
B
R

IC
S

R
S

-97-25
M

ix
B

arrington
etal.:

S
earching

C
onstantW

idth
M

azes
C

aptures
theA

C
0

H
ierarchy

BRICS
Basic Research in Computer Science

Searching Constant Width Mazes Captures
theAC0 Hierarchy

David A. Mix Barrington
Chi-Jen Lu
Peter Bro Miltersen
Sven Skyum

BRICS Report Series RS-97-25

ISSN 0909-0878 September 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/25/

Searching constant width mazes captures
the AC0 hierarchy

David A. Mix Barrington∗ Chi-Jen Lu∗

Peter Bro Miltersen† Sven Skyum†

September 30, 1997

Abstract

We show that searching a width k maze is complete for Πk, i.e.,
for the k’th level of the AC0 hierarchy. Equivalently, st-connectivity
for width k grid graphs is complete for Πk. As an application, we
show that there is a data structure solving dynamic st-connectivity for
constant width grid graphs with time boundO(log log n) per operation
on a random access machine. The dynamic algorithm is derived from
the parallel one in an indirect way using algebraic tools.

1 Introduction

Blum and Kozen [4] considered the problem of searching a maze. A maze is
an object as depicted in Figure 1(a).

Formally, we will define a maze of width m and length n as follows: Let
Sn,m = {1, . . . , n} × {1, . . . ,m}. We call an element s of Sn,m a square and
identify s with the unit square with center s in the plane. A maze of width

∗Computer Science Department, University of Massachusetts. Email:
{barring,cjlu}@cs.umass.edu
†BRICS, Basic Research in Computer Science, Centre of the Danish National Re-

search Foundation, Department of Computer Science, University of Aarhus. Email:
{bromille,sskyum}@brics.dk. Supported by the ESPRIT Long Term Research Pro-
gramme of the EU under project number 20244 (ALCOM-IT).

1

(a) (b)

s

t

s

t

Figure 1: (a) A maze and (b) the corresponding grid graph

m and length n is a set M of line segments (walls) of length exactly 1, each
separating two squares of Sn,m. Figure 1(a) depicts a maze of width 10 and
length 13 (we consider the longer line segments as consisting of several atomic
walls of length 1). A path in the maze between two squares s and t is a path
inside the rectangle [0, n]× [0,m] connecting the centers of s and t and not
intersecting any of the walls in M . The reader is invited to verify that there
is a path between s and t in Figure 1(a). Blum and Kozen gave bounds on
the power of systems of automata capable of searching a maze, i.e. capable
of deciding whether a path between two given squares in the maze exists. In
complexity theoretic terms, one of their main results was that searching a
maze is in deterministic logspace.

In this paper we consider the complexity of searching a constant width
maze, i.e., rather than letting both n and m be parameters, we fix m to a
constant k ≥ 1. Let MAZEk be the problem which takes as input (a Boolean
encoding of) a maze of width k, two squares s and t, and decides if there is
a path from s to t.

We relate the complexity of MAZEk in a strong way to the levels of
the AC0 hierarchy. Recall the following definitions: Non-uniform AC0 is
the class of languages recognizable by families of AND/OR/NOT-circuits of
constant depth, polynomial size, and unbounded fan-in. Inside AC0 we find
the following hierarchy: Non-uniform Σk is the class of languages recogniz-
able by circuits with k alternating levels of unbounded fan-in AND and OR
gates, with the output an OR-gate and a “zeroth level” of input gates and

2

their negations. Non-uniform Πk is defined analogously, but with the output
gate being an AND-gate. Following [1], we define a uniform version of the
hiearchy as follows: Uniform Πk (Σk) is the class of languages accepted by
alternating Turing machines running in logarithmic time and making exactly
k alternations, the first being universal (existential).

An appropriate class of reductions to use for the non-uniform classes in
the AC0 hierarchy is the class of (non-uniform) p-projections [15]; all the
non-uniform classes mentioned above are closed under those. Similarly, an
appropriate class of reductions to use for the uniform classes is the class of
DLOGTIME-uniform projections (for a precise definition, see Section 5), and
all the uniform versions of the classes in the hierarchy are closed under those.

Our main result is:

Theorem 1 MAZEk is complete for non-uniform Πk with respect to non-
uniform p-projections. Also, MAZEk is complete for uniform Πk with respect
to DLOGTIME-uniform projections.

As far as we know, this is the first example of natural complete problems
for the levels of the AC0 hierarchy.

There is a close correspondence between mazes and grid graphs, as defined
by Itai et al. [11]. An n×k grid graph is an undirected graph G with vertex
set Vn,k = {1, . . . , n}×{1, . . . , k} and with the property that if {(a, b), (c, d)}
is an edge in G, we have |a− c| + |b− d| = 1. The length of the grid graph
is n and the width is k. A grid graph is shown in Figure 1(b).

The st-connectivity problem USTCONk for width k grid graphs is the
following: Given a grid graph, and two vertices s and t, decide if s and t
are connected in G. There is a trivial isomorphism between MAZEk and
USTCONk: To get from a maze problem to a grid graph problem, simply
make a vertex for each square of the maze, and put an edge between two
vertices if and only if there is not a wall between the corresponding squares.
Though the maze formulation is somewhat more appealing, we prefer the
grid graph formulation for technical reasons and shall use it in the main part
of the paper.

A third setting for these problems is the following variant of bounded-
width branching programs. An n×k switching network is a undirected labelled
graph whose vertices form a rectangular array with k rows and n columns
and whose edges are restricted to be between vertices in adjacent columns.
(Switching networks are also called “contact schemes” — see the survey of

3

Razborov [13] for further background.) Each edge is labelled by an input
variable, its negation, or the value 1, and the network accepts a given input
string iff there is a path from a fixed vertex s to another fixed vertex t such
that the label of each edge on the path evaluates to 1 on the input. It is
not hard to show that the grid graph problem is closely related to planar
switching networks as follows: USTCONk is complete, under p-projections,
for the class of languages decidable by families of width-k, polynomial-size
planar switching networks. This is because an n×k planar switching network
can be simulated by a kn × k grid graph, and an n × k grid graph can be
simulated by a kn×k planar switching network. We omit the details of these
simulations in this version of the paper.

In our second result, we consider the following dynamic graph problem:
Maintain, on a random access machine with word size O(logn), a data struc-
ture representing an n×k grid graph under insertions and deletions of edges
and connectivity queries, i.e. queries asking whether there is a path between
two vertices, given as input. The equivalent maze problem is the problem
of maintaining an n × k maze under risings of walls, destructions of walls,
and path queries, i.e. queries asking whether there is a path between two
squares of the maze. For non-constant width m ≤ n, Eppstein et al provide
a solution to this problem with a time bound O(logn) per operation [6]. We
show:

Theorem 2 For any constant k, there is a solution to the dynamic con-
nectivity problem for width k grid graphs with time complexity O(log log n)
per operation. On the other hand, no solution to the dynamic connectivity
problem for width 2 grid graphs has time complexity o(log logn/ log log log n).

We derive the dynamic algorithm from the parallel one in an indirect, and
rather unusual way: We note that the existence of the parallel algorithm
implies that a certain monoid, Gk, associated with the width-k problem is
aperiodic by results of Barrington and Therien [2]. Combining this with a
result of Thomas [16], we in fact show that Gk has dot-depth exactly k,
providing a (rather) natural example of such a monoid. Such examples are
not encountered too often, so this may be of independent interest. We then
use results on dynamic word problems by Frandsen, Miltersen and Skyum [7]
to derive the dynamic algorithm. Similar algebraic and language-theoretic
tools gives us the lower bound as a corollary to work of Beame and Fich [3].

4

Though we determine the time complexity of the dynamic problem within
a factor of O(log log log n), there is an annoying flaw in the result: The

constant in the big-O of the upper bound is 22O(k)
, while the lower bound

is independent of k. We leave the existence of a better constant as an open
problem.

2 Encoding

Since we are dealing with very low level complexity, we have to be a bit
careful about the encoding. A grid graph is represented by a number of
Boolean edge indicator variables, one for each edge position in the grid. The
variable is true if and only if the edge is present. The source and sink
inputs s and t are given in positional notation; that is, for each vertex v
there is an indicator variable which is true if and only if v = s and an
indicator variable which is true if and only if v = t. Of course, for non-
uniform complexity, there is no reason to impose any particular order of
these variables. For uniform complexity, we have to specify how the input
variables are ordered. Let the edge indicator variables be packed in two
binary relations, Eh ⊆ {1, . . . , n−1}×{1, . . . , k} representing the horizontal
edges; Eh(i, j) is true if and only if there is an edge between (i, j) and (i+1, j),
and Ev ⊆ {1, . . . , n} × {1, . . . , k − 1}; Ev(i, j) is true if and only if there is
an edge between (i, j) and (i, j + 1). Let the source and sink indicator
variables be packed in S, T ⊆ {1, . . . , n} × {1, . . . , k} in the obvious way.
Now we represent an input as the Boolean string consisting of Eh, written
row by row, concatenated with Ev, written row by row, concatenated with
S, written row by row, concatenated with T , written row by row.

3 Membership

In this section we show that the connectivity predicate for width k grid
graphs is in non-uniform Πk. The uniform version of the lemma is deferred
to Section 5.

Lemma 3 USTCONk is Πk, for k ≥ 3. The constructed circuit is positive
(monotone) in the edge variables.

5

Proof We first show that for all k ≥ 1, the statement ”there is a path from
vertex s to vertex t in G” for fixed boundary vertices s and t can be computed
by a positive Πk circuit; that is, we do not let s and t be part of the input
and we assume them to be on the boundary of the grid. Then, we generalize,
first to the case of non-boundary vertices, and then to s and t being given as
input.

We show the statement for fixed boundary vertices by induction in k, for
all k ≥ 1. Thus, in contrast to the statement of the lemma, we can include
k = 1 and k = 2 as well. This is possible because we don’t have to decode
information about s and t.

Base, k = 1: There is a path between s and t if and only if, for all a, if a
is an edge position between s and t, a is an edge. This is a Π1 statement in
the edge indicator variables, as desired.

Now suppose k > 1. Given a grid graph G on Vn,k, we define its dual
G∗ as follows: G∗ has a vertex s∗ for each square s of the grid and a vertex
∞ representing the region outside the grid. We put an edge between two
vertices u∗ and v∗ of G∗ if and only if the edge position separating u and v
in G is not an edge. Thus, for every edge position e of G there is an edge
position e∗ of G∗ and exactly one of G or G∗ has an edge at that position. G
and G∗ can be simultaneously embedded in the plane. Note that G∗ − {∞}
is a grid graph on Vn−1,k−1.

Now, for any given vertices s and t of G, there is a path between s and
t in G if and only if there is not a simple cycle in G∗ so that if the cycle is
drawn in the plane, s is on the outside of the cycle and t is on the inside of
the cycle. Since s and t are border vertices, such a cycle must go through
the vertex ∞. Let C be some cycle going through ∞ and let e∗1 and e∗2 be
the two edges adjacent to ∞ on the cycle. C separates s and t if and only
the edge positions e1 and e2 separate s and t in the following sense: If one
tracks the border clockwise from s back to itself, one of e1 and e2 is found
before hitting t and the other is found after.

Thus, there is a path from s to t if and only if for all border edge positions
e1 and e2, such that e1 and e2 separates s and t, there is not a path inG∗−{∞}
from u∗ to v∗, where u is the square of G adjacent to e1 and v is the square
of G adjacent to e2.

The statement “e1 and e2 separate s and t” is independent of the input.
Since G∗−{∞} is a grid graph of width k−1 there is a positive Πk−1 circuit
deciding whether a path between two fixed border vertices exists. Note that

6

the inputs of this circuit are edge indicators for G∗, i.e. negations of edge
indicators for G. Thus, using DeMorgan’s law, checking whether no path
between two fixed border vertices exists can be done by a positive Σk circuit
in the primal edge indicator variables. We conclude that the validity of the
entire statement can be checked by a positive Πk circuit, as desired.

Now consider the more general problem, where s and t are not on the
boundary, but still fixed. Assume without loss of generality that s is to the
left of t or right above t. Split the graph into 3 parts — the part left of s,
the part between s and t, and the part right of t. Compute the transitive
closure for each component, restricted to the vertical border vertices. By the
above, this can be done by O(k2) Πk circuits, i.e. a constant number. The
end result is now a monotone Boolean function of the computed information.
Since the amount of information is constant, we can compute this function
with a positive NC0 circuit. Since Πk is closed under positive finite Boolean
combinations, the entire thing is Πk.

Finally, consider the USTCONk problem with s and t being part of the
input. Recall that they are given by two indicator variables for each vertex.
For each value of s and t we can construct a gate Es,t which evaluates to
1 if and only if the inputs are s and t; this gate is just an AND of two
indicator variables. For each possible value of (s, t), construct the Πk circuit
Cs,t solving the problem for this value. Now, we adjust Cs,t so that it outputs
1, if s or t do not match the actual input. We do this by giving each of the OR
gates of the second layer from the top of Cs,t one additional input, namely
the negation of Es,t. The end result is the AND of all these adjusted Cs,t
circuits. There is no penalty in depth if k ≥ 3. Note that the final circuit is
no longer positive, but the only negative literals are these Es,t’s. 2

4 Hardness

In this section we show that USTCONk is hard for non-uniform Πk by non-
uniform p-projections. The uniform version of the lemma is deferred to Sec-
tion 5.

Lemma 4 For every k ≥ 1, every problem in non-uniform Πk reduces to
USTCONk by a non-uniform p-projection.

Proof

7

We will show the following stronger statement: For every k ≥ 1, every
problem in non-uniform Πk reduces to USTCONk and every problem in non-
uniform Σk reduces to USTCONk+1 by p-projections. Furthermore, the value
of the node s in the reduction is the bottommost left corner of the grid and
the value of the node t in the reduction is the bottommost right corner of
the grid.

Given a Πk circuit of size s, we can construct a Πk formula of size sO(1)

computing the same function, so we can assume without loss of generality
that we are given a function which can be computed by a Πk formula. By
the definition of p-projection, an alternative formulation of the statement is
then this:

Given a Πk formula C, we can construct a polynomial sized, width k

grid graph G(C) where some of the edges are labelled with input variables
or their negations, the bottommost left corner of the grid is labelled s and
the bottommost right corner of the grid is labelled t, so that, given an input
vector x, if we remove the edges labelled with variables assigned 0, there is a
path form s to t in G(C) if and only if C(x) evaluates to true. Similarly, given
a Σk circuit, we can construct a width k + 1 grid graph with corresponding
properties. We will construct this mapping G by recursion in k.

First suppose a Π1 formula C is given. We can write C as
∧r
i=1 xji ∧∧s

i=1 x̄ki , where xji , i = 1 . . . r and xji, i = 1 . . . s are input variables. The
corresponding width 1 grid graph G(C) is shown in figure 2.

t t t t t t t t t tt
.....xj1 xj2 xjr−1 xjr x̄k1 x̄k2 x̄ks−1 x̄ks

Figure 2: G(
∧r
i=1 xji ∧

∧s
i=1 x̄ki)

Similarly, if a Σ1 formula C is given, we write C as
∨r
i=1 xji ∨

∨s
i=1 x̄ki and

let G(C) be the width 2 grid graph of Figure 3.

xj1 xj2 xjr−1 xjr x̄k1 x̄k2 x̄ks−1 x̄ks

.....

.....

.....

.....

Figure 3: G(
∨r
i=1 xji ∨

∨s
i=1 x̄ki)

8

Now, let k > 1 and assume we have both the Σj and Πj constructions for
all j < k. Let a Πk formula C be given. We can write it as

∧r
i=1Ci, where the

Ci’s are Σk−1 formulae. Construct the width k graphs C(Gi) corresponding
to the Ci’s and let G(C) be the graph of Figure 4. Note that this graph also
has width k, as desired.

.....
G(C2)G(C1) G(Cr−1) G(Cr)

Figure 4: G(
∧r
i=1Ci)

.....G(C1) G(Cr)G(Cr−1)G(C2)

Figure 5: G(
∨r
i=1Ci)

Finally, let a Σk formula C be given. Write it as
∨r
i=1Ci, where the Ci’s

are Πk−1 formulae. Construct the width k − 1 graphs C(Gi) corresponding
to the Ci’s and let G(C) be the width k + 1 graph of Figure 5.

The correctness of the construction is easily checked. 2

5 Uniformity considerations

As in Barrington, Immerman, and Straubing [1], we define a log-time Turing
machine to have a read-only input tape of length n, a constant number of
read-write work tapes of total length O(logn), and a read-write input address
tape of length logn. On a given time step the machine has access to the bit
of the input tape denoted by the contents of the address tape (or to the

9

fact that there is no such bit, if the address tape holds too large a number).
An alternating log-time machine has universal and existential states with the
usual semantics. Furthermore, the alternating machine queries its input only
once in a computation, in its last step.

We now define uniform Πk as the class of languages accepted by alternat-
ing log-time Turing machines, making exactly k alternations, the first being
universal. It is shown in [1] that this hierarchy is in fact a uniform version of
the AC0 circuit hierarchy, where specific questions about the circuit family
can be answered by a DLOGTIME Turing machine.

Recall that a family of p-projections can be viewed syntactically as a
family of maps

σn : {y1, y2, . . . , ym(n)} → {0, 1, x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n},

where m(n) is bounded by a polynomial in n. The syntactic map σn defines
a reduction σ′n : {0, 1}n→ {0, 1}m(n) by

σ′n(a1, a2, . . . , an)i =


0 if σn(yi) = 0
1 if σn(yi) = 1
aj if σn(yi) = xj
āj if σn(yi) = x̄j

A DLOGTIME-uniform projection is a family of projections σn, so that
there is a DLOGTIME Turing machine which on input 〈i, 1n〉 outputs the
binary encoding of the values of m(n) and σn(yi) on a specified work tape.

We have the following proposition.

Proposition 5 Uniform Πk is closed under DLOGTIME-uniform projec-
tions.

We can now state the uniform version of our main theorem.

Theorem 6 USTCONk is complete for uniform Πk under DLOGTIME-
uniform projections.

Proof (sketch). We must check two things:

1. USTCONk can be decided by an alternating log-time Turing machine
making exactly k alternations, the first being universal.

10

2. If a language can be decided by an alternating log-time Turing machine
making exactly k alternations, the first being universal, then there
is a DLOGTIME-uniform projection ρ, so that if ρ′ is the reduction:
{0, 1}∗ → {0, 1}∗ defined by ρ, ∀x, x ∈ L⇔ ρ′(x) ∈ USTCONk

For (1), we verify that the computation done by the circuit can be performed
by an alternating log-time machine. The main technical issue is checking
whether two border edges, given by their coordinates separate two border
vertices, and this can be done by a constant number of integer comparisons,
which are easily carried out deterministically by a log-time machine since the
integers in question are only log n bits long. (In fact, we will later use the fact
that this “separation” predicate is a Boolean combination of comparisons of
column numbers in the graph.) Since only a constant number of such checks
must be done during a computation, we are done.

For (2), given an alternating log-time machine, making exactly k alter-
nations, the first being universal, we can modify it by adding a clock, and
ensure that all its first c logn moves are universal, its next c logn moves are
existential, etc. — this blows up the complexity only by a constant factor.

Let L be the language recognized by a such a machine. It is now easy
to see that for each n, there are DLOGTIME functions σn : {1, . . . , nj}k →
{0, 1, . . . , n} and ρn : {1, . . . , nj}k so that a string x = x1x2 . . . xn ∈ {0, 1}n
is in L if and only if

∀nci1=1∃n
c

i2=1 . . . Q
nc

ik=1x
ρn(i1,i2,...,ik)
σn(i1,i2,...,ik

(1)

Here, for a Boolean value x, xv is x if v = 0 and x negated if v = 1, and
by convention, x0 = 0, this makes it possible to deal with the machine not
reading a bit at the end of the computation.

Using the technique of Section 4, it is now easy to modify the DLOGTIME
machines for σn and ρn into a DLOGTIME-uniform projection reducing L
to USTCONk−1. 2

6 The width-k grid graph monoid

In this section we consider an algebraic interpretation of our results. We
explore its consequences in Section 7, but we also consider it interesting in
its own right.

11

We define the width k grid graph monoid Gk. It will be a submonoid of
the following monoid Mk:

The ground set of Mk is the set of equivalence relations on V2,k = {1, 2}×
{1, . . . , k}, or, equivalently, the set of transitively closed undirected graphs
with vertex set V2,k.

Let G and H be members of Mk, viewed as graphs. We now define the
composition of G and H. Let U = {1, 3

2
, 2}×{1, ..., k}. Let R be the graph on

U obtained by embedding G in U by the embedding (1, y)→ (1, y), (2, y)→
(3

2
, y) and embedding H in U by the embedding (1, y) → (3

2
, y), (2, y) →

(2, y). Let R∗ be the transitive closure of R. The composition G ◦H is the
restriction of R∗ to V2,k = {1, 2} × {1, ..., k}.

Gk is now defined to be the submonoid of Mk generated by the transitive
closures of the set of grid graphs on V2,k.

A very intuitive way of viewing Gk is as follows. An elements of Gk is a
collection of plane blobs inside the [1, 2]× [1, k] rectangle in the plane, where
a blob is identified with the set of grid points it contains. In Figure 6, (a) are
(b) are two such elements. To multiply two elements, we concatenate them
and scale down the resulting picture by a factor of two on the x-axis. In
Figure 6, (a) and (b) are concatenated to form (c) and then scaled down to
(d). Finally, since two blobs are equivalent if they contain the same elements,
we can make a nicer picture (e) which is equivalent to (d).

(a)
AA
AA
AA
AA

(b) (c) (d) (e)

Figure 6: Elements in Gk and their product

Note that every member of Gk can be described as a word a1◦a2◦ . . . af(k)

where the ai’s are closures of 2× k grid graphs for some function f (a trivial
upper bound on f(k) is |Gk|). Another way of viewing this: Every member
of Gk can be described by the transitive closure of an f(k) × k grid graph,
restricted to the vertical border vertices.

12

Lemma 7 The size of Gk is c2k = 1
2k+1

(
4k
2k

)
, i.e. the 2k’th Catalan number.

Proof For this proof we name the vertices 1, 2, . . . , 2k going counter-clockwise
and starting in the upper left corner, as in part (a) of Figure 7. Note that
the number of ways to connect the 2k vertices into blobs does not depend on
there being k vertices in each column, but only on the fact that connections
among the 2k vertices occur only on one side of the line of them (in the pla-
nar embedding) and may not intersect each other. We will show that with
any number m of vertices, odd or even, the number of distinct arrangements
of this kind is cm.

To do this we will biject the graphs with strings in the Dyck language Dm,
where Dm is the set of words of m pairs of correctly matched parentheses.
Consider the highest-numbered vertex to which vertex 1 is connected and
call it j. (In Figure 7, this is vertex 8.) Form the Dyck language string by
concatenating in turn a (, the Dyck string corresponding to the division into
blobs of vertices 1 through j − 1, a), and the Dyck string for the division
into blobs of vertices j + 1 through m. It is easy to verify that this mapping
is total and invertible, and hence is a bijection.

It is perhaps easier to carry out this mapping on an example as follows.
Relabel the vertices of the graph as in part (b) of Figure 7, so that the
label of each vertex in a blob is the smallest original label of any vertex in
that blob. Reading the new labels in the original order, we get a word of
length m over the set {1, . . . ,m} which, as it turns out, characterizes the
arrangement. In the example this word is 12332211. To map such a word w
to the corresponding Dyck string, first insert m)’s, one after each occurence
of a letter in w. Then for each letter a occurring in w insert, before the first
occurrence of a, the string (u, where u is the total number of occurrences of
a in w. Finally erase all the original letters from the word. In the example,
12332211 eventually becomes ((()((()(()))))). It is not hard to verify that the
composite mapping from arrangements of blobs to Dyck strings is exactly the
mapping defined recursively above. 2

Our earlier analysis of grid graphs can now be interpreted in terms of
the algebraic structure of the monoid Gk. To use the vocabulary of formal
language theory, we may think of a grid graph problem as a string where the
individual letters are elements of Gk. The following result tells us something
about the language of strings representing graphs with a particular connec-
tivity property. It is star-free (meaning that it can be formed from one-letter

13

1

2

3

4

8

7

6

5
(a)

1

2

3

3

1

1

2

2
(b)

Figure 7: Transforming an element of Gk to a Dyck string

languages by concatenation and boolean operations including complementa-
tion), and has dot-depth k (meaning that the optimal depth of nesting of
concatenation operations is k). See, for example, [12] for further background
on algebraic automata theory.

Lemma 8 Gk is an aperiodic monoid with dot-depth exactly k.

Proof (sketch) We first show that the dot-depth is at most k. In our proof
of Theorem 6, we showed that connectivity in a width-k grid graph could
be expressed by a logical formula with k quantifiers in prenex normal form,
and atomic predicates that either referenced individual edges (properties of
individual “letters” in the input string) or compared two column numbers
(positions of letters in the string). By a theorem of Thomas [16], any language
so describable has a syntactic monoid that is aperiodic with dot-depth k. But
this syntactic monoid is Gk itself, since Gk was designed to exactly capture
this connectivity information.

If the dot-depth of Gk were less than k, we could derive a contradiction
as follows. Consider any circuit C of depth k and size s. By our construction
in Lemma 4, we can construct a word over Gk, of size polynomial in s, whose
product determines the value of C. But if Gk has dot-depth k−1 or less, this
product can be evaluated by a circuit of depth k − 1 and size polynomial in
s, using a construction of Barrington and Thérien [2]. Since C was arbitrary,
we have collapsed two distinct levels of the AC0 hierarchy, contradicting a
theorem of Sipser [14]. 2

In Section 7, we only use the aperiodicity of Gk, not its dot-depth. Still,
Gk gives us an example of a natural (or at least easily visualizable) monoid

14

which we know is aperiodic with dot depth exactly k — such examples are
rare.

7 The dynamic grid graph connectivity

problem

We consider the following dynamic graph problem: Maintain, on a random
access machine with word sizeO(logn), a data structure representing an n×k
grid graph under insertions and deletions of edges and connectivity queries,
i.e. queries asking whether there is a path between two given vertices.

Lemma 9 For any constant k, there is a solution to the dynamic connectiv-
ity problem for width k grid graphs with time bound O(log log n) per operation.

The constant in the big-O is 22O(k)
.

Proof We shall use a result of Frandsen, Miltersen, and Skyum [7]. First
some terminology. Let S be a finite monoid. Let S-RANGE be the problem of
maintaining, on a random access machine with word sizeO(logn), a sequence
(a1, a2, . . . , an) ∈ Sn under a change(i, b)-operation which changes ai to b ∈ S,
and a range query operation query(i, j) which returns ai ◦ai+1◦ · · ·◦aj−1◦aj.
Frandsen, Miltersen, and Skyum show:

Fact 10 If S is aperiodic, there is a solution to S-RANGE with time bound
O(log logn) per operation. The constant in the big-O is 2O(|S|).

We show that dynamic reachability reduces to dynamic range queries over
Gk with a constant overhead. Since Gk is aperiodic, we are done. Suppose
we are to maintain a graph on {1, .., n}×{1, ..., k}. We maintain the product
a1 ◦a2 ◦ ...◦an−1 where ai is the element of Gk correponding to the subgraph
in {i, i+1}×{1, ..., k}. A change in the graph corresponds to a single change
of an ai. If we are to answer if there is a path from (x1, y1) to (x2, y2) we
do the following (assume wlog that x1 < x2): We query the subproducts
a = a1 ◦ ... ◦ ax1−1, b = ax1 ◦ ... ◦ ax2 and c = ax2+1 ◦ ... ◦ an. Whether or
not there is a path between (x1, y1) and (x2, y2) is completely determined by
(a, b, c, y1, y2), and since these are all in a constant range, we can hardwire
the answer for each possible value of the tuple into the algorithm. 2

15

s s s

s s s

s

s

s

s s

s

s s s

s s s

G(p) G(s) G(c)

Figure 8: Gadgets for reducing the dynamic prefix problem for L to dynamic
connectivity

Lemma 11 Assume k ≥ 2. There is no solution to the dynamic connectivity
problem for width k grid graphs with time bound o(log n logn/ log log log n)
on a RAM with word size O(logn).

Proof We shall use a result by Beame and Fich [3]. First some terminology.
Call a regular language L ⊆ Σ∗ indecisive if and only if for all x ∈ Σ∗,
there exist z and z′ such that xz ∈ L and xz′ 6∈ L. Given a language L,
the dynamic (L, n)-prefix problem is the problem of maintaining a string
x = x1 . . . xn ∈ Σn under a change(i, a) operation which changes xi to a
and a prefix(j) operation which answers the question ”Is x1x2 . . . xj ∈ L?”.
Beame and Fich show:

Fact 12 If L is indecisive, then, in any implementation of the dynamic
(L, n)-prefix problem on a RAM with word size O(logn), if the change op-

erations each take time at most 2(logn)1−Ω(1)
, then the query operation takes

time at least Ω(log log n/ log log logn).

Now let L be the regular language (c + s + p)∗sp∗ + p∗, i.e. the language
over {c, s, p}, where x ∈ L if and only if the last letter of x which is not a p
is an s. This language is indecisive, so Beame and Fich’s result apply. Now
assume that the dynamic connectivity problem for width 2 grid graphs can
be solved with time bound o(log n logn/ log log log n) per operation. We will
show that the dynamic (L, n)-prefix problem can also be solved with time
bound o(logn log n/ log log log n), a contradiction.

Given an instance a1a2 · · ·an of (L, n)-prefix to maintain, we maintain a
grid graph G, of width 2 and length 2n, defined as follows. Consider G to be
divided into n blocks of length 2. The i’th block of G is G(ai), where G is the
mapping defined in Figure 8. Clearly, a change of a symbol in the maintained
string corresponds to a constant number of insert and delete operations in

16

the dynamic graph. Now, in order to determine if a1a2 . . . ai ∈ L, we remove
all edges in the i+ 1’st block of G using the delete operation of the dynamic
connectivity operation. Then we ask if there is a path from the bottom left
vertex of G to the bottom right vertex of the i’th block of G. This is the
case if and only if a1a2 . . . ai ∈ L. After getting the right answer, we restore
the data structure by reinserting the edges of block i. This completes the
reduction. 2

8 Generalization to directed graphs

In a directed grid graph, each edge present has one or both of the two pos-
sible orientations, and we consider finding directed paths from s to t. (Such
graphs correspond to planar nondeterministic branching programs or planar
“switching-and-rectifier networks” [13], except that a directed grid graph
need not have horizontal arrows in only one direction. It follows from the
analysis here, of course, that this additional ability is of no use in the case
of constant width.)

All of our theorems about constant-width grid graphs hold for directed
grid graphs. Of course, the lower bounds are trivial extensions, but we must
revisit the upper bounds:

Lemma 13 STCONk is in uniform Πk, with the constructed circuit being
positive in the edge variables.

Proof (sketch) Given a directed grid graph G, we will define its dual G∗ as
follows. The possible edge positions of G∗ are exactly as in the undirected
case. Now let e∗ be an edge position of G∗, we define which orientations of
e∗ is present in G∗ as a function of the orientations of e present in G: An
orientation of e∗ is present if and only if the orientation, turned 90◦ degrees
clockwise, is not an orientation of e.

Now it is easy to see that there is a directed path from s to t if and only
if there is not a directed cycle in G∗, going clockwise around t, with s on the
outside. The rest of the proof proceeds exactly as in the proof of Lemma 1
— the only operations needed on the column numbers are comparisons. 2

As before, we can define a monoid whose elements are now directed 2×k
grid graphs, and show that this monoid is aperiodic with dot-depth exactly
k.

17

As a corollary, we also get the same upper bound on the directed dynamic
grid graph connectivity as on undirected dynamic grid graph connectivity.
(Interestingly, for general graphs, the directed version of the dynamic prob-
lem seems to be much harder than the undirected version).

9 Discussion and open problems

Interesting open problems include:

• As mentioned in the introduction, Blum and Kozen showed that the
general problem, where the width is not fixed, is in L. By carrying
out our construction in Section 4 for a width of O(logn), we get that
even this restricted version of the general problem is hard for NC1. An
obvious open question is to determine the complexity of the general
problem precisely: Is it complete for NC1, or for L, or does it have
intermediate complexity?

• We can also consider the general version of the problem for directed grid
graphs, which is still hard for NC1 but which we only know to be in NL.
Our notion of duality gives a simple positive reduction of this problem
to its complement, suggesting (but of course not proving, as NL is in
fact closed under complement, by a more complicated reduction) that
it is not NL-complete. There are potentially interesting restrictions of
this problem as well, where we prohibit edges in one or two of the four
directions.

• A similar gap occurs in our understanding of the dynamic grid graph
connectivity problem, if the width of the graph is non-constant. If the
width is a free parameter m, with the restriction 2 ≤ m ≤ n, the follow-
ing is known: Eppstein et al [6] construct a data structure with a time
bound of O(logn) per operation and Eppstein [5] shows a lower bound
of Ω(logm/ log logm). This lower bound is improved by Husfeldt and
Rauhe [8] to Ω(m), provided m ≤ log n/ log logn. As we pointed out,

our upper bound is 22O(m)
log logn. This improves the general bound

only for m � log log log n. From Beame and Fich [3] follows a lower
bound of Ω(log log n/ log log log n), provided m ≥ 2. Combining every-

thing, we get an upper bound of O(min(log n, 22O(m)
log log n)) and a

18

lower bound of Ω(min(m, log n/ log logn)+ log logn/ log log log n) with
a big gap to close.

• Gk is a, rather natural, aperiodic monoid of dot-depth exactly k, and
the word problem for any aperiodic monoid of dot-depth k reduces to
the word problem for Gk. Is there a purely algebraic way of viewing
this curious fact?

10 Acknowledgements

We would like to thank Paul Beame and Arny Rosenberg for help with histor-
ical references, Howard Straubing and Denis Therien for very helpful discus-
sions about automata theory and monoids, and Sairam Subramanian for very
helpful discussions about dynamic graph problems. This work was greatly
facilitated by the March 1997 Dagstuhl workshop in Boolean Function Com-
plexity, attended by the first and third authors.

References

[1] D. A. M. Barrington, N. Immerman and H. Straubing. On uniformity
within NC1 Journal of Computer and System Sciences, 41(3):274–306.

[2] D. A. M. Mix Barrington and D. Thérien. Finite monoids and the fine
structure of NC1. Journal of the ACM, 35(4):941–952, October 1988.

[3] P. Beame and F. Fich. On searching sorted lists: A near-optimal lower
bound. Manuscript, 1997.

[4] M. Blum and D. Kozen. On the power of the compass (or why mazes
are easier to search than graphs). In 19th Annual Symposium on the
Foundations of Computer Science, pages 132–142, October 1978.

[5] D. Eppstein. Dynamic connectivity in digital images. Technical Re-
port 96-13, Univ. of California, Irvine, Department of Information and
Computer Science, 1996.

19

[6] D. Eppstein, G. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and
M. Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. Journal of Algorithms, 13:33–54, 1992.

[7] G. S. Frandsen, P. B. Miltersen, and S. Skyum. Dynamic word problems.
Journal of the ACM 44:257–271, 1997.

[8] T. Husfeldt and T. Rauhe. Hardness of dynamic computation.
Manuscript, 1997.

[9] N. Immerman. Languages that capture complexity classes. SIAM Jour-
nal on Computing, 16(4):760–778, 1987.

[10] N. Immerman and S. Landau. The complexity of iterated multiplication.
Information and Computation, 116(1):103–116, January 1995.

[11] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in
grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[12] J. E. Pin. Varieties of Formal Languages. New York: Plenum Press,
1986.

[13] A. A. Razborov. Lower Bounds for deterministic and nondeterministic
branching programs. In L. Budach, ed., Fundamentals of Computation
Theory, 8th International Conference: FCT ’91. Lecture Notes in Com-
puter Science 529, 47–60. Berlin, Springer Verlag, 1991.

[14] M. Sipser. Borel sets and circuit complexity. In Proceedings, 15th ACM
Symposium on the Theory of Computing, 1983, 61–69.

[15] S. Skyum and L. G. Valiant. A complexity theory based on Boolean
algebra. Journal of the ACM, 32(2):484–502, April 1985.

[16] W. Thomas. Classifying regular events in symbolic logic. J. Comput.
System Sci. 25, 1982, 360–376.

20

Recent BRICS Report Series Publications

RS-97-25 David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen,
and Sven Skyum. Searching Constant Width Mazes Captures
theAC0 Hierarchy. September 1997. 20 pp.

RS-97-24 Søren B. Lassen.Relational Reasoning about Contexts. Septem-
ber 1997. 45 pp. To appear as a chapter in the bookHigher Or-
der Operational Techniques in Semantics, eds. Andrew D. Gor-
don and Andrew M. Pitts, Cambridge University Press.

RS-97-23 Ulrich Kohlenbach. On the Arithmetical Content of Restricted
Forms of Comprehension, Choice and General Uniform Bound-
edness. August 1997. 35 pp.

RS-97-22 Carsten Butz. Syntax and Semantics of the logicLλωω. July
1997. 14 pp.

RS-97-21 Steve Awodey and Carsten Butz.Topological Completeness for
Higher-Order Logic. July 1997. 19 pp.

RS-97-20 Carsten Butz and Peter T. Johnstone.Classifying Toposes for
First Order Theories. July 1997. 34 pp.

RS-97-19 Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen.
Compilation and Equivalence of Imperative Objects. July 1997.
iv+64 pp. Appears also as Technical Report 429, University of
Cambridge Computer Laboratory, June 1997. To appear in
Foundations of Software Technology and Theoretical Computer
Science: 17th Conference, FCT&TCS ’97 Proceedings, LNCS,
1997.

RS-97-18 Robert Pollack.How to Believe a Machine-Checked Proof. July
1997. 18 pp. To appear as a chapter in the bookTwenty Five
Years of Constructive Type Theory, eds. Smith and Sambin, Ox-
ford University Press.

RS-97-17 Peter Bro Miltersen. Error Correcting Codes, Perfect Hashing
Circuits, and Deterministic Dynamic Dictionaries. June 1997.
10 pp.

RS-97-16 Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez
Petrank, and Gábor Tardos. Linear Hashing. June 1997. 22 pp.
A preliminary version appeared with the title Is Linear Hash-
ing Good? in The Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 465–474.

