchronization on a
and resets clock z.



A state of a timed automaton A is a pair (n,v) where n is a node of A and
v is a time assignment for C. The initial state of A is (ng,vg) where ng
is the initial node of A and vy is the time assignment mapping all clocks
in C to 0.

The operational semantics of a timed automaton A is given by the
TLTS Ta = (¥,L£,0°, —), where X is the set of states of 4, o is the
initial state of A, and — is the transition relation defined as follows:

(n,v) LN (n', o'y iff Ir,g.(n,n’ u,r,g9) € EAgv) Av = [r — Ov
(n,v) Gl (n,W)if n=n"and v =v+d
where p € A; and €(d) € D.

Ezample 2.5. The following is a valid sequence of transitions for the timed
automaton of Figure 1, where the number in brackets corresponds to the
time assignment of clock z:

(10, {03) > (1, {0) “C5 (s, {3.14}) 5 (o, {0}) .

3 Testing Automata

In this section we take the first steps towards the definition of model
checking via testing by defining testing. Informally, testing involves the
parallel composition of the tested automaton with a test automaton. The
testing process then consists in performing reachability analysis in the
composed system. We say that the tested automaton fails the test if
a special reject state of the test automaton is reachable in the parallel
composition from their initial configurations, and passes otherwise.

The formal definition of testing then involves the definition of what a
test automaton is, how the parallel composition is performed and when
the test has failed or succeeded. We now proceed to make these notions
precise.

Definition 3.1. A test automaton is a tuple T = (A, N, Ny, ng,C, E)
where A, N, ng, C, and E are as in Definition 2.3, and Ny C N is the
set of reject nodes.

Intuitively, a test automaton T interacts with a tested system, represented
by a TLTS, by communicating with it. The dynamics of the interaction
between the tester and the tested system is described by the parallel
composition of the TLTS that is being tested and of 7. We now define
failure and success of a test as follows.
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Figure 1: Timed automaton A

Definition 3.2. Let 7 be a TLTS and T be a test automaton.

— We say that a node n of T is reachable from a state s; || sg of T || T1
iff there is a sequence of transitions leading from s; || so to a state
whose 77 component is of the form (n,u).

— We say that a state s of T fails the T-test iff a reject node of T is
reachable in 7 || Tr from the state s || (ng, ug), where (ng, ug) is the
initial state of 77. Otherwise, we say that s passes the T-test.

In the remainder of the paper, we shall mostly apply test automata to
the TLTSs that give operational semantics to timed automata. In that
case, we shall use the suggestive notation A || 7" in lieu of Ty || 77.

Ezample 3.3. Consider the timed automaton A of Figure 1 and the test
automaton T of Figure 2(b). The reject node mq of the test automaton
is reachable from the initial state of A || Tp, as follows:

1. first the automaton A can execute the 7-transition and go to node ng,
thus preempting the possibility of synchronizing on channel b with T,

2. now both automata can let time pass, thus enabling the 7-transition
from node myg in T and making mq¢ reachable.

In this case we say that A fails the test. If we test A using the automaton
T, of Figure 2(a), then in all cases A and 7T, must synchronize on a and
no initial delay is possible. It follows that the reject node mp of T, is
unreachable, and A passes the test.



Figure 2: The test automata T, and T

4 Safety Modal Logic

We consider a dense-time logic with clocks, which is a fragment of the
one presented in [LLW95] and is suitable for the specification of safety
and bounded liveness properties of TLTSs.

Definition 4.1. Let K be a set of clocks, disjoint from C. The set
SBLL of (safety and bounded liveness) formulae over K is generated by
the following grammar:

p = | £ | ¢ | @iAp2 | Ve | Ve
e | (@ | zing | X | max(X, )
¢c u= xz~p | z—y~p

where a € A, z,y € K, p € N, ~¢ {<,>,=}, X is a formula variable
and max(X, ¢) stands for the maximal solution of the recursion equation
X = .

Notation. For a set of formula clocks {y1,... ,y,} and a formula ¢, we
write {y1,... ,yn} in ¢ as a short-hand for y; in (y2 in --- (y, in ) - -).
If n = 0, then, by convention, () in ¢ stands for .

A closed recursive formula of SBLL is a formula in which every formula
variable X appears within the scope of some max(X,¢) construct. In
the remainder of this paper, every formula will be closed, unless specified
otherwise.

Given a TLTS T = (S, £, s°, —), we interpret the closed formulae in
SBLL over extended states. An extended state is a pair (s,u) where s is
a state of 7 and w is a time assignment for the formula clocks in K.

10



Definition 4.2. Consider a TLTS T = (S, £, s’, —). The satisfaction
relation |=,, is the largest relation satisfying the implications in Table 2.

We say that T weakly satisfies ¢, written 7 |=, ¢, when (5% ug) = @,
where ug is the time assignment mapping every clock in K to 0. In
the sequel, for a timed automaton A, we shall write A |=,, ¢ in lieu of
Ta Ew .

The weak satisfaction relation is closed with respect to the relation
Lfk, in the sense of the following proposition.

Proposition 4.3. Let T = (S,L,s°,—) be a TLTS. Then, for every
s € S, ¢ € SBLL and valuation u for the clocks in K, (s,u) = ¢ iff, for
every s' such that s —— s, (' u) = .

The reader familiar with the literature on variations on Hennessy-Milner
logic [Mil89] and on its real-time extensions [Wan91] may have noticed
that our definition of the satisfaction relation is rather different from the
standard one presented in the literature. For instance, one might expect
the clause of the definition of the satisfaction relation for the formula
{(a)t to read

(s,u) = (a)tt  implies s == s for some s’ . (1)

Recall, however, that our main aim in this paper is to develop a logical
specification language for timed automata for which the model check-
ing problem can be effectively reduced to deciding reachability. More
precisely, for every formula ¢ € SBLL, we aim at constructing a test
automaton T, such that every extended state (s,u) of a timed automa-
ton satisfies ¢ iff it passes the test T, (in a sense to be made precise
in Defn. 5.1). With this aim in mind, a reasonable proposal for a test
automaton for the formula (a)tt, interpreted as in (1), is the automaton
depicted in Figure 2(a). However, it is not hard to see that such an au-
tomaton could be brought into its reject node my by one of its possible
interactions with the timed automaton associated with the TCCS agent
a + 7. This is due to the fact that, because of the definition of parallel
composition we have chosen, a test automaton cannot prevent the tested
state from performing its internal transition leading to a state where an
a-action is no longer possible. (In fact, it is not too hard to generalize
these ideas to show that no test automaton for the formula (a)tt exists
under the interpretation given in (1).) Similar arguments may be ap-
plied to all the formulae in the logic SBLL that involve occurrences of the
modal operator [a] and/or of the primitive proposition (a)tt.

11



(s,u) Fw t = true
(s,u) Fw £ = false
(s,u) Fwe = c(u)
(s,u) Fw o1 Ap2 = Vs'.s 4" s implies (s, u) Ew 1 and (s',u) Eu @2
(s,u) FwecVe = Vs.s 4" s implies c(u) or (s',u) Fw ¢
(s,u) Fw [alp = Vs'.s=>s" implies (s',u) |Fuw ¢
(s,u) Ew (o)t = Vs'.s—" s implies s’ —25 s” for some s”
(s,u) Fw Yo = VdeER>oVs. s ) implies (s',u +d) v ¢
(s,u) Ewzing = Vs. s—" s implies (s, [{z} — OJu) Euw ¢
(s,u) Ewmax(X,p) = Vs. s— s implies (s, u) Fu o{max(X,¢)/X}

Table 2: Weak satisfaction implications

The reader might have also noticed that the language SBLL only
allows for a restricted use of the logical connective ‘or’. This is due to
the fact that it is impossible to generate test automata even for simple
formulae like (a)tt V [b]ff—cf. Propn. 5.4.

Notation. Given a state (n,v) of a timed automaton, and a valuation u
for the formula clocks in K, we write (n,v : u) for the resulting extended
state.

Ezxample 4.4. Assume that y is the only formula clock. For the automaton
of Figure 1 the following holds:

— (no,{z} = 0: {y} = 0) Fru ()t;
— (ng,{z} = 0:{y} = 0) E, ¥(a)tt.

5 Model checking via testing

In Sect. 3 we have seen how we can perform tests on timed automata.
We now aim at using test automata to determine whether a given timed
automaton weakly satisfies a formula in L. As already mentioned, this
approach to model checking for timed automata is not merely a theoretical
curiosity, but it is the way in which model checking of properties other
than plain reachability ones is routinely carried out in a verification tool
like UPPAAL. In order to achieve our goal, we shall define a “compilation”
procedure to obtain a test automaton from the formula we want to test
for. By means of this compilation procedure, we automate the process of

12



generating test automata from logical specifications—a task which has so
far required a high degree of ingenuity and is error-prone.

Definition 5.1. Let ¢ be a formula in SBLL and T, be a test automaton
over clocks {k} U K, k fresh.

— For every extended state (n,v : u) of a timed automaton A, we say
that (n,v : u) passes the Tj,-test iff no reject node of T, is reachable
from the state (n,v) || (mo, {k} — 0: u), where my is the initial node
of Tp,.

— We say that the test automaton T, weakly tests for the formula ¢ iff
the following holds: for every timed automaton A and every extended
state (n,v : u) of A, (n,v:u) =y @ iff (n,v: u) passes the T, -test.

Theorem 5.2. For every closed formula ¢ in SBLL, there exists a test
automaton T, that weakly tests for it.

Proof. (SKETCH.) The test automata are constructed by structural in-
duction on open formulae. (The UPPAAL implementation of the con-
structions is depicted in Figures 3 and 4.) It can be shown that, for every
closed formula ¢, the resulting automaton T, weakly tests for ¢. The
details of the proof will be presented in the full version of the paper.

Corollary 5.3. Let A be a timed automaton. Then, for every ¢ € SBLL,
there exists a test automaton T, with a reject node mp such that A =y, ¢
iff node m7 is not reachable in A || T,.

As remarked in Sect. 4, the logic SBLL only allows for a restricted use of
the ‘or’ operator. This is justified by the following negative result.

Proposition 5.4. The formula (a)tt \V [b]ff is not weakly testable.

Proof. (SKETCH.) Assume, towards a contradiction, that a test automa-
ton T weakly tests for the formula (a)tt V [b]ff. Then the timed automa-
ton associated with the TCCS agent b must fail the T-test. Using the
assumption that T weakly tests for (a)tt \V [b]ff, by a careful analysis of an
arbitrary computation leading to the reject node of 7' in b || T, we infer
that such a computation must involve one b-synchronization preceded by
zero or more 7-transitions from the tester T'. It follows that a reject node
in T can also be reached in (a +b) || T. As a + b weakly satisfies the
formula (a)tt V [b]ff, this contradicts the assumption that 7" weakly tests
for (a)tt V [b]£f.

13
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Figure 3: Test automata for SBLL sub-formulae

14
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Figure 4: Test automata for SBLL sub-formulae (cont.)
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6 Implementation in UPPAAL

The UPPAAL constructs The implementation of testing using the parallel
composition operator presented in Sect. 3 requires a model of communi-
cating timed automata with urgent actions (cf. rule (4) in Table 1). This
feature is available in the UPPAAL model. The test automata are induc-
tively obtained from the formula in a constructive manner, according to
the constructions shown in Figures 3 and 4. In these constructions all
actions in A are intended to be urgent. As in UPPAAL it is not possible
to guard edges labelled with urgent actions, the theoretical construction
for T}4), used in the proof of Thm. 5.2 is implemented by means of node
invariants.

Simplification of the test automaton In certain cases, it is possible to
optimize the construction of a test automaton from a formula by applying
heuristics. Here we just remark on two possible simplifications. One
is with respect to Ty, np, (Figure 3(d)) and the other one with respect
to Ty in o (Figure 4(d)). Both simplifications involve the elimination of
the 7-transitions emanating from node mg. This leads to the constructs
shown in Figures 5(a) and 5(b). The test automaton of Figure 5(a) is
obtained by setting the initial nodes of T, and T, to be the same node
myp, and the same for the reject node my. For T i5 o, the reset z := 0
is added to the incoming edge of T,,. Nevertheless, these simplifications
cannot be applied in the following cases:

Ty, np, When the and operator involves the conjunction of

— [a]p and (a)tt, or
— [a]p and Y, or
— (a)tt and W

the proposed simplification leads to incorrect test automata. This
is because there is a different interpretation of evolving time in each
operand, by, for example, leading to a reject state in one operand and
to a safe one in the other one, or simply not being allowed in one case
and being necessary in the other.

T, in o, The in operator can be simplified only when it is not an operand
in an and operation which has already been simplified. This is because
the reset of the variable would affect the other branch of the and
construct.
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(a') TSPI/\&P2 (b) T in ¢

Figure 5: New simplified constructs

High level operators The basic constructs of the logic SBLL can be used
to define high level temporal operators, which may be used to simplify the
writing of logical specifications (and substantiate our claim that SBLL can
indeed express safety and bounded liveness properties). Here we confine
ourselves to showing how to define the temporal operators until, before
and inv:

@ until ¢ e max(X,cV (¢ A /\[a]X AYX))

a
@ until<y ey in ((p Az <t) until ¢)
f
before; c def t until<; ¢

inv ¢ o maX(X,go/\/\[a]X/\\WX) .
a

The intuitive meanings of the above temporal operators are as follows:
@ until cis true iff no matter how long the systems delays or what action
transitions it takes, ¢ holds at least until ¢ holds; ¢ until<; c is its time
bounded version, meaning that ¢ must hold at least until ¢ holds, and ¢
must hold within ¢ time units; before; c is true iff ¢ is true within ¢ time
units; finally, inv ¢ is true iff no matter how long the systems delays or
what action transitions it takes, ¢ always holds.

Optimized UPPAAL implementations of test automata for these con-
structs are shown in Figures 9 and 10, which may be found at the end of
the paper. The above defined constructs express intuitively clear proper-
ties of real-time systems. However, as witnessed by the constructions in
Figures 9 and 10, the definition of appropriate test automata for them is
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a nontrivial task, which may be beyond the average user of a verification
tool like UPPAAL. The compilation of formulae into test automata devel-
oped in this paper, and implemented in UPPAAL is a first step towards
making model-checking technology more accessible to actual designers of
real-time systems.

7 Example

Consider a number of stations connected on an Ethernet-like medium, fol-
lowing a basic CSMA/CD protocol as the one considered in [JLS96]. On
top of this basic protocol, we want to design a protocol without collisions
(applicable for example to real time plants). In particular, we want to
guarantee an upper bound on the transmission delay of a buffer, assum-
ing that the medium does not lose or corrupt data, and that the stations
function properly. The simplest solution is to introduce a dedicated mas-
ter station which asks the other stations whether they want to transmit
data to another station (see Figure 6). Such a master station has to
take into account the possible buffer delays within the receiving stations
to ensure that the protocol enjoys the following properties: (1) collision
cannot occur, (2) the transmitted data eventually reach their destina-
tion, (3) data which are received have been transmitted by a sender, and
(4) there is a known upper bound on the transmission delay, assuming
error-free transmission.

Modelling and verification of such a protocol in UPPAAL has been
presented in [JLS96], where the details of such a modelling may be found.
Here we only focus on the external view of the behaviour of the system.
The observable actions are: user ¢ sending a message, written send_i!,
and user j receiving a message, written recv_j!, for ¢,j = {1,2,3}. The
verification of the protocol presented in op. cit. was based on the ad
hoc generation of test automata from informal specifications of system
requirements. Indeed, some of the test automata that resulted from the
informal requirements were rather complex, and it was difficult to extract
their semantic interpretation. We now have at our disposal a precise
property language to formally describe the expected behaviour of the
protocol, together with an automatic compilation of such specifications
into test automata, and we can therefore apply the aforementioned theory
to test the behaviour of the protocol.

One of the requirements of the protocol is that there must be an
upper bound on the transmission delay. Assuming that this upper bound
is 4, this property can be expressed by means of the following formula in
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Master Slave 1 Slave 2 Slave 3

Ethernet

Figure 6: The Ethernet

SBLL:

inv <[send_1 ']s in W([recv_2!](s < 4) A [recv_3!](s < 4)))

This formula states that it invariantly holds that whenever user 1 sends
a message, it will be received by users 2 and 3 within 4 units of time.
Note that we consider transmission to be error-free, so the message will
eventually be received. What we are interested in is the delay expressed
by clock s. The test automaton corresponding to this formula is shown in
Figure 7. (Note that, although the formula above expresses the required
behaviour of the protocol in a very direct way, its encoding as a test
automaton is already a rather complex object—which we were glad not
to have to build by hand!)

In a similar way, the following properties represent the upper bounds
between any two sending actions of user 1 and user 2, and between any
two consecutive sending actions of user 1:

inv ([send_l ']s in W[send 2!](s < 5))

inv ([send_l ']s in W[send_1!|(s < 17))

In order to experiment with our current implementation of the test au-
tomata construction in UPPAAL, we have also carried out the verification
of several other properties of the protocol. For instance, we have verified
that, under the assumption that the master waits for two time units be-
fore sending out its enquiries, the protocol has a round-trip time bound
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of 18 time units, and that no faster round-trip exists. However, we have
verified that changing the waiting time in the master to zero will allow for
faster round-trip times. The details of these experiments will be reported
in the full version of this study.

8 Characteristic Formulae and Ready Simulation

In the verification of realistic reactive systems, it is often useful to re-
place the individual components of the system under verification with
more abstract versions before building the model of the complete system.
This abstraction must, of course, be carried out in such a way that every
property enjoyed by the resulting abstract model should also hold of the
original, more detailed system description. (Cf. [TB97] for an impressive
recent example of this general strategy applied to the verification of a
high bandwidth communication chip.) In this section, we shall show how
the results developed in this paper can be used to support this type of
hierarchical approach to verification. More precisely, we shall show how
the logic SBLL can be used to define characteristic properties [SI94] for
nodes of 7-free, deterministic timed automata with respect to a timed
version of the ready simulation preorder [LS91, BIM95]. As 7-free, de-
terministic timed automata are prime candidates for use as abstractions
of more complex systems, the use of characteristic formulae allows us to
formally, and automatically, justify abstractions using the model check-
ing algorithm via reachability testing we have presented in the previous
sections, and implemented in UPPAAL. The timed version of the ready
simulation preorder that we shall consider is defined as follows:

Definition 8.1. Let 7 = (S, £, s%, —) be a TLTS. We define the pre-
order jﬁs as the largest binary relation over S such that if sy jﬁs S9,
then

a a
1. whenever s; == s, then sy == s} for some s} such that s} <29 s,

e(d e(d
2. whenever s; 4 s}, then so 44 s for some s, such that s <25 g
and
3. if s5 — s}, for some s}, then s; — s} for some s.

The main usage that we envisage for the relation <% is in justifying
abstraction steps in verification. To this end, we expect that if s; j{jﬁ S9
holds, then every property of the abstract state so is also a property of
s1. This is the import of the following result.

Theorem 8.2. Assume that s1 <E5 s,. Then, for every ¢ € SBLL and
valuation u for the formula clocks, (s, u) =y @ implies (s1,u) Fw @.
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Figure 7: Test automaton for the invariant property
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Figure 8: Node n of a timed automaton and its a-successors.

Consider the portion of a general test automaton shown in Figure 8. In
the figure we can see the nodes that are reachable from node n by an
a-transition (g; represents the guard in the edge leading to node n; and
r; the clocks to be reset in that edge). When it is the case that for every
node n and for every action a, the guards g; are disjoint, i.e. g; A g; is
unsatisfiable when ¢ # j, then the timed automaton A is deterministic.

We now proceed to define the characteristic formula for the nodes of
a 7-free, deterministic timed automaton with respect to the timed ready
simulation preorder introduced above. For the sake of clarity, in the
following definition we shall specify recursive formulae using recursion
equations in lieu of the max(X, ) construct.

Definition 8.3. Let A be a 7-free, deterministic timed automaton. For
every node n of A, we define the characteristic formula ¢(n) as follows:

o(n) d_ef\w(/\[a] (ENABLED(TL, a) A MATCH(n, a)) A /\ Out(n, a))
a a (2)

where
ENABLED(n, a) e \/ e

e€E(n,a)

MATCH(n, a) % N\ (ge = re in ¢(n.))
e€E(n,a)

Out(n,a) o ENABLED(n,a) = (a)tt .

Let A be a timed automaton with initial node ng. We define the charac-
teristic formula of A, notation ¢(A), to be ¢(ng).

Intuitively, the formula ¢(n) requires that, no matter how much a state
s delays, and no matter how an action a is performed, then
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— there should be at least one a-labelled edge of n that is enabled by
the current value of the clocks (formula ENABLED(n,a));

— the successor state of s satisfies the characteristic formula of the target
of the only a-labelled edge of n that is enabled, modulo the appropriate
resets of clocks (formula MATCH(n,a) and determinism of n); and

— s has an a-labelled transition if an a-labelled edge is enabled in n by
the current value of the clocks (formula OuT(n,a)).

These intuitive remarks capture the essence of the proof of the following
result.

Theorem 8.4. Let A and B be two timed automata. Assume that B is
deterministic and T-free. Then, for every node n of A and m of B, and
valuations v, w,

(n,v) =B (m,w) iff (n,v:w) e d(m) .

Corollary 8.5. Given two timed automata A and B, A with initial state
(ng,vg) and B deterministic, without T transitions and with initial state

(mo,wo), then A =B B iff A=, ¢(my).

Remark. The characteristic formula for the timed simulation preorder
can be obtained by simply omitting the sub-formula involving OUT(n,a)
from (2). Both the characteristic formula constructions can be extended
to timed automata with node invariants.

As a corollary of these results, we obtain that timed ready simulation is
“testable” in the sense of this paper. In particular, we have shown how
the problem of checking the existence of a behavioural relation between
states of two timed automata can be recast as a reachability problem
that can be efficiently handled by UpPPAAL. We envisage that such an
approach can, for instance, be applied to yield automatic tool support for
the justification of the abstraction steps used in, e.g., [TB97]. In order to
take full advantage of this approach, abstraction steps need to be justi-
fied using a precongruence relation with respect to the chosen notion of
parallel composition. Here we just remark that neither timed simulation
nor timed ready simulation is preserved by TCCS parallel composition—
which is the one adopted in UPPAAL to combine open systems. However,
both the aforementioned relations are preserved by TCCS parallel com-
position if the more abstract system is 7-free. These are precisely the
abstraction steps supported by our method.
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9 Concluding Remarks

As argued in, e.g., [Wol], efficient algorithms for deciding reachability
questions can be used to tackle many common problems related to ver-
ification. In this study, following the lead of [VW86], we have shown
how to reduce model-checking of safety and bounded liveness properties
expressible in the real-time logic SBLL to checking for reachability of
reject states in suitably constructed test automata. This approach al-
lows us to take full advantage of the core of the computational engine
of the tool UPPAAL [BLL'95], which consists of a collection of efficient
algorithms that can be used to perform reachability analysis over timed
automata. As the logic that we consider is powerful enough to describe
characteristic properties [SI94] for nodes of timed automata with respect
to (ready) simulation, our approach to model-checking also allows us to
reduce the computation of behavioural relations to reachability analysis.
Historically, model-checking and reachability analysis were amongst the
first problems shown to be decidable for timed automata [ACD90]. The
decidability of behavioural equivalences and preorders was shown at a
later date in [Cer92]. This study may be seen as tracing back the decid-
ability of a behavioural relation, viz. (ready) simulation, to that of the
reachability problem via model-checking.

The practical applicability of the approach to model-checking that we
have developed in this paper has been tested on a basic CSMA /CD proto-
col. More experimental activity will be needed to fully test the feasibility
of model-checking via reachability testing. So far, all the case studies
carried out with the use of UPPAAL (see, e.g., [BGK196, JLS96, KP95])
seem to support the conclusion that this approach to model-checking can
indeed be applied to realistic case studies, but further evidence needs to
be accumulated to substantiate this claim. In this process of experimen-
tation, we also expect to further develop a collection of heuristics that
can be used to reduce the size of the test automata obtained by means of
our automatic translation of formulae into automata.

In this study, we have shown how to translate the formulae in the
logic SBLL into test automata in such a way that model-checking can be
reduced to testing for reachability of distinguished reject nodes in the gen-
erated automata. Indeed the logic presented in this study is remarkably
close to being completely expressive with respect to reachability proper-
ties. In fact, as it will be shown in a companion paper [ABBL97], a slight
extension of the logic considered here allows us to reduce any reachability
property for a composite system S | T' to a model-checking problem of
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S.

The interpretation of the formulae in our specification logic presented
in Table 2 abstracts from the internal evolution of real-time processes in
a novel way. A natural question to ask is whether the formulae in the
logic SBLL are testable, in the sense of this paper, when interpreted with
respect to the transition relation —. In the full version of this work, we
shall show that this is indeed possible if the test automata are allowed
to have committed locations [BGKT96], and the definition of the parallel
composition operator is modified to take the nature of these locations into
account. We expect, however, that the weak interpretation of the logic
will be more useful in practical applications of our approach to model-
checking.

The results that we have developed show that a timed version of ready
simulation is testable, in the sense of this paper. This conclusion seems
to be in agreement with the analysis of behavioural relations carried out
in [AV93] within the framework of quantales. Whether our results can
be justified by means of a general theory a la Abramsky and Vickers
is an interesting topic for further theoretical research. It would also be
interesting to investigate the connections between our investigations and
the seminal study [BIM95], where ready simulation is characterized as the
largest precongruence, with respect to all the GSOS definable operations,
which is contained in the preorder induced by completed trace inclusion.

Acknowledgements. We thank Patricia Bouyer for her help in the
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Figure 10: High level operators (cont.)
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