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Relational Reasoning about Contexts∗

S. B. Lassen
BRICS†, Department of Computer Science, University of Aarhus

1 Introduction

The syntactic nature of operational reasoning requires techniques to deal with
term contexts, especially for reasoning about recursion. In this paper we study
applicative bisimulation and a variant of Sands’ improvement theory for a small
call-by-value functional language. We explore an indirect, relational approach for
reasoning about contexts. It is inspired by Howe’s precise method for proving
congruence of simulation orderings and by Pitts’ extension thereof for proving ap-
plicative bisimulation up to context. We illustrate this approach with proofs of the
unwinding theorem and syntactic continuity and, more importantly, we establish
analogues of Sangiorgi’s bisimulation up to context for applicative bisimulation
and for improvement. Using these powerful bisimulation up to context techniques,
we give concise operational proofs of recursion induction, the improvement theo-
rem, and syntactic minimal invariance. Previous operational proofs of these results
involve complex, explicit reasoning about contexts.

Related work

Applicative bisimulation (Abramsky 1990) is an operational theory for higher-
order languages, inspired by bisimulation theories for concurrency (Park 1981;
Milner 1989). It excels in reasoning about infinite data structures. These exist
in every higher-order language but are particularly relevant in lazy functional lan-
guages (Gordon 1995; Pitts 1997) and functional object-oriented languages (Gor-
don and Rees 1996). But applicative bisimulation is not very helpful for reasoning
about recursive control structures. There are more ‘intensional’ operational theo-
ries (Talcott 1997; Sands 1997b) which address recursion effectively by counting
computation steps. But even they are of limited use for proving results such as the
validity of the fundamental induction rules for recursion: recursion induction (also
known as Park induction), syntactic continuity (ω induction), syntactic minimal
invariance (syntactic projections), and the improvement theorem. Existing opera-
tional proofs are complex and involve explicit reasoning about term contexts.

Intuitively, a context is a term containing a hole, that may be filled by another
term. This is an evocative idea, but for formal arguments contexts are difficult

∗To appear in Gordon and Pitts (1997).
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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2 Lassen

to work with, both technically and notationally. For this reason, Howe deals
only indirectly with contexts in his influential congruence proof for applicative
bisimilarity (Howe 1989; Howe 1996). Instead the proof is ‘relational’: a larger
relation which is closed under contexts is constructed and is shown to coincide
with applicative bisimilarity by bisimulation and induction on the evaluation re-
lation. This relational approach yields a formally and notationally very precise
proof. Moreover, Howe’s congruence proof applies to many different typed and
untyped higher-order languages and operational orderings; see, e.g., Sands (1991,
Ong (1992, Ferreira, Hennessy, and Jeffrey (1995, Lassen (1997, Gordon (1997).

Pitts (1995) extends Howe’s congruence proof for applicative bisimilarity to
also establish an up to context rule for applicative bisimulation. The proof is also
‘relational’ and illustrates the versatility of Howe’s implicit, relational approach to
reasoning about term contexts. Specifically it shows how to use this proof method
to establish applicative bisimulation up to context results. (We present the proof in
Section 5.2.) The results we present in this paper stem from the study of this work.

Sangiorgi’s bisimulation up to context is a powerful refined bisimulation proof
rule for process calculi (Sangiorgi and Milner 1992; Sangiorgi 1994). Bisimu-
lation up to context allows you to disregard a common term context when relat-
ing terms in bisimulation proofs. Unfortunately, his correctness proofs do not
carry over to applicative bisimulation for higher-order languages. Gordon (1995)
and Sands (1997b) present restricted applicative bisimulation up to context rules.
They demonstrate the power of this approach to produce concise proofs of equiv-
alences which are difficult to derive by other operational methods. Both Sangiorgi
(1996, 1995) and Sands couple bisimulation up to context with efficiency pre-
orders, called ‘expansion’ and ‘improvement’, respectively. As suggested by Pitts
(1995), we also introduce an improvement preorder. The problem which we ad-
dress in this fashion leads us to adopt an improvement theory based on a different
cost measure than that of Sands (1997b).

Overview

Section 2 defines the syntax and operational semantics of the untyped, functional
ML fragment which we study below. Section 3 introduces an algebra of relations
on terms. This is essential for the calculations with relations in later sections. A
substantial example is the proof of the unwinding theorem in Section 4. Applica-
tive (bi)simulation is defined in Section 5. Preliminary applicative simulation up
to context results are established and applicative bisimilarity is shown to be a con-
gruence by Howe’s and Pitts’ techniques. A deficiency of applicative simulation
up to context is discovered which leads us to introduce an improvement preorder in
Section 6. Improvement enjoys a strong up to context rule from which congruence
and the improvement theorem follow. Section 7 uses improvement to strengthen
the applicative simulation up to context rule from Section 5. Finally, Section 8
concludes. An appendix contains proofs from Sections 6 and 7.
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2 A functional ML fragment

We operate with a small call-by-value functional language with lists, an untyped
fragment of ML (Milner, Tofte, and Harper 1990).

Syntax

Let f, g, x, y, z range over an infinite set of variables. The syntax of expressions
is:

(Exp) d, e ::= x | fn x => e | nil | e1 :: e2 | e1 e2

| let fun f x = d in e end | let val x = d in e end

| (case d of nil => e1 | x1 :: x2 => e2 | f => e3).

Expressions are identified up toα-renaming of bound variables.

In let val x = d in e end andfn x => e, x is bound ine.

In let fun f x = d in e end, f andx are bound ind, andf is bound ine.

In case d of nil => e1 | x1 :: x2 => e2 | f => e3, x1 andx2 are bound in
e2, andf is bound ine3.

Terms are parsed as in ML. The scope offn andcase extends as far to the
right as possible. Application associates to the left and has higher precedence than
:: which associates to the right. For instance, the termfn x => x :: y :: x y z
parses asfn x => (x :: (y :: ((x y) z))).

The set of values is given by the grammar:

(Val ) u, v, w ::= x | fn x => e | nil | v1 :: v2.

Let e{~v/~x} = e{v1/x1, . . . , vn/xn} be the result of simultaneous, capture free sub-
stitution of values~v = v1 . . . vn for free occurrences of~x = x1 . . . xn in e. (See
Stoughton (1988) for a precise definition of simultaneous substitution.) By~x we
always mean an ordered list of pairwise distinct variables. We writex ∈ ~x to mean
variablex occurs in~x.

Let Exp~x andVal~x be the set of expressions and values, respectively, with free
variables contained in~x. NoticeVal~x ⊆ Exp~x. We call expressionsp, q ∈ Exp∅
closed.

A closed value is either the empty listnil, ‘cons’ of two closed valuesv1 :: v2,
or a functionfn x => ewith e ∈ Expx. The case construct has three corresponding
branches. This allows both decomposition of lists and dynamic dispatch on the
‘type’ of values. (The latter would not be well-typed in ML but is common in
untyped languages, e.g., Scheme (Clinger and Rees (editors) 1991) has aproc?
predicate that tells whether a value is a closure; this feature is necessary for the
formulation of syntactic minimal invariance in Proposition 11 but otherwise our
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results are unaffected by the exact choice of language constructs for accessing
values—as long as application is the only means of ‘destructing’ functions.)

We takelet val x = d in e end as a language primitive instead of encoding
it as (fn x => e) d, because the encoding introduces a function application step.
This difference affects the improvement theory of Section 6 and will be important
later in the proof of Proposition 11.

We defineΩ to be a divergent expression:

Ω
def
= let fun f x = f f in f f end.

We write rec f x => d for the recursive function,

rec f x => d
def
= fn x => let fun f x = d in d end.

For example,fn x => Ω = rec f x => f f .

A call-by-value fixed point combinator,Yv, can be expressed as:

Yv
def
= fn f => (fn g => fn x => f (g g) x) (fn g => fn x => f (g g) x).

So explicit recursion is redundant; later on we proverec f x => e is semantically
equivalent toYv (fn f => fn x => e).

Evaluation semantics

We define the operational semantics of closed expressions by an evaluation relation
⇓ ⊆ Exp∅ × Val∅ between expressions and values. An important measure of
‘computational cost’ which we shall use extensively is the number of function
applications (‘computation steps’) in evaluations. Therefore we introduce a family
of evaluation relations indexed by this measure,⇓N ⊆ Exp∅ × Val∅ for N ≥ 0,
inductively defined by the rules in Table 1.

‘Plain’ evaluation is just⇓ def
=
⋃
N≥0 ⇓N , i.e.,p ⇓ v iff ∃N ≥ 0. p ⇓N v. It is

also given inductively by Table 1 with allN subscripts erased from the rules.

Note thatv ⇓0 v for all v ∈ Val∅. Moreover, evaluation is deterministic:

Proposition 1 (Determinacy) If p ⇓N v andp ⇓N ′ v′,N = N ′ andv = v′.

Examples

1. LetI be the identity function,I
def
= fn x => x, then

I p ⇓N+1 v iff p ⇓N v,

for all p ∈ Exp∅, v ∈ Val∅ andN ≥ 0. (Therefore we shall use applications
of I as syntactic representations of function application steps in analogy with
Sands’ ‘ticks’ (1997b).)
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(Eval fn) fn x => e ⇓0 fn x => e

(Eval nil) nil ⇓0 nil

(Eval cons)
e1 ⇓N1 v1 e2 ⇓N2 v2

e1 :: e2 ⇓N1+N2 v1 :: v2

(Eval apply)
e1 ⇓N1 fn x => e e2 ⇓N2 v2 e{v2/x} ⇓N3 v

e1 e2 ⇓N1+N2+N3+1 v

(Eval let fun)
e{(rec f x => d)/f} ⇓N v

let fun f x = d in e end ⇓N v

(Eval let val)
d ⇓N1 u e{u/x} ⇓N2 v

let val x = d in e end ⇓N1+N2 v

(Eval case)

e0 ⇓N1 v0 e ⇓N2 v e =

 e1 if v0 = nil

e2{v1/x1, v2/x2} if v0 = v1 :: v2

e3{v0/f} if v0 = fn x => dcase e0 of nil => e1

| x1 :: x2 => e2

| f => e3

 ⇓N1+N2 v

Table 1: Evaluation relation
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2. The divergent expressionΩ does not evaluate to anything. Any derivation
Ω ⇓N v would haveΩ ⇓N−1 v as premise, and this is impossible because
of determinacy.

3. Let e∞
def
= (fn g => fn x => e(g g)x) (fn g => fn x => e(g g)x), so that

Yv = fn f => f∞. Then

Yv u ⇓2 fn x => u u∞ x because u∞ ⇓1 fn x => u u∞ x,

for u ∈ Val∅.

Let an evaluation context, E, be a term with a hole,−, at redex position
(Felleisen and Friedman 1987). They are given by the grammar:

(Ev. ctx.) E ::= − | E :: e | e :: E | E e | e E

| let val x = E in e end

| (case E of nil => e1 | x1 :: x2 => e2 | f => e3).

We writeE[e] for the term obtained fromE by filling in e for the hole−. (We
adopt a liberal definition of redex position which does not suggest an evaluation
order in ‘cons’ expressions,e1 :: e2, and function applications,e1 e2. One can
indicate a left-to-right evaluation order by excluding evaluation contexts of the
form e :: E ande E wheree is not a value. But evaluation order is immaterial
here as we do not consider small-step reductions of terms and our language has no
side effects.)

Evaluation contexts satisfy

E[p] ⇓N v iff ∃M,u. p ⇓M u & E[u] ⇓N−M v. (2.1)

Combined with the examples above, we see thatE[Ω] diverges and

E[I p] ⇓N+1 v iff I E[p] ⇓N+1 v iff E[p] ⇓N v. (2.2)

3 Relations

This section introduces our notation for relations and operations on them. Com-
patible refinement and context closure are of particular importance. Their precise
definitions are key to the relational proofs in later sections. The relational alge-
bra given here is quite general and language independent, except that only value
substitutions are considered as our language is call-by-value.

Open and closed relations

A binary relationR is a set of pairs. We use infix notation,a R b, to mean
(a, b) ∈ R.
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Let Rel be the universal relation on closed expressions,

Rel = {(p, p′) | p, p′ ∈ Exp∅}.

We call everyR ⊆ Rel a closedrelation. For instance,Id = {(p, p) | p ∈ Exp∅}
is the closed identity relation.

Moreover, we define

Rel◦ = {((~x)e, (~x)e′) | e, e′ ∈ Exp~x},

where(~x)e is a ‘meta-abstraction’ ofe ∈ Exp~x; the(~x) prefix is a binder and~x is
subject toα-renaming. We call allR ⊆ Rel◦ openrelations and write~x ` e R e′

whenever(~x)e R (~x)e′. By identifying everyp ∈ Exp∅ with the 0-ary abstraction
()p, we haveRel ⊆ Rel ◦ and closed relations are special cases of open ones.

We callRel◦ theopen extensionof Rel . Generally, given any closed relationR,
its open extension,R◦ ⊆ Rel◦, is given by

∀v1, . . . , vn ∈ Val∅. e{v1 . . . vn/x1 . . . xn} R e′{v1 . . . vn/x1 . . . xn}
x1 . . . xn ` e R◦ e′

For example,Id◦ is the open identity relation.

Both Rel andRel ◦ are closed under relation composition, which we write by

juxtaposition,a RS b
def⇔ ∃c. a R c ∧ c S b. Open extension satisfies

R◦ S◦ ⊆ (RS)◦. (3.1)

Relation Substitution

For R, S ⊆ Rel◦, the relation substitutionof S into R, writtenR{S} ⊆ Rel ◦,
relates expressions obtained by simultaneous substitution ofS related values into
R related expressions,

~x ` e R e′ ~y ` ~v S ~v′

~y ` e{~v/~x} R{S} e′{~v′/~x}
where~y ` ~v S ~v′ is shorthand for~y ` vi S v′i, for all i = 1 . . . n, if ~v = v1 . . . vn
and~v′ = v′1 . . . v

′
n. Relation substitution is associative. Note thatR{S} ⊆ Rel if

S ⊆ Rel . As a drill in the notation let us show

R ⊆ S◦ iff R{Id} ⊆ S. (3.2)

For the forward implication, supposeR ⊆ S◦ ande{~v/~x} R{Id} e′{~v/~x} because
~x ` e R e′ and v1, . . . , vn ∈ Val∅. Then~x ` e S◦ e′ and, by definition of
open extension,e{~v/~x} S e′{~v/~x}. Conversely, ifR{Id} ⊆ S and~x ` e R e′ then
e{~v/~x} R{Id} e′{~v/~x} and e{~v/~x} S e′{~v/~x}, for all v1, . . . , vn ∈ Val∅. From the
definition of open extension we get~x ` e S◦ e′, as required.
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(Compx) ~xx~y ` x R̂ x

(Comp fn)
~xx ` e R e′

~x ` fn x => e R̂ fn x => e′

(Comp nil)~x ` nil R̂ nil

(Comp cons)
~x ` e1 R e′1 ~x ` e2 R e′2

~x ` e1 :: e2 R̂ e′1 :: e′2

(Comp apply)
~x ` e1 R e′1 ~x ` e2 R e′2

~x ` e1 e2 R̂ e′1 e
′
2

(Comp let fun)
~xfx ` d R d′ ~xf ` e R e′

~x ` let fun f x = d in e end R̂ let fun f x = d′ in e′ end

(Comp let val)
~x ` d R d′ ~xx ` e R e′

~x ` let val x = d in e end R̂ let val x = d′ in e′ end

(Comp case)
~x ` d R d′ ~x ` e1 R e′1 ~xx1x2 ` e2 R e′2 ~xf ` e3 R e′3

~x `

case d of nil => e1

| x1 :: x2 => e2

| f => e3

 R̂

case d′ of nil => e′1
| x1 :: x2 => e′2
| f => e′3


Table 2: Compatible refinement

For any open relationR, we sayR satisfiesweakeningif

~x~y ` e R e′ ⇒ ~xx~y ` e R e′, if x /∈ ~x~y.

We callR substitutiveif R{R} ⊆ R, and we say thatR is closed under substitu-
tions if R{Id◦} ⊆ R. In the latter caseR{Id} = R ∩ Rel . Every open extension,
R◦, satisfies weakening and is closed under substitutions. Any substitutive and
reflexive open relation also satisfies weakening and closure under substitutions.
Each of these properties is preserved by relation composition.

Compatible refinement

For every open relationR, its compatible refinement(Gordon 1994)R̂ ⊆ Rel◦

relates expressions with identical outermost syntactic constructor and immediate
subterms pairwise related byR. Table 2 makes this definition precise for our lan-
guage. Compatible refinement is monotone, preserves weakening, and commutes
with relation composition,̂RS = R̂ Ŝ.

An open relationR is compatibleif R̂ ⊆ R. Every compatible relation is
reflexive, as can be shown by structural induction on expressions.
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Compatibility can also be expressed in terms of contexts. AcontextC is an
expression with ‘holes’. IfC hasn holes,C[e1, . . . , en] denotes the expression
obtained by filling expressionse1 . . . en into the holes inC, possibly involving
capture of free variables ofei if the i’th hole occurs in the scope of binders inC,
for i = 1, . . . , n. A relationR is compatible if wheneverei ande′i are related byR,
for i = 1, . . . , n, so areC[e1, . . . , en] andC[e′1, . . . , e

′
n], for all contextsC. But a

precise formulation of this which accounts for free variables and variable capture
becomes complicated. The formalisation above,R̂ ⊆ R, is easier to work with.

Throughout, we exploit compatible refinement as a tractable, indirect notation
for contexts.

Lemma 1 Any compatible and transitive relation which is closed under substitu-
tions is substitutive.

Proof SupposeR is compatible, transitive and closed under substitutions. If
~x ` e R e′ and~y ` ~u R ~u′, then~y ` e{~u/~x} Id◦{R} e{~u′/~x} and~y ` e{~u′/~x} R{Id◦}
e′{~u′/~x}. SinceR is compatible,~y ` e{~u/~x} R e{~u′/~x} follows by easy structural
induction one; in general,Id◦{R} ⊆ R for any compatible relationR. Moreover,
~y ` e{~u′/~x} R e′{~u′/~x} sinceR is closed under substitutions. By transitivity we
conclude~y ` e{~u/~x} R e′{~u′/~x}, as required. 2

Context closure

For any relationR, its context closure, RC ⊆ Rel◦, relates expressionse, e′ with
matching outermost contextC,

e = C[d1, . . . , dn], e′ = C[d′1, . . . , d
′
n],

and subtermsdi, d′i related byR. This can be defined inductively by means of
compatible refinement,

(CtxR)
~y ` e R e′

~x ` e RC e′
if ~y ⊆ ~x (Ctx Comp)

~x ` e R̂C e′

~x ` e RC e′

where~y ⊆ ~x means that all variables in~y occur in~x, in any order. The side condi-
tion ~y ⊆ ~x ensures thatRC satisfies weakening, even ifR does not. Furthermore,
context closure is monotone, idempotent(RC)C = RC, andRC is compatible, by
(Ctx Comp).

Lemma 2 If R is closed thenRC is substitutive.

Proof (Sketch) Whenever~x ` e RC e′ and ~y ` ~v RC ~v′, we can prove
~y ` e{~v/~x} RC e′{~v′/~x} by induction on the derivation of~x ` e RC e′.

Weakening is used as we enter the scope of binders. For example, if~x ` e RC e′

is derived by (Ctx Comp) and (Comp fn), thene = fn z => d, e′ = fn z => d′,



10 Lassen

and~xz ` d RC d′. By weakening,~yz ` ~v RC ~v′ holds. Furthermore,~yz ` z RC z,
by (Compx) and (Ctx Comp). We calculate

~xz ` d RC d′ & ~yz ` ~vz RC ~v′z

⇒ ~yz ` d{~vz/~xz} RC d′{~v′z/~xz} by induction hypothesis

⇒ ~yz ` d{~v/~x} RC d′{~v′/~x}
⇒ ~y ` (fn z => d{~v/~x}) R̂C (fn z => d′{~v′/~x}) by (Comp fn)

⇒ ~y ` e{~v/~x} RC e′{~v′/~x} by (Ctx Comp).

2

Substitutive context closure,RSC, is a substitutive extension of ordinary context
closure,RC. EachRSC relates expressionse, e′ with matching outermost context
C,

e = C[d1{~v1/~x}, . . . , dn{~vn/~x}], e′ = C[d′1{~v1
′
/~x}, . . . , d′n{~vn

′
/~x}],

subtermsd′i, d
′
i related byR, and substitutions with values~vi, ~vi

′ inductively related
byRSC. It is important thatRSC has a succinct inductive definition,

(SC Subst)
~x ` e R{RSC} e′
~x ` e RSC e′

(SC Comp)
~x ` e R̂SC e′

~x ` e RSC e′

ClearlyRC ⊆ RSC and if R is closed they coincide. The advantage ofRSC is
that it is always substitutive. Substitutive context closure is monotone, idempo-
tent, andRSC is compatible, substitutive, and satisfies weakening. Compatibility
is direct from (SC Comp). Weakening and substitutivity follow by induction on
derivations. SinceRSC is compatible and substitutive, it is also reflexive and closed
under substitutions.

Readers familiar with ‘meta-terms’ (Klop, van Oostrom, and van Raamsdonk
1993) will notice that substitutive context closure corresponds to closure under
substitution of related meta-abstractions for meta-variables in meta-terms, whereas
ordinary context closure is the closure under conventional variable capturing con-
texts. In fact, Pitts (1994b) advocates meta-terms, called ‘extended expressions’,
as a generalised notion of contexts in place of conventional variable capturing con-
texts because the latter cannot be identified up toα-renaming of bound variables.
However, our relational representation of contexts allows us to reason about con-
ventional variable capturing contexts up toα-equivalence.

4 The unwinding theorem

As a first illustration of our relational approach to reasoning about contexts, we
give a relational proof of the unwinding theorem. It says that a recursive function
in a context converges if and only if one of its finite approximants does. Thefinite
approximantsof rec f x => d are given inductively by

rec(0) f x => d
def
= fn x => Ω,

rec(n+1) f x => d
def
= fn x => let val f = (rec(n) f x => d) in d end.
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We sayp convergesiff ∃v. p ⇓ v.

Theorem 1 (Unwinding) For every recursive functionrec f x => d and every
contextC, C[rec f x => d] converges if and only if there existsn ≥ 0 such that
C[rec(n) f x => d] converges.

Our proof below shows how the relational notation offers a tractable formula-
tion of a complex syntactic argument. For instance, the proof is not complicated
by the fact that we prove the theorem for arbitrary recursive functions, possibly
with free variables.

First we construct a family of relations{Rn}n≥0 with eachRn given by

~x ` rec f x => d Rn rec(n) f x => d,

~x ` let fun f x = d in d end Rn let val f = (rec(n) f x => d) in d end,

if d ∈ Exp~xfx. For eachn ≥ 0, we construct a relationUn which satisfies

` C[rec f x => d] Un C[rec(n) f x => d], (4.1)

for arbitrary contextsC. In the course of the proof of the main lemma below,Un
must be preserved by evaluation in an appropriate sense. Therefore we cannot
takeUn to be the context closure ofRn. We are going to strengthen the induction
hypothesis by takingUn to be the larger relation

Un
def
=

(⋃
m≥n

Rm

)SC

.

By this definition,Un satisfies (4.1), it is substitutive, andUn ⊆ Un′ whenever
n′ ≤ n. These are key properties for the proof that are easier to formulate pre-
cisely in terms of relations rather than contexts. The inductive definition of substi-
tutive context closure is also convenient for formal reasoning. By the construction
of Un, whenever~x ` e Un e′, we can argue by cases on the derivation: either
~x ` e Rm{Un} e′ for somem ≥ n, by (SC Subst), and we can decomposee and
e′ into expressions related byRm and substitutions of values related byUn; or
~x ` e Ûn e′, by (SC Comp), and we may proceed by analysis of the derivation by
the rules for compatible refinement in Table 2. For instance, we can deduce, for
all valuesv andv′,

~x ` v Un+1 v
′ implies ~x ` v Ûn v′, (4.2)

sinceUn+1 ⊆ Un and~x ` rec f x => d R̂m rec(m+1) f x => d, for allm.

Lemma 3

(1) If ` p Un+N p′ andp ⇓N v, alsop′ ⇓N v′ and` v Un v′, for somev′.
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(2) If ` p U0 p
′ andp′ ⇓N v′, alsop ⇓N v and` v U0 v

′, for somev.

Proof In outline, the proof argument for (1) is that any occurrence ofrec in p
is “unfolded” (evaluated recursively) at mostN times in the evaluationp ⇓N v

and evaluates in “lock-step” with anyrec(m+N) in p′ (m ≥ n). In the end, each
residual occurrence ofrec in v is matched by somerec(m′) in v′ (m′ ≥ n). The
proof of (2) is similar; evaluation ofrec(m) in p′ is matched by evaluation ofrec
in p such that any residual occurrencerec(m′) in v′ is matched byrec in v.

We spell out the proof of (1) in detail as illustration of the relational proof
technique explored in this paper. By induction on the derivation ofp ⇓N v, we
inductively construct a related derivationp′ ⇓N v′. Consider the derivation of
` p Un+N p′. There are two cases:

(SC Subst) ` p Rm{Un+N} p′, for somem ≥ n + N , andp = r{~u/~x}, p′ =
rm{~u′/~x}, where~x ` r Rm rm and` ~u Un+N ~u′.

If r = rec f x => d, rm = rec(m) f x => d, thenp, p′ are values,N = 0,
v = p, p′ ⇓0 v

′ = p′, and` v = p Un p
′ = v′.

If r = let fun f x = d in e end, rm = let fun(m) f x = d in e end, then
p ⇓N v must be derived by rule (Eval let fun) frome{~ut/~xf} ⇓N v, where
t = (rec f x => d){~u/~x}. We lett′ = (rec(m) f x => d){~u′/~x} and observe
that` t Un+N t′ and` e{~ut/~xf} Un+N e{~u′t′/~xf}. By induction hypothesis
e{~u′t′/~xf} ⇓N v′ with ` v Un v′. And from the definition ofrm and by (Eval
let val), alsop′ ⇓N v′.

(SC Comp) ` p Ûn+N p′. We proceed by analysis of the derivation ofp ⇓N v.

Case (Eval apply) p = p1 p2, p1 ⇓N1 v1 = fn x => e, p2 ⇓N2 v2,
e{v2/x} ⇓N3 v, andN = N1 + N2 + N3 + 1. By (Comp apply),p′ =
p′1 p

′
2 with ` pi Un+N p′i and by the induction hypothesisp′i ⇓Ni v′i with

` vi Un+N−Ni v
′
i. Notice thatn + N − Ni > n + N3 + 1, for i = 1, 2.

Therefore` v2 Un+N3 v
′
2 and from (4.2) followsv′1 = fn x => e′ such

that x ` e Un+N3 e′. So` e{v2/x} Un+N3 e′{v′2/x}, by substitutivity, and
e′{v′2/x} ⇓N3 v

′ with ` v Un v′, by induction hypothesis. By (Eval apply),
we concludep′ ⇓N v′.

Case (Eval let fun) p = let fun f x = e1 in e2 end and
e2{(rec f x => e1)/f} ⇓N v. We havep′ = let fun f x = e′1 in e

′
2 end, with

fx ` e1 Un+N e′1 andf ` e2 Un+N e′2. Then also

` (rec f x => e1) Un+N (rec f x => e′1)

and
` e2{(rec f x => e1)/f} Un+N e′2{(rec f x => e′1)/f}

by compatibility and substitutivity ofUn+N . By the induction hypothesis
e′2{(rec f x => e′1)/f} ⇓N v′ such that̀ v Un v′. By (Eval let fun), we
concludep′ ⇓N v′.
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Case (Eval case)p = case p0 of nil => e1 | x1 :: x2 => e2 | f => e3,
p0 ⇓N1 u, q ⇓N2 v,N = N1 +N2, where

q =

 e1 if u = nil

e2{u1/x1, u2/x2} if u = u1 :: u2

e3{u/f} if u = fn x => e.

By (Comp case),p′ = case p′0 of nil => e′1 | x1 :: x2 => e′2 | f => e′3,
with ` p0 Un+N p′0, ` e1 Un+N e′1, x1x2 ` e2 Un+N e′2, f ` e3 Un+N e′3.
By induction hypothesisp′0 ⇓N1 u

′ such that̀ u Un+N2 u
′, sincen + N =

(n+N2)+N1. By analysis of the derivation of̀ u Un+N2 u
′ we see that they

have matching outermost constructor and, if this is not function abstraction,
also` u Ûn+N2 u

′. Accordingly, let

q′ =


e′1 if u = nil = u′

e′2{u
′
1/x1, u

′
2/x2} if u = u1 :: u2, u

′ = u′1 :: u′2 with ` ui Un+N2 u
′
i

e′3{u
′
/f} if u = fn x => e, u′ = fn x => e′.

SinceN2 ≤ N ,Un+N ⊆ Un+N2 and, by substitutivity ofUn+N2 ,` q Un+N2 q
′.

By induction hypothesisq′ ⇓N2 v
′ with ` v Un v′ and we concludep′ ⇓N v′

by (Eval case).

The remaining cases are simpler. This completes the proof of (1).

The proof of (2) is very similar and proceeds by induction on the derivation
of p′ ⇓N v′. The (Eval apply) case exploits that the applied function cannot be
rec(0) f x => e as this would diverge. 2

Proof of The Unwinding Theorem If C[rec f x => d] ⇓N v, from (4.1) and
Lemma 3(1) follows, for alln ≥ N , ∃v′. C[rec(n) f x => d] ⇓N v′. Conversely,
if C[rec(n) f x => d] ⇓N v′, also∃v. C[rec f x => d] ⇓N v, by (4.1) and
Lemma 3(2) becauseUn ⊆ U0. 2

The backward direction of the proof can also be derived from the (computationally
adequate) theory of applicative bisimulation below, instead of Lemma 3(2).

An important consequence of the unwinding theorem is a ‘syntactic continuity’
property of contextual equivalence (Pitts 1997). In Sections 5.4 and 6.3 we see how
Lemma 3 entails syntactic continuity for applicative similarity and improvement.
Syntactic continuity is a ‘domain-theoretic’ property that holds in all computation-
ally adequate continuous models; see Pitts (1996a) and Bra¨uner (1996).

There exist a number of operational proofs of these results, both for small-step
reduction semantics (Mason, Smith, and Talcott 1996; Sands 1997a) and big-step
evaluation semantics like ours (Pitts 1997). But note that our proof holds foropen
recursive termsr and that Lemma 3 gives very precise information about the oper-
ational relationship betweenr and its finite approximants. Our relational notation
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makes it feasible to express and reason about the details of contexts and substi-
tutions. A characteristic of such relational proofs is that operational issues are
dealt with in one sweeping induction on the derivation of evaluations and syntac-
tic issues are dealt with in terms of the general algebra of relations. No auxiliary
lemmas about evaluation and contexts are needed.

In the remainder of the paper we apply the relational technique used in the proof
above to the study of operational preorders and equivalences.

5 Similarity

The primary operational relation we study is Abramsky’s applicative bisimulation
(Abramsky 1990). It is the basis for a co-inductive generalisation of Milner’s con-
text lemma (Milner 1977) to untyped functional languages. The basic idea is that
higher-order functions are infinite data structures, built from the ‘lazy’ function
abstraction data constructor, and are related co-inductively by applicative bisimu-
lation in analogy with bisimulation of infinite behaviours in process calculi.

In this section we develop the theory of applicative (bi)simulation for our lan-
guage, including preliminary simulation up to context results based on Howe’s and
Pitts’ congruence proof techniques. This part is mainly a presentation of unpub-
lished work by Pitts (1995) and serves as a basis for our further developments of
this idea in Sections 6 and 7. Our aim is to develop techniques for reasoning about
recursion. We shall see that simulation up to context is particularly useful for this
purpose. In order to complete the discussion of proof rules for recursion we also
prove a syntactic continuity property.

We consider an applicative bisimulation preorder,. ⊆ Rel , which we call
similarity. Expressions are similar if they evaluate to similar values.

p . p′ iff ∀v. p ⇓ v ⇒ ∃v′. p′ ⇓ v′ & v . v′. (5.1)

Functions are similar if they are similar on all arguments; by definition of open
extension this may be expressed as

fn x => e . fn x => e′ iff x ` e .◦ e′. (5.2)

Following Howe (1996) we extend similarity to arbitrary values with matching
outermost constructor and immediate subterms pairwise similar.

nil . nil. (5.3)

v1 :: v2 . v′1 :: v′2 iff v1 . v′1 and v2 . v′2. (5.4)

We regard (5.2)–(5.4) as a definition of similarity on values by structural induction.
We formalise this by means of a variant of compatible refinement on values, akin
to Gordon’s ‘matching values’ (Gordon 1995). For every open relationR, let R
relate ‘matching’ values built from identical value constructors and with function
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(Matchx) ~xx~y ` x R x

(Match fn)
~xx ` e R e′

~x ` fn x => e R fn x => e′

(Match nil)~x ` nil R nil

(Match cons)
~x ` v1 R v′1 ~x ` v2 R v′2
~x ` v1 :: v2 R v′1 :: v′2

Table 3: Matching values

bodies pairwise related byR. This is defined inductively by the rules in Table 3.
Now (5.2)–(5.4) can be expressed by

v . v′ iff ` v .◦ v′. (5.5)

We take the mutually recursive equations (5.1) and (5.5) as a co-inductive defini-
tion of similarity. To make this definition precise, we define a monotone simulation
operator on relations,〈 〉, which maps any open relationR ⊆ Rel◦ to the closed
relation〈R〉 ⊆ Rel given by

p 〈R〉 p′ def⇔ ∀v. p ⇓ v ⇒ ∃v′. p′ ⇓ v′ & ` v R v′.

We define similarity co-inductively as the greatest fixed point of〈 ◦〉,

. def
= νR.〈R◦〉, (5.6)

andbisimilarity,∼, as the greatest symmetric fixed point, definable as

∼ def
= νR.〈R◦〉 ∩ 〈(R◦)op〉op,

wherea Sop b
def⇔ b S a, for every relationS. Closed relations form a complete

lattice, ordered by subset inclusion, and〈 ◦〉 and〈 ◦〉 ∩ 〈( ◦)op〉op are monotone
operations with respect to this ordering. The Tarski-Knaster fixed point theorem
asserts that their greatest fixed points exist and are also greatest post-fixed points.

Since evaluation is deterministic,∼ is the largest symmetric relation contained
in .,

∼ def
= . ∩ .op .

Therefore it suffices to focus attention on the more primitive relation.. In par-
ticular, we shall only formulate simulation proof rules for. and omit the obvious
analogues for∼.
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Equations (5.1)–(5.4) hold because. is a fixed point,. = 〈.◦〉. An imme-
diate consequence of (5.1) iscomputational adequacywith respect to termination
behaviour,

p 6∼ Ω iff ∃v. p ⇓ v. (5.7)

We shall callR ⊆ Rel a simulationif it is a post-fixed point of〈 ◦〉, that is,
R ⊆ 〈R◦〉. By the co-inductive definition (5.6),. is the largest simulation, and
we have the co-induction simulation rule:

R ⊆ 〈R◦〉
R ⊆ .

Simulation is a powerful proof technique. To prove two expressions similar, we
exhibit a simulation containing them. For example,. is reflexive because the
identity relation is a simulation,Id ⊆ 〈Id◦〉, and. is transitive because. . is a
simulation,.. = 〈.◦〉〈.◦〉 ⊆ 〈.◦ .◦〉 ⊆ 〈(..)◦〉, where we use the fact that
〈 〉 satisfies

〈R〉〈S〉 ⊆ 〈RS〉, for allR, S ⊆ Rel◦. (5.8)

Hence. is a preorder and∼ is an equivalence relation.
We call expressionsp andp′ Kleene equivalentif they both diverge or both eval-

uate to the same value (because of determinacy, each expression can evaluate to at
most one value). Kleene equivalence is easily seen to be a symmetric simulation
and hence is included in∼. An immediate consequence issoundnessof evaluation
with respect to bisimilarity,

p ⇓ v implies p ∼ v. (5.9)

Many useful program laws are instances of Kleene equivalence. For instance, beta
laws such as

(fn x => e) v ∼ e{v/x}.
let fun f x = d in e end ∼ e{(rec f x => d)/f}.

These also hold for open expressions and∼◦, by definition of open extension.
From the beta law for recursive function declarations follows a fixed point law for
recursive functions,

rec f x => d ∼ fn x => d{(rec f x => d)/f},

by (5.2) and the definition ofrec f x => d.

As an example of a co-inductive argument about recursive data, consider

u
def
= rec f x => f, v

def
= rec f x => fn y => f. (5.10)

By definition of recursive functions,u = fn x => p andv = fn x => q, where

p
def
= let fun f x = f in f end,

q
def
= let fun f x = (fn y => f) in (fn y => f) end.
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Observe thatp ⇓ u and q ⇓ fn y => v. Both u and v perpetually return a
function no matter how many arguments they are applied to. To see that they are
bisimilar, we construct the relationR = {(p, q), (p, v)} satisfyingu 〈R◦〉 v and
v 〈(R◦)op〉 u. BothR andRop are simulations, henceR ⊆ ∼, andu ∼ v follows
by definition of∼ because〈 〉 is monotone.

Similarity extends to open expressions by open extension,.◦. A manipulation
of fixed points and monotone operators yields.◦ = νR.〈R〉◦. We callR anopen
simulationif R ⊆ 〈R〉◦, in which caseR ⊆ .◦, by co-induction.

R ⊆ 〈R〉◦
R ⊆ .◦ (5.11)

By (3.2),R ⊆ 〈R〉◦ iff R{Id} ⊆ 〈R〉. If R is closed under substitutions then
R{Id} = R ∩Rel andR is an open simulation ifR ∩Rel ⊆ 〈R〉.

5.1 Simulation up to context

Often when one wants to prove that a relationR is contained in similarity,R ⊆ .,
eitherR is not itself a simulation or it is not possible to show this directly. The
solution is to extendR to a larger relationS which is a simulation and thusS ⊆ .
andR ⊆ .. In fact, this is the co-inductive dual of “strengthening the induc-
tion hypothesis” in induction arguments. The proofs of syntactic continuity and
precongruence are examples of this. In both cases the constructed relations are
tailored to the respective problems. However, often the process of ‘completing’R
follows a common pattern. We shall investigate refined simulation rules which im-
plicitly extendR so as to become a simulation. Gordon (1995) presents a number
of such refinements of bisimulation for a typed, call-by-name functional language.
One of these is Milner’sbisimulation up to bisimilarity(Milner 1989). For. this
says:

Proposition 2 (Simulation up to.)
R ⊆ 〈.◦ R◦ .◦〉

R ⊆ .

Proof If R ⊆ 〈.◦ R◦ .◦〉, then. R . is a simulation:

. R . ⊆ 〈.◦〉 〈.◦ R◦ .◦〉 〈.◦〉 as. is a fixed point for〈 ◦〉
⊆ 〈.◦ .◦ R◦ .◦ .◦〉 by (5.8)
⊆ 〈.◦ R◦ .◦〉 .◦ is transitive
⊆ 〈(. R .)◦〉 (3.1).

Therefore. R . ⊆ . and, since. is reflexive,R ⊆ .. 2

It is possible to derive an ‘equational’ simulation rule which does not involve
the simulation operator,〈 〉, nor the evaluation relation.
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Proposition 3
R ⊆ . R◦ .
R ⊆ .

Proof The inclusion. R◦ . ⊆ 〈.◦ R◦ .◦〉 follows easily from the definitions
of . and〈 〉, and the rule is an immediate consequence of Proposition 2. 2

Recall the example (5.10), where

u = rec f x => f, v = rec f x => fn y => f.

An ‘equational’ proof ofu ∼ v using Proposition 3 looks as follows. LetR =
{(u, v), (u, fn y => v)}. By the fixed point law forrec we calculate

u ∼ fn x => u R◦ fn x => fn y => v ∼ v,

u ∼ fn x => u R◦ fn y => v,

henceR ⊆ . andRop ⊆ ., by symmetrical applications of Proposition 3. There-
foreR ⊆ ∼ andu ∼ v.

Proposition 3 is not a complete proof rule because it can only relate expressions
p andp′ wherep′ converges: ifp . R◦ . p′, there exist valuesv andv′ such that
p . v R◦ v′ . p′, and thenp′ converges, by (5.1). This prevents us from relating
two diverging expressions. We can repair this deficiency as in Gordon (1994), by
throwing in the singleton relation{(Ω,Ω)},

R ⊆ . (R◦ ∪ {(Ω,Ω)}) .
R ⊆ . (5.12)

Another refinement of bisimulation known from process calculi is Sangiorgi’s
powerful bisimulation up to context(Sangiorgi 1994). Here and in ensuing sec-
tions we study variants of this proof principle for similarity and improvement.

As a first formulation of simulation up to context we have the following result
for closed relations and context closure. The proof is adapted from Pitts (1995).

Proposition 4 (Simulation up to context)
R ⊆ 〈RC〉
R ⊆ .

Proof AssumeR ⊆ 〈RC〉. We shall prove

RC ∩Rel ⊆ 〈RC〉. (5.13)

SinceR is closed,RC is substitutive, by Lemma 2. AsRC is also reflexive, it is
closed under substitutions. Therefore (5.13) implies thatRC is an open simulation,
RC ⊆ 〈RC〉◦, and thenRC ⊆ .◦, by the open simulation rule (5.11). AsR ⊆ RC,
the result follows.

By definition of 〈 〉, (5.13) means that whenever` p RC p′ andp ⇓ v, there
existsv′ such thatp′ ⇓ v′ and` v RC v′. The proof is by induction on the
derivation ofp ⇓ v.



Relational reasoning about contexts 19

(Ctx R) If ` p R p′, thenp 〈RC〉 p′ is immediate from assumptionR ⊆ 〈RC〉.

(Ctx Comp) Otherwisè p R̂C p′ and we proceed by analysis of the derivation
of p ⇓ v. Each case is as in the proof of Lemma 3, except that we omit the
arithmetic onN subscripts exercised there and we observe that the results
are matching values. We show three representative cases:

Case (Eval cons)p = p1 :: p2, pi ⇓ vi, andv = v1 :: v2. Since` p R̂C p′,
we havep′ = p′1 :: p′2 with ` pi RC p′i. By induction hypothesisp′i ⇓ v′i such
that` vi RC v′i, for i = 1, 2, sop′ ⇓ v′1 :: v′2 and` v1 :: v2 RC v′1 :: v′2,
by (Eval cons) and (Match cons).

Case (Eval apply) p = p1 p2, p1 ⇓ v1 = fn x => e, p2 ⇓ v2, ande{v2/x} ⇓
v. Since` p R̂C p′, alsop′ = p′1 p

′
2 with ` pi R

C p′i. By the induction
hypothesisp′i ⇓ v′i with ` vi RC v′i, for i = 1, 2. Thenv′1 = fn x => e′

with x ` e RC e′ and, by compatibility,̀ v2 R
C v′2. By substitutivity and

induction hypothesis,̀ e{v2/x} RC e′{v′2/x} ande′{v′2/x} ⇓ v′ with ` v RC v′.
We concludep′ ⇓ v′ by (Eval apply).

Case (Eval case)p = case p0 of nil => e1 | x1 :: x2 => e2 | f => e3,
p0 ⇓ u andq ⇓ v, where

q =

 e1 if u = nil

e2{u1/x1, u2/x2} if u = u1 :: u2

e3{u/f} if u = fn x => d.

By (Comp case),p′ = case p′0 of nil => e′1 | x1 :: x2 => e′2 | f => e′3,
with ` p0 R

C p′0, ` e1 R
C e′1, x1x2 ` e2 R

C e′2, f ` e3 R
C e′3. By induction

hypothesisp′0 ⇓ u′ such that̀ u RC u′. By analysis of the derivation of the
latter, we construct

q′ =


e′1 if u = nil = u′

e′2{u
′
1/x1, u

′
2/x2} if u = u1 :: u2, u

′ = u′1 :: u′2 with ` ui RC u′i
e′3{u

′
/f} if u = fn x => d, u′ = fn x => d′,

where` q RC{RC} q′. By compatibility and substitutivity,RC ⊆ RC and
RC{RC} ⊆ RC. By induction hypothesisq′ ⇓ v′ with ` v RC v′ and we
concludep′ ⇓ v′ by (Eval case).

We conclude (5.13), soRC is an open simulation contained in.◦. 2

Proposition 4 is not a complete proof rule. For example,fn x => x andfn x =>
I x are bisimilar but they are not related by any closed relationR such thatx `
x RC I x, becausex andI x have no common context andR relates only closed
expressions.
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A more satisfactory and complete rule for simulation up to context would be

R ⊆ 〈(R◦)C〉
R ⊆ . (5.14)

Unfortunately, our attempts to prove (or refute) this have failed and we leave it as
an open problem. A simple calculation, using (3.2), shows that (5.14) is equivalent
to the ‘open’ rule:

R ⊆ 〈RC〉◦
R ⊆ .◦

It differs from Proposition 4 in thatR may be open so thatRC may capture free
variables in expressions related byR. The premise is equivalent toR{Id} ⊆ 〈RC〉,
by (3.2). In Section 7 we prove a weaker version where we require that the premise
holds not only for identical instantiations,R{Id}, but also forRC related instantia-
tions,R{RC},

R{RC} ∩ Rel ⊆ 〈RC〉
R ⊆ .◦ (5.15)

If R is closed thenR{RC} = R and (5.15) reduces to Proposition 4.

We have found neither simulation up to. nor up to context to be particularly
useful in themselves. It seems that their potential is only realised when combined.
In connection with the precongruence proof for similarity below, we will show a
stronger version of Proposition 4.

Proposition 5 (Simulation up to context and.)
R ⊆ 〈RC .◦〉

R ⊆ .

This can be used to show that theYv fixed point combinator enjoys a least pre-fixed
point induction rule:

Proposition 6 fn x => e{v/f} . v implies Yv (fn f => fn x => e) . v.

Proof Let u
def
= fn f => fn x => e, w

def
= fn x => u u∞ x. Recallu∞ =

(fn f => fn x => u(f f)x) (fn f => fn x => u(f f)x). We haveYv u ⇓2 w,
u∞ ⇓1 w, andYv u ∼ u∞.

Now assume the premise holds. It suffices to showu∞ . v. We proceed by

simulation up to context and.. Let R
def
= {(u∞, v)}, thenR ⊆ 〈RC .◦〉 holds

becauseu∞ ⇓ w = fn x => u u∞ x and we have

` fn x => u u∞ x RC fn x => u v x

∼◦ fn x => e{v/f}
.◦ v,

by Kleene equivalence, assumption, and (5.5). Bisimulation up to context and.
yieldsR ⊆ .. Henceu∞ . v and we concludeYv u . v, as required. 2
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For example, by the fixed point law forrec , we get

Yv (fn f => fn x => e) . rec f x => e. (5.16)

Proposition 5 is still too restrictive for many purposes. For instance, it is not clear
how to prove the converse of (5.16) and the least pre-fixed point induction rule
for rec . One might expect simulation up to. and simulation up to context to
combine as follows:

R ⊆ 〈.◦ RC .◦〉
R ⊆ . (5.17)

But this fails. As a counterexample (due to Andrew Gordon) take

R
def
= {(fn x => nil, fn x => Ω)}. (5.18)

Clearlyx ` nil 6.◦ Ω and fn x => nil 6. fn x => Ω. ButR ⊆ 〈∼◦ RC ∼◦〉
because

x ` nil ∼◦ (fn x => nil) nil RC (fn x => Ω) nil ∼◦ Ω. (5.19)

This failure corresponds to the situation for process calculi, where a symmetric
rule for weak bisimulation up to context and weak bisimulation also fails (San-
giorgi 1996). There the rule is repaired by introducing a more fine-grained effi-
ciency preorder, called expansion. In Section 6 we develop a corresponding im-
provement relation for our language. Then we repair (5.17) by replacing the left
occurrence of similarity in the premise with improvement (Proposition 10).

5.2 Precongruence

A precongruenceis a compatible preorder, that is, a preorder which is preserved
by all language constructs. Precongruence is an important property of similarity
because it allows compositional (in)equational reasoning. Moreover, it shows that
bisimilarity coincides with conventional contextual equivalence (an issue which
we shall not address in this paper, however). We shall now prove that similarity is
a precongruence by means of Howe’s general method for proving congruence of
simulation orderings (Howe 1996). We employ an extension of the method, due
to Pitts (1995), which also establishes the simulation up to context results of the
previous section.

Recall that.◦ is a preorder. It is a precongruence if it is also compatible,
.̂◦ ⊆ .◦. Howe proves this by simulation but sincê.◦ is not itself a simulation he
constructs a larger ‘candidate relation’ which is. Pitts parameterises the candidate
relation by a closed relationR. For everyR ⊆ Rel , the parameterised candidate
relation,R], is defined inductively by

(CandR)
p R p′ ~x ` p′ .◦ e′′

~x ` p R] e′′
(Cand Comp)

~x ` e R̂] e′ ~x ` e′ .◦ e′′
~x ` e R] e′′

EachR] satisfies all the properties of Howe’s candidate relation:
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Lemma 4 (1) R] is reflexive, compatible, and substitutive.

(2) R] contains similarity,.◦ ⊆ R].

(3) R] contains its composition with similarity,R] .◦ ⊆ R].

Proof Compatibility,R̂] ⊆ R], is immediate from (Cand Comp) because.◦ is
reflexive. Every compatible relation is reflexive, soR] andR̂] are reflexive. Again
by (Cand Comp) follows (2). Since.◦ is transitive, (3) is also immediate from the
definition ofR]. Weakening,

~x~y ` e R] e′ ⇒ ~xx~y ` e R] e′,

can be shown by induction on the derivation of~x~y ` e R] e′, using the fact that
.◦ satisfies weakening, being an open extension. Finally, substitutivity,

~x ` e R] e′ & ~y ` ~u R] ~u′ ⇒ ~y ` e{~u/~x} R] e′{~u′/~x},

is proved by induction on the derivation of~x ` e R] e′, using (3), weakening, and
the fact that.◦ is closed under substitutions. 2

Lemma 5
R ⊆ 〈R]〉
R] ⊆ .◦

Proof As in the proof of Proposition 4, it suffices to proveR] ∩ Rel ⊆ 〈R]〉,
thenR] will be an open simulation andR] ⊆ .◦.

We assumè p R] p′′ andp ⇓ v, and we will prove that there existsv′′ such
thatp′′ ⇓ v′′ and` v R] v′′. The proof is by induction on the derivation ofp ⇓ v.

First consider the derivation of̀ p R] p′′. We see that there existsp′ such
thatp′ . p′′ and eitherp R p′ or p R̂] p′. In either case we argue exactly as in
the proof of Proposition 4 to get thatp′ ⇓ v′, for somev′ such that̀ v R] v′.
Then, by definition of., there existsv′′ such thatp′′ ⇓ v′′ and` v′ .◦ v′′. Since
R] .◦ ⊆ R] .◦ andR] .◦ ⊆ R], ` v R] v′′ follows, as required. 2

Howe’s candidate relation is just∅], for which the premise of the lemma holds
trivially and thus establishes∅] ⊆ .◦. We have the reverse inclusion from above,
so.◦ and∅] coincide. Since∅] is substitutive and compatible, so is.◦. As.◦ is
also a preorder, it is a precongruence.

Proposition 7 .◦ is substitutive and a precongruence.

Consequently,∼◦ is also substitutive and is a congruence, that is, a compatible
equivalence relation.

Lemma 5 also entails Proposition 4: since.◦ is reflexive we see thatRC ⊆ R];
thereforeR ⊆ 〈RC〉 impliesR ⊆ 〈R]〉 and Lemma 5 givesR] ⊆ .◦ and thus
R ⊆ .. Moreover, sinceR] .◦ ⊆ R], alsoRC .◦ ⊆ R], so Lemma 5 entails
Proposition 5 too.
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5.3 Equational theory

Let us summarise our results about bisimilarity from above. We supplement some
equational laws that follow directly from (5.1)–(5.4) by inspection of evaluations.

Extensionality

v ∼ v′ iff ` v ∼◦ v′ iff ` v ∼̂◦ v′.

~x ` e ∼◦ e′ iff ∀u1, . . . , un ∈ Val∅. e{~u/~x} ∼ e′{~u/~x}.
The latter is just the definition of open extension.

Congruence and substitutivity

p ∼ p.

p ∼ p′ and p′ ∼ p′′ imply p ∼ p′′.

p ∼ p′ implies p′ ∼ p.

` p ∼̂◦ p′ implies p ∼ p′.

x ` e ∼◦ e′ and v ∼ v′ imply e{v/x} ∼ e′{v′/x}.

Strachey’s property (Gordon 1994)

either p ∼ Ω or ∃v. p ∼ v.

Functions

(fn x => e) v ∼ e{v/x}.

Combined with the extensionality laws we get:

fn x => e ∼ fn x => e′ iff ∀v. (fn x => e) v ∼ (fn x => e′) v.

Let We have laws corresponding to those of Moggi’s computational lambda cal-
culus (Moggi 1989), here presented as in Talcott (1997).

let val x = v in e end ∼ e{v/x}.

let val x = p in E[x] end ∼ E[p],

whereE is any closed evaluation context.

Actually, these laws follow from the laws forcase below becauselet can be
encoded by means ofcase ,(

let val x = p
in e end

)
∼

case p of nil => e{nil/x}
| x1 :: x2 => e{x1 :: x2/x}
| f => e{f/x}

 .
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Casecase v of nil => e1

| x1 :: x2 => e2

| f => e3

 ∼

 e1 if v = nil

e2{v1/x1, v2/x2} if v = v1 :: v2

e3{v/f} if v = fn x => e.case p of nil => E[nil]
| x1 :: x2 => E[x1 :: x2]
| f => E[f ]

 ∼ E[p].

Fixed point rec is a fixed point operator:

rec f x => d ∼ fn x => d{(rec f x => d)/f}.

Furthermore,rec is rationally open (Bra¨uner 1996):

C[rec f x => d] ∼ Ω iff ∀n ≥ 0. C[rec(n) f x => d] ∼ Ω.

This rule is useful for equational reasoning about divergence, without direct ref-
erence to the evaluation relation. Rational openness and the unwinding theorem
are easily derived from each other using adequacy (5.7). (Rational openness also
follows from syntactic continuity and syntactic bottom below.)

5.4 Inequational theory

We also list some order-theoretic properties of similarity, taken from Pitts (1997),
in order to complete our discussion about proof rules for recursion.

Extensionality, precongruence, and substitutivity As for∼ above, except sym-
metry.

Syntactic bottom Ω is least with respect to.,

Ω . p.

This is direct from (5.1).

Recursion induction rec f x => e is the least pre-fixed point of the functional
fn x => e{−/f},

fn x => e{v/f} . v implies rec f x => e . v.

In Section 5.1 we proved this result for theYv combinator, Proposition 6. The re-
cursion induction rule forrec follows from syntactic continuity below; see Pitts
(1997). In the following sections we shall discuss other proofs of recursion induc-
tion using improvement and simulation up to context.
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Syntactic continuity Every recursive function is the least upper bound of its finite
approximants and all language constructs are continuous with respect to this least
upper bound,

C[rec f x => e] . q iff ∀n ≥ 0. C[rec(n) f x => e] . q.

Proof We employ Lemma 3 from the proof of the unwinding theorem in Sec-
tion 4 to give a co-inductive proof. A similar proof is outlined in Pitts (1997).
Here we can use the relations from the formulation of Lemma 3 to construct the
appropriate simulations. Note that we do not require thatrec f x => e is closed.

First consider the backward implication (which is the most interesting). Recall
the relationsUn from Lemma 3(1). We construct the relation

T
def
=

⋂
n≥0

(Un .◦).

Observe that∀n ≥ 0. C[rec(n) f x => e] . q implies ` C[rec f x => e] T q.
We show thatT is an open simulation, thenT ⊆ .◦ and the result follows. So
supposè p T p′ andp ⇓N v. By definition ofT , for all n ≥ 0, ` p Un+1+N pn,
for somepn . p′. From Lemma 3(1) we getpn ⇓N vn with ` v Un+1 vn. By the
same argument as for (4.2) holds

` u Un+1 u
′ implies ` u Un u′, (5.20)

so we get̀ v Un vn. Sincepn . p′ also p′ ⇓ v′n with ` vn .◦ v′n, hence
` v Un .◦ v′n. Evaluation is deterministic so allv′n are identical. Therefore
` v Un .◦ v′0, for all n ≥ 0, and we concludè v T v′0 andp 〈T 〉 p′, henceT is
an open simulation as it is closed under substitutions.

The forward implication holds ifC[rec(n) f x => e] . C[rec f x => e] for
all n. This is derivable from syntactic bottom and precongruence, by induction on
n. It also follows from Lemma 3(2). To see this we first extend (5.20) with

` v Uop
0 v′ implies ` v Uop

0 ∪ .◦ v′. (5.21)

This holds becausè (rec(0) f x => e) .◦ (rec f x => e), by syntactic bottom.
Lemma 3(2) givesUop

0 ∩ Rel ⊆ 〈Uop
0 ∪ .◦〉 and we deduceUop

0 ∪ .◦ is an open
simulation andUop

0 ⊆ .◦. From (4.1) we get

C[rec(n) f x => e] . C[rec f x => e],

as required. 2

Determinacy of evaluation plays a key role in the above proof of syntactic con-
tinuity. One can add nondeterminism to the language such that the operational
semantics and theory of applicative bisimulation still satisfy the unwinding the-
orem, rational openness, and recursion induction, but syntactic continuity fails.
Braüner (1996) uses this example to illustrate that syntactic continuity is a strictly
stronger property than rational openness.
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6 Improvement

Following Sands (1997b) we introduce a stricter operational ordering and equiva-
lence that takes computational cost into account, in our case the number of function
applications in evaluations. Improvement theory has independent interest as a for-
mal approach to the study of program efficiency but Sands has also demonstrated
that it is a powerful tool for reasoning about conventional operational equivalence
and recursion. Here we are interested in the latter use of improvement.

We study the theory in some detail as its scope goes far beyond repairing the
rule for simulation up to context and. of the previous section. Our relational
approach is instrumental in establishing a rule for improvement simulation up to
variable capturing contexts. This is interesting in its own right, especially in the
absence of a satisfactory counterpart for similarity, and it entails Sands’ improve-
ment theorem.

As motivation for our definition of improvement below, recall that (5.19),

x ` nil ∼◦ (fn x => nil) nil RC (fn x => Ω) nil ∼◦ Ω,

was used to proveR ⊆ 〈.◦ RC .◦〉 and thus invalidated the symmetric up to
context and. rule (5.17),

R ⊆ 〈.◦ RC .◦〉
R ⊆ .

Herenil is bisimilar to(fn x => nil) nil but the latter is more “expensive” as it
takes one more function application step to compute. Sonil is not “improved” by
(fn x => nil) nil. This will be the requirement by which we shall repair (5.17)
in Section 7.

We measure the number of function applications in evaluations, essentially be-
cause applications ‘destruct’ function abstractions. In fact, the counterexample
to (5.17) can be constructed with any ‘lazy’ value constructor and associated de-
structors, but function abstraction and application happen to be the only lazy value
constructor and destructor in ML. In general the cost measure must count every
destruction of any lazy constructor. We should mention that this is tailored to sup-
port reasoning about applicative similarity and it is not meant as a contribution
to the discussion of what constitutes a good measure of program effeciency for
functional languages (Lawall and Mairson 1996).

We define an improvement preorder,�∼, and a cost equivalence relation,/.∼,
co-inductively like similarity and bisimilarity but with the additional requirement
thatp �∼ q implies thatq evaluates in less function application steps thanp. The
definitions and the basic theory are quite analogous to those of Section 4.

Let the improvement simulation operator,〈 〉I , be given by

p 〈R〉I p′ def⇔ ∀N.∀v. p ⇓N v ⇒ ∃v′. p′ ⇓≤N v′ & ` v R v′,

for R ⊆ Rel◦, p, p′ ∈ Exp∅. Notationp′ ⇓≤N v′ means∃N ′ ≤ N. p′ ⇓N ′ v′.
The compound operator〈 ◦〉I is monotone and we defineimprovement, �∼, as the
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greatest fixed point

�∼
def
= νR.〈R◦〉I , (6.1)

Cost equivalence, /.∼, is the greatest symmetric fixed point and is also the largest
symmetric relation contained in improvement,

/.∼ = �∼ ∩ �∼
op
.

Cost equivalence is computationally adequate, (5.7). But the evaluation rela-
tion is not sound, (5.9), with respect to cost equivalence; instead we have a more
detailed correspondence between evaluation and cost equivalence:

p ⇓N v implies p /.∼ INv.

Application of the identity functionI is used as syntactic representation of function
application steps.INv meansN-fold application ofI to v.

We call post-fixed points of〈 ◦〉I improvement simulationsand we have co-
induction improvement simulation rules:

R ⊆ 〈R◦〉I
R ⊆ �∼

R ⊆ 〈R〉◦I
R ⊆ �∼

◦ (6.2)

We callR animprovement simulationif R ⊆ 〈R◦〉I andR is anopen improvement
simulationif R ⊆ 〈R〉◦I .

Improvement refines similarity,�∼ ⊆ ., because

〈R〉I ⊆ 〈R〉, for allR ⊆ Rel◦, (6.3)

so every improvement simulation is also an (applicative) simulation.

6.1 Improvement simulation up to context

Refined simulation rules are equally important for improvement as they are for
applicative simulation. It turns out that we are able to prove stronger refinements
of improvement simulation than was the case for applicative simulation. In the
process we will also derive that improvement is a precongruence.

Lemma 6
R ⊆ 〈S+〉I
S+ ⊆ �∼

◦ , whereS def
= (R◦)C andS+ is the transitive closure.

The proof is postponed to Appendix A.

Proposition 8 �∼
◦ is substitutive and a precongruence.
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Proof As �∼ itself satisfies the premise of the lemma, we get(�∼
◦
)C+ ⊆ �∼

◦.
Therefore�∼

◦ is compatible and transitive, and hence a precongruence. Since�∼
◦

is closed under substitutions, it is also substitutive by Lemma 1. 2

Another consequence of Lemma 6 is a full symmetric rule for improvement
simulation up to context and improvement.

Proposition 9 (Improvement simulation up to context and�∼)

R ⊆ 〈�∼
◦

(R◦)C �∼
◦〉I

R ⊆ �∼

Proof FromR ⊆ 〈�∼
◦

(R◦)C �∼
◦〉I we get thatR∪�∼ ⊆ 〈((R ∪�∼)◦)C+〉I . Hence

((R ∪�∼)◦)C+ ⊆ �∼
◦ andR ⊆ �∼. 2

6.2 Equational theory

The equational theory of cost equivalence is analogous to that of bisimilarity, ex-
cept for some applications of the identity function,I, to account for computational
cost. Since these ‘syntactic computation steps’ can be erased up to bisimilarity,
the cost equivalence theory here entails the corresponding theory of bisimilarity in
Section 4.

The cost equivalence version of Strachey’s property accounts for the cost of
computing a value:

either p /.∼ Ω or ∃!N.∃v. p /.∼ INv.

The beta law for function application records the computation step:

(fn x => e) v /.∼ I e{v/x}.

Notice thatlet val x = d in e end is one step ‘cheaper’ than the conventional
encoding(fn x => e) d. This will be important in the proof of Proposition 11.

The remaining equational laws for bisimilarity in Section 5.3 carry over to cost
equivalence unchanged.

The laws can be used to move around syntactic computation steps. For instance,
the evaluation context law forcase yields

I

case p of nil => e1

| x1 :: x2 => e2

| f => e3

 ∼
case p of nil => I e1

| x1 :: x2 => I e2

| f => I e3,

because(I−) is an evaluation context. A further law of this kind,

E[I p] /.∼ I E[p],
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movesI across evaluation contexts; it is direct from (2.2). Such laws form a useful
‘tick algebra’ (Sands 1997b) for equational reasoning about computation steps.

Cost equivalence satisfies a unique fixed point rule:

fn x => e{v/f} /.∼ v implies rec f x => e /.∼ v.

This rule follows from recursion induction and co-induction rules below. For il-
lustration, we can use it to prove the following correspondence between explicit
recursion and theYv fixed point combinator.

I2 (rec f x => I3 e) /.∼ Yv u, whereu = (fn f => fn x => e),

by calculatingYv u /.∼ I2 fn x => u u∞ x andx ` I3 e{(fn x => u u∞ x)/f} /.∼
◦

u u∞ x. As usual, a corresponding result for bisimilarity,rec f x => e ∼ Yv u,
follows as a corollary. This and Proposition 6 constitute a proof of recursion in-
duction for similarity.

6.3 Inequational theory

All the inequational theory for similarity in Section 5.4 also holds for improve-
ment.

The proofs of syntactic bottom and syntactic continuity for improvement are
again analogous to those for similarity above. The lemmas from the proof of the
unwinding theorem in Section 4 were carefully phrased to also account for com-
putational cost and the syntactic continuity proof for similarity is easily extended
with this bookkeeping.

We supplement recursion induction,

fn x => e{v/f} �∼ v implies rec f x => e �∼ v,

with recursion co-induction,

v �∼ fn x => e{v/f} implies v �∼ rec f x => e,

which says that recursive functions are also greatest post-fixed points with respect
to improvement. We can use improvement simulation up to context and�∼ to prove
the recursion (co-)induction rules.

Proof of recursion (co-)induction We only prove the first (induction) rule. The
second (co-induction) rule follows by a symmetric argument because the improve-
ment simulation up to context and�∼ rule, Proposition 9, is symmetric.

Assumefn x => e{v/f} �∼ v. By extensionality,̀ fn x => e{v/f} �∼
◦
v. Let

R be the singleton relation,r R v, wherer = rec f x => e. Thenr is a fixed
point,r /.∼ fn x => e{r/f}, and` r /.∼

◦ fn x => e{r/f}. Nowr 〈/.∼
◦ (R◦)C �∼

◦〉I v
becauser ⇓0 r, v ⇓0 v, and

` r /.∼
◦ fn x => e{r/f} (R◦)C fn x => e{v/f} �∼

◦
v.
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HenceR ⊆ 〈/.∼
◦ (R◦)C �∼

◦〉I . By Proposition 9, we concludeR ⊆ �∼, i.e.,r �∼ v.
2

Recursion co-induction and the unique fixed point rule are call-by-value ver-
sions of Sands’ improvement theorem. This is apparent from the following refor-
mulation, derived by means of equational laws for/.∼.

x ` let fun f x = d0 in d0 end �∼
◦
let fun f x = d0 in d1 end

⇒ let fun f x = d0 in e end �∼ let fun f x = d1 in e end,

for d0, d1 ∈ Expfx ande ∈ Expf . The same holds for/.∼.

It should be noted that a reason why our improvement theory satisfies the im-
provement theorem is that recursion is bound up with function abstraction in ML,
that is, recursive unfoldings require a function application step (cf. the general ver-
sion of the improvement theorem in Sands (1997a)). Hence our cost measure is
actually more fine-grained than Sands’ count of unfoldings of recursion in Sands
(1997b). In languages where recursion is not coupled with function abstraction,
the two cost measures are incomparable and the two resulting improvement theo-
ries will be complementary.

7 Applicative simulation up to improvement

A motivation for introducing improvement is its use in refining applicative simu-
lation. We can extend Proposition 5 as follows.

Proposition 10 (Applicative simulation up to�∼ and context and.)

R ⊆ 〈�∼
◦
RC .◦〉

R ⊆ .

This rule allows us to give a direct proof of recursion induction for similarity,
analogous to the proof for improvement above: supposefn x => e{v/f} . v and
letR = {(rec f x => e, v)}, then

rec f x => e /.∼ fn x => e{(rec f x => e)/f} RC fn x => e{v/f} . v,

and we deduceR ⊆ 〈/.∼
◦ RC .◦〉; henceR ⊆ ., by Proposition 10, and

rec f x => e . v, as required.

In analogy with Proposition 9 we would like to have a stronger rule:

R ⊆ 〈�∼
◦

(R◦)C .◦〉
R ⊆ . (7.1)

But we do not know if this holds. It would entail (5.14) which we left as an open
problem. In Appendix A we prove a weaker version:
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Lemma 7
R{RC} ∩ Rel ⊆ 〈�∼

◦
RC .◦〉

R ⊆ .◦

It extends the open rule for simulation up to context (5.15) which we discussed in
Section 5.1 as an approximation to (5.14).

WhenR is closed, Lemma 7 reduces to Proposition 10 above. But the utility
of the lemma goes beyond that of Proposition 10 as we will now demonstrate by
proving a syntactic minimal invariance property and by deriving equational rules
for reasoning about open expressions.

7.1 Syntactic minimal invariance

As a non-trivial example, we consider a syntactic version of the domain-theoretic
minimal invariance property for our language (Pitts 1994a).

Let π be the recursive function

π
def
= rec f x => case x of nil => nil

| x1 :: x2 => f x1 :: f x2

| g => fn y => f(g(f y)).

(This would not be well-typed in ML where one would define a corresponding
type-indexed family of functions instead.)

Minimal invariance says thatπ is the identity function,π ∼ I. We can prove
this by means of Lemma 7.

Proposition 11 (Syntactic minimal invariance) π ∼ I.

Proof π . I follows by recursion induction from

x `
case x of nil => nil

| x1 :: x2 => I x1 :: I x2

| g => fn y => I(g(I y))
∼◦ x,

which is easily verified by case analysis on the value ofx.

We invoke Lemma 7 to proveI . π. LetR ⊆ Rel◦ be given by

y ` y R π y,

andS = �∼
◦
RC .◦. We proveR{RC} ∩ Rel ⊆ 〈S〉, i.e.,

` v RC v′ implies π v′ ⇓ v′′ with ` v S v′′,

by induction on the derivation of̀ v RC v′.

(Match nil) v = nil, v′ = nil. Thenπ v′ ⇓ nil. Clearly` v S nil.
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(Match cons) v = v1 :: v2, v′ = v′1 :: v′2, and` vi RC v′i. By induction
hypothesisπ v′i ⇓ v′′i with ` vi S v′′i . Soπ v′ ⇓ v′′ = v′′1 :: v′′2 and` v S v′′.

(Match fn) v = fn y => e, v′ = fn y => e′, andy ` e RC e′. Thenπ v′ ⇓ v′′ =
fn y => π(v′(π y)) and` v S v′′ because

y ` e /.∼
◦ let val y = y in let val y = e in y end end

RC let val y = π y in let val y = e′ in π y end end

∼◦ π(v′(π y)),

and/.∼
◦ RC ∼◦ ⊆ S.

We concludeR ⊆ .◦ by Lemma 7. Thereforev . π v, for all closed valuesv,
andI . π holds by extensionality. 2

Simulation up to�∼ and context and., Lemma 7, substantially simplifies the proof.
Mason, Smith, and Talcott (1996) give a direct operational proof of this result. It
is also possible to recast their proof in the relational proof style used throughout
this paper.

The finite approximants ofπ (as defined in Section 4) are ‘syntactic projec-
tions’. Syntactic minimal invariance and syntactic continuity entail that their least
upper bound is the identity function and thus:

p . q iff ∀n ≥ 0. πn p . q, (7.2)

whereπn is then’th finite approximant of the recursive functionπ.
In Milner’s construction of the fully abstract continuous model of PCF (Milner

1977) and in the operational model constructions for a call-by-value language like
ours in Mason, Smith, and Talcott (1996), syntactic projections are used to address
domain-theoretic notions of finite elements andω-algebraicity syntactically.

Viewed as a proof rule, (7.2) is a sort of generalised Take Lemma (Bird and
Wadler 1987) or higher-order structural induction principle; see Smith (1997).
Pitts (1996b, 1994a) has also developed this idea and its domain-theoretic back-
ground and he has studied various applications.

7.2 Equational rules

From Lemma 7 we can derive an ‘equational’ version akin to Proposition 3.

Proposition 12
R ⊆ �∼

◦
RC .◦

R ⊆ .◦

Proof If R ⊆ �∼
◦
RC .◦ then

R{RC} ⊆ (�∼
◦
RC .◦){RC}

⊆ (�∼
◦{Id◦})(RC{RC})(.◦{Id◦})

⊆ �∼
◦

(RC{RC}) .◦, (7.3)
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because�∼
◦ and.◦ are closed under substitutions.

Moreover, we can showRC{RC} ⊆ /.∼
◦ RC /.∼

◦, i.e.,

~x ` u RC u′ and ~y ` ~v RC ~v′ imply ~y ` u{~v/~x} /.∼
◦ RC /.∼

◦ u′{~v′/~x},

by induction on the derivation of~x ` u RC u′. In the (Match fn) case the substi-
tutions ofu andu′ into the function bodies can be replaced by let bindings up to
cost equivalence.

Therefore�∼
◦

(RC{RC}) .◦ ⊆ �∼
◦
RC .◦ and

R{RC} ∩ Rel ⊆ �∼ RC . from (7.3)
⊆ �∼ 〈RC〉 . by definition of〈 〉
⊆ 〈�∼

◦〉〈RC〉〈.◦〉 �∼ and. are simulations
⊆ 〈�∼

◦
RC .◦〉 by (5.8),

and we concludeR ⊆ �∼
◦, by Lemma 7. 2

Proposition 12 is a useful proof rule in itself—for instance, the proof of re-
cursion induction using Proposition 10 above is more directly an instance of the
equational proof rule of Proposition 12. Furthermore, from it we can derive a
version of a proof rule by Sands (1997b), called ‘bisimulation up to context and
improvement’: let relation� ⊆ Rel be given by

p � q iff p �∼ I q.

Proposition 13
R ⊆ �◦ RC .◦

R ⊆ .◦

Proof SupposeR ⊆ �◦ RC .◦. We constructS ⊆ Rel ◦ by

~x ` (fn z => e) S (fn z => e′),

wheneverz /∈ ~x and there existd andd′ such that

~x ` d R d′ and ~x ` d �◦ e RC e′ .◦ d′.

Observe that

~x ` d �∼
◦

(fn z => e) nil and ~x ` (fn z => e′) nil .◦ d′.

ThereforeR ⊆ �∼
◦
SC .◦. We haveS ⊆ �∼

◦
SC .◦ because

~x ` (fn z => e) RC (fn z => e′),

and
RC ⊆ (�∼

◦
SC .◦)C ⊆ (�∼

◦
)C (SC)C (.◦)C ⊆ �∼

◦
SC .◦.

HenceS ⊆ .◦, by Proposition 12, andR ⊆ �∼
◦
SC .◦ impliesR ⊆ .◦, because

.◦ is a precongruence and contains�∼
◦. 2
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Sands (1997b) has demonstrated how (versions of) this rule allows simple cal-
culational proofs of many functional program equivalences from the literature. It is
particularly useful for call-by-value languages with inductively defined data types
for which conventional applicative simulation is of little use.

For illustration, we solve Exercise 10.20 from Winskel (1993). Let

f
def
= rec f x => fn y => case x of nil => y

| x1 :: x2 => f(append(rx1y)x2)(sx1y)
| h => Ω,

g
def
= rec g x => fn y => case x of nil => y

| x1 :: x2 => gx2(g(rx1y)(sx1y))
| h => Ω,

wherer, s ∈ Val∅ (presumably they are functions but we need not require that)
andappend is the list concatenation function,

append
def
= rec a x => fn y => case x of nil => y

| x1 :: x2 => x1 :: a x2 y
| g => Ω.

We will now prove thatf andg are bisimilar by means of Sands’ proof rule. As
a first attempt, let relationR be given by

~x ` (f u0 v) R (g u0 v),

wheneveru0, v ∈ Val~x. By extensionality,f ∼ g if R ⊆ ∼◦.
By means of the equational laws for cost equivalence, we calculate

~x ` f u0 v /.∼
◦ I2 case u0 of nil => v

| x1 :: x2 => let val x = r x1 v
in let val y = s x1 v

in f(appendxx2) y
end

end

| h => Ω,

~x ` g u0 v /.∼
◦ I2 case u0 of nil => v

| x1 :: x2 => let val x = r x1 v
in let val y = s x1 v

in g x2(g x y)
end

end

| h => Ω.

The resulting expressions are identical except for the subtermsf(append xx2) y
andg x2(g x y). We need to extendR to also relate these. Let@(un,..., u0) abbre-
viateappend un(append un−1(...(append u1 u0)...)). Now, letR be given by

~x ` (f @(un,..., u0) v) R (g u0(...(g un v)...)),
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for all n ≥ 0 andu0,..., un, v ∈ Val~x. From the calculations above we see that

~x ` (f @(u0) v) = (f u0 v) �◦ RC ∼◦ (g u0 v),

because~xx1x2xy ` (f(append xx2) y) = (f @(x, x2) y) R (g x2(g x y)). If
n ≥ 1 we calculate

~x ` f @(un, un−1,..., u0) v

/.∼
◦ I2 case un of nil => f @(un−1,..., u0) v

| x1 :: x2 => let val x = r x1 v
in let val y = s x1 v

in I2 f @(x, x2, un−1,..., u0) y
end

end

| h => Ω,

�∼
◦

I2 case un of nil => f @(un−1,..., u0) v
| x1 :: x2 => let val x = r x1 v

in let val y = s x1 v
in f @(x, x2, un−1,..., u0) y
end

end

| h => Ω,

~x ` g u0(...(g un−1(g un v))...)

/.∼
◦ I2 case u0 of nil => g u0(...(g un−1 v)...)

| x1 :: x2 => let val x = r x1 v
in let val y = s x1 v

in g u0(...(g un−1(g x2(g x y)))...)
end

end

| h => Ω.

Since~xx1x2xy ` (f @(x, x2, un−1,..., u0) y) R (g u0(...(g un−1(g x2(g x y)))...))
and~x ` (f @(un−1,..., u0) v) R (g u0(...(g un−1 v)...)), we get that

~x ` (f @(un, un−1,..., u0) v) �◦ RC ∼◦ (g u0(...(g un−1(g un v))...)).

HenceR ⊆ �◦ RC ∼◦ and thusR ⊆ .◦ by Proposition 13. From the calcu-
lations above it is easy to obtainRop ⊆ �◦ (Rop)C ∼◦ too, and henceRop ⊆ .◦,
again by Proposition 13. We conclude thatR ⊆ ∼◦ andf ∼ g.

The shortcoming of Lemma 7, compared to (7.1), is less apparent in the derived
equational rules of Propositions 12 and 13. But note that they work foropen
relations, in contrast to the ‘closed’ equational rule for simulation up to similarity
of Proposition 3. We do not know if stronger, closed versions hold:

(i)
R ⊆ �∼ (R◦)C .

R ⊆ . (ii)
R ⊆ � (R◦)C .

R ⊆ . (7.4)
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They are consequences of (7.1) because�∼ (R◦)C . ⊆ 〈�∼
◦

(R◦)C .◦〉 and(ii)
follows from (i) as in the proof of Proposition 13. Propositions 12 and 13 are
weaker than (7.4): sometimes reasoning about open terms does not suffice as it
may be necessary to argue by cases on the values of the free variables. One such
example is syntactic minimal invariance, Proposition 11. It would follow from
(7.4)(i), by structural induction on closed values, but not from Proposition 12.

8 Conclusion

The ‘relational’ proof style of Howe (1996) and Pitts (1995) has been used through-
out this paper. It is a rather low-level approach but is precise and tractable and
applies to a wide range of problems involving term contexts and evaluation. Our
proofs of the unfolding theorem and various simulation up to context results sub-
stantiate this. The algebra of relations in Section 3 and, in particular, context
closure facilitate the construction of relations for this style of proofs. Our results
are stated for an untyped ML fragment but should carry over to other typed and
untyped higher-order languages.

Simulation up to context is a proof technique with a great practical potential
for applicative bisimulation and improvement. This is witnessed by our proofs of
recursion induction, the improvement theorem, syntactic minimal invariance, and
Exercise 10.20 from Winskel (1993), as well as by the examples of Gordon (1995)
and Sands (1997b). But an important problem is left open, namely the validity of
(5.14) and (7.1),

R ⊆ 〈(R◦)C〉
R ⊆ .

R ⊆ 〈�∼
◦

(R◦)C .◦〉
R ⊆ .

The significance of the gap between these and the weaker rule of Lemma 7,

R{RC} ∩ Rel ⊆ 〈�∼
◦
RC .◦〉

R ⊆ .◦

is unclear. In Section 7 we demonstrated how Lemma 7 allows us to prove a range
of non-trivial results.
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A Proofs

This appendix contains the rather delicate proofs of Lemmas 6 and 7. The first of
these uses the following lemma.

Lemma 8 Compatibility is preserved by transitive closure.

Proof First observe that compatibility is preserved by relation composition: if
R andS are compatible, so is their compositionRS,

R̂ S = R̂ Ŝ ⊆ RS.

Next, supposeR is compatible. If~x ` e R̂+ e′, each immediate subtermei
of e is related to a corresponding subterme′i of e′, ~x~yi ` ei R

+ e′i, for some
~yi. This means that there existsmi ≥ 1 such that~x~yi ` ei R

mi e′i, where
Rmi is themi-fold composition ofR with itself. Letm be the greatest of these
mi, for all pairs of subterms. SinceR is compatible it is also reflexive. Hence
~x~yi ` ei Rm−mi ei and then~x~yi ` ei Rm e′i, for all corresponding subtermsei
ande′i. Hence~x ` e R̂m e′, by definition of compatible refinement, and then
~x ` e Rm e′ because compatibility is preserved by relation composition. So
~x ` e R+ e′ and we conclude thatR+ is compatible. 2

Proof of Lemma 6
R ⊆ 〈S+〉I
S+ ⊆ �∼

◦ , whereS
def
= (R◦)C.

Proof AssumeR ⊆ 〈S+〉I . We are going to prove thatS+ is an open improve-
ment simulation,

S+ ⊆ 〈S+〉◦I .
ThenS+ ⊆ �∼

◦, by the improvement simulation rule (6.2).

First we need some properties ofS+.

By definition of context closure,S is compatible. Compatibility is preserved by
transitive closure, Lemma 8, soS+ is also compatible.

Open extension,R◦, is closed under substitutions and so isS because closure
under substitutions is preserved by context closure. It is also preserved by relation
composition and, consequently, by transitive closure. ThereforeS+ is closed under
substitutions.

By Lemma 1,S+ is substitutive because it is compatible, transitive and closed
under substitutions.

We proceed to proveS+ ⊆ 〈S+〉◦I . SinceS+ is closed under substitutions, it
suffices to showS+ ∩ Rel ⊆ 〈S+〉I . This is equivalent to asserting that predicate
P(N), defined by

P(N)
def⇔ ∀p, p′, v. ` p S+ p′ & p ⇓N v ⇒

∃v′. p′ ⇓≤N v′ & ` v S+ v′,



38 Lassen

holds for allN . The proof is by a series of nested inductions onN , on the deriva-
tion of ` p S+ p′, and on the derivation ofp ⇓N v.

The outer induction hypothesis is

(I.H.1) P(N) for all N < N0.

Then we must showP(N0). This follows if

∀p, p′, v. ` p S p′ & p ⇓≤N0 v ⇒ ∃v′. p′ ⇓≤N0 v
′ & ` v S+ v′, (A.1)

because, supposing̀p S+ p′,

` p = p0 S p1 S · · · S pm = p′,

andp ⇓N0 v, by repeatedly applying (A.1) tò pi S pi+1, we getp′ ⇓≤N0 v
′ with

` v = v0 S+ · · · S+ vm = v′,

and we can concludè v S+ v′ becauseS+ is transitive,

S+ · · ·S+ = S+ · · ·S+ ⊆ S+.

We strengthen (A.1) slightly and prove that predicateQ(p,M, v),

Q(p,M, v)
def⇔

p ⇓M v & M ≤ N0 ⇒
∀p′. ` p S{S+} p′ ⇒
∃v′. p′ ⇓≤M v′ & ` v S+ v′,

holds for allp,M, v. This entails (A.1) as̀ p S p′ clearly implies` p S{S+} p′
with empty substitution ofS+. Observe also thatS{S+} ⊆ S+ becauseS+ ⊆ S+,
by compatibility, andS{S+} ⊆ S+, sinceS ⊆ S+ andS+ is substitutive. In fact,
Q(p,M, v) follows from (I.H.1) wheneverM < N0.

We proveQ(p,M, v), for all p,M, v, by induction on the derivation ofp ⇓M v.
For any derivationp0 ⇓M0 v0, the induction hypothesis is

(I.H.2) Q(p,M, v) for all premisesp ⇓M v in the derivation ofp0 ⇓M0 v0,

and we must showQ(p0,M0, v0). We assumep0 ⇓M0 v0 andM0 ≤ N0, where
p0 = e{~u/~x}, ~x ` e S e′ and` ~u S+ ~u′ such that̀ e{~u/~x} S{S+} e′{~u′/~x}. We will
showe′{~u′/~x} ⇓≤M0 v

′
0, for somev′0 such that̀ v0 S+ v′0.

The strategy is to exploit the assumption~x ` e S e′ to build the derivation
e′{~u′/~x} ⇓≤M0 v

′
0. The substitutions of~u and~u′ are separated out in the induction

on the derivation ofe{~u/~x} ⇓M0 v0. If it is derived by means of the (Eval apply)
rule, we need to perform these substitutions and we end up with terms related by
S+ rather thanS{S+}. Then we invoke the stronger induction hypothesis (I.H.1).
It applies because the premises of the (Eval apply) rule will all have cost-indexes
smaller thanM0 andN0.

RecallS = (R◦)C and consider the derivation of~x ` e S e′. There are two
cases.
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(Ctx R) Suppose~y ` e R◦ e′ with ~y ⊆ ~x. Note that~x ` e Ŝ e becauseS
and Ŝ are reflexive. Thereforè e{~u/~x} Ŝ{S+} e{~u′/~x}. From the (Ctx
Comp) case below we gete{~u′/~x} ⇓≤M0 v′′0 with ` v0 S+ v′′0 . Moreover,
` e{~u′/~x} R e′{~u′/~x}. The assumptionR ⊆ 〈S+〉I impliese′{~u′/~x} ⇓≤M0 v

′
0

with ` v′′0 S+ v′0. SinceS+ is transitive, we obtaiǹ v0 S+ v′0, as required.

(Ctx Comp) Suppose~x ` e Ŝ e′. If this is derived by the (Compx) rule, thene =
e′ = xi, for somexi ∈ ~x, and the result is immediate becausee{~u/~x} ⇓0 ui,
e′{~u′/~x} ⇓0 u

′
i and, by assumption,̀ ui S+ u′i. Otherwisee ande′ are not

variables, and we proceed by analysis of the derivation ofe{~u/~x} ⇓M0 v0.

Case (Eval fn) e{~u/~x} is a function,e{~u/~x} = v0, andM0 = 0. Sincee is not
a variable, it is itself a function,e = fn y => d for somed ∈ Exp~xy. Then

~x ` e Ŝ e′ must be derived by (Comp fn) so thate′ = fn y => d′ where
~xy ` d S d′. Hencee′{~u′/~x} ⇓0 e

′{~u′/~x} and` e{~u/~x} S+ e′{~u′/~x}, by (Eval fn)
and (Match fn) becausey ` d{~u/~x} S{S+} d′{~u′/~x} andS{S+} ⊆ S+.

Case (Eval nil) By reasoning similar to the previous case, we seee ande′

are bothnil. Hencee′{~u′/~x} ⇓0 e
′{~u′/~x} and` e{~u/~x} S+ e′{~u′/~x}, by (Eval

nil) and (Match nil).

Case (Eval cons)Sincee is not a variable, it must be of the forme = e1 :: e2,
andei{~u/~x} ⇓Mi

vi, for i = 1, 2, such thatM0 = M1 +M2 andv0 = v1 :: v2.
Then ~x ` e Ŝ e′ implies e′ = e′1 :: e′2 and ~x ` ei S e′i. Observe
thatMi ≤ N0 becauseMi ≤ M0 andM0 ≤ N0. Induction hypothesis
(I.H.2) andei{~u/~x} ⇓Mi

vi imply e′i{~u
′
/~x} ⇓≤Mi

v′i with ` vi S+ v′i. Hence
e′{~u′/~x} ⇓≤M0 v

′
0 with ` v0 = v1 :: v2 S+ v′1 :: v′2, by (Eval Cons) and

(Match Cons).

Case (Eval apply) e = e1e2, e1{~u/~x} ⇓M1 v1 = fn y => d, e2{~u/~x} ⇓M2 v2,
d{v2/y} ⇓M3 v0, andM0 = M1 + M2 + M3 + 1. Since~x ` e Ŝ e′, e′ = e′1e

′
2

with ~x ` ei S e′i. We observe thatMi < N0 becauseMi < M andM ≤ N0,
for i = 1, 2, 3. By induction hypothesis (I.H.2),ei{~u/~x} ⇓Mi

vi implies
e′i{~u

′
/~x} ⇓≤Mi

v′i with ` vi S+ v′i, for i = 1, 2. So v′1 = fn y => d′

wherey ` d S+ d′. Hence` d{v2/y} S+ d′{v′2/y}, becauseS+ is substi-
tutive. SinceM3 < N0, induction hypothesis (I.H.1) andd{v2/y} ⇓M3 v0

imply d′{v′2/y} ⇓≤M3 v′0 with ` v0 S+ v′0. By (Eval apply), we conclude
e′{~u′/~x} ⇓≤M0 v

′
0.

Case (Eval let fun) e = let fun f y = e1 in e2 end, e2{~uw/~xf} ⇓M0 v0,
wherew = rec f y => e1. Since~x ` e Ŝ e′, e′ = let fun f y=e′1 in e

′
2 end

with ~xfy ` e1 S e′1 and ~xf ` e2 S e′2. Let w′ = rec f y => e′1,
then~x ` w S w′ becauseS is compatible. Consequently,~x ` w S+ w′

and ` e2{~uw/~xf} S{S+} e′2{~u
′w′/~xf}. By induction hypothesis (I.H.2),

e2{~uw/~xf} ⇓M0 v0 impliese′2{~u
′w′/~xf} ⇓≤M0 v

′
0 with ` v0 S+ v′0. By (Eval

let fun), we concludee′{~u′/~x} ⇓≤M0 v
′
0.
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Case (Eval case)e = case e0 of nil => e1 | y1 :: y2 => e2 | f => e3,
e0{~u/~x} ⇓M1 v, q ⇓M2 v0, andM0 = M1 +M2, where

q =


e1{~u/~x} if v = nil

e2{~uv1v2/~xy1y2} if v = v1 :: v2

e3{~uv/~xf} if v = fn y => d.

Since~x ` e Ŝ e′, e′ = case e′0 of nil => e′1 | y1 :: y2 => e′2 | f => e′3,
with ~x ` e0 S e

′
0, ~x ` e1 S e

′
1, ~xy1y2 ` e2 S e

′
2, and~xf ` e3 S e

′
3. Observe

thatMi ≤ N0 becauseMi ≤ M0 andM0 ≤ N0. Induction hypothesis
(I.H.2) ande0{~u/~x} ⇓M1 v imply e′0{~u

′
/~x} ⇓≤M1 v

′ with ` v S+ v′. According
to the derivation of̀ v S+ v′, let

q′ =


e′1{~u

′
/~x} if v = nil = v′

e′2{~u
′v′1v

′
2/~xy1y2} if v = v1 :: v2, v

′ = v′1 :: v′2,` vi S+ v′i
e′3{~u

′v′/~xf} if ` v = fn y => d S+ fn y => d′ = v′.

By inspection of the definitions ofq andq′, we see that̀ q S{S+} q′. In-
duction hypothesis (I.H.2) andq ⇓M2 v0 imply q′ ⇓≤M2 v

′
0 with ` v0 S+ v′0.

By (Eval case), we concludee′{~u′/~x} ⇓≤M0 v
′
0.

Case (Eval let val) Similar to the previous case.

All cases considered, we concludeQ(p0,M0, v0), as required. This completes the
induction step forQ and we haveQ(p,M, v) for all p,M, v.

Therefore (A.1) andP(N0) hold. This completes the induction step forP, so
P(N) holds for allN .

ThenS+ ∩ Rel ⊆ 〈S+〉I andS+ is an open improvement simulation,S+ ⊆
〈S+〉◦I . The conclusion,S+ ⊆ �∼

◦, follows co-inductively by the improvement
simulation rule (6.2). 2

Lemma 6 is invalid for similarity (i.e., with〈 〉 and.◦ in place of〈 〉I and
�∼
◦). The proof above uses the improvement aspect of〈 〉I to assert thatp′ ⇓ v′

computes no slower thanp ⇓ v when` p S p′. If there is no bound on the cost of
p′ ⇓ v′, the transitivity argument, why (A.1) impliesP(N0), breaks down.

The proof of Lemma 6 makes use of the transitive closure ofS in two ways.

(i) S+ is substitutive. This is used in the (Eval fn) and (Eval apply) cases of the
induction step.

(ii) In the (CtxR) case transitivity is used to avoid substitution of values related
by S+ into expressions related byR◦.

Lemma 7 is essentially a weaker version of Lemma 6 for similarity. The proof
is similar to that of Lemma 6 but solves(i) and(ii) without transitive closure.
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(i) Substitutions can be replaced by let bindings up to cost equivalence; thereby
the compatibility ofRC suffices and substitutivity is not necessary.

(ii) The requirement that the premise of Lemma 7 holds forR{RC} rather than
justR circumvents the problem of substitution into expressions related by
R.

Proof of Lemma 7
R{RC} ∩Rel ⊆ 〈�∼

◦
RC .◦〉

R ⊆ .◦

Proof AssumeR{RC ∩ Rel} ⊆ 〈�∼
◦
RC .◦〉. We are going to prove

RC{Id} ⊆ 〈S〉, whereS = �∼
◦
RC .◦. (A.2)

Observe thatS ⊆ .◦ RC{Id}◦ .◦, because�∼
◦ ⊆ .◦ andRC ⊆ RC{Id}◦, by

(3.2). By simulation up to similarity, Proposition 2, we get that (A.2) implies
RC{Id} ⊆ .. HenceRC ⊆ .◦, by (3.2), and the conclusion,R ⊆ .◦, follows
becauseR ⊆ RC,

S is compatible because�∼
◦, RC, and.◦ are and compatibility is preserved

by relation composition. ThereforeS is reflexive andS is a reflexive relation on
values. HenceRC{Id} ⊆ RC{S}, and (A.2) holds ifRC{S} ⊆ 〈S〉. The latter is
equivalent to the predicateP(N) holding for allN , where

P(N)
def⇔ ∀p, p′, v. ` p RC{S} p′ & p ⇓N v ⇒

∃v′. p′ ⇓ v′ & ` v S v′,

We proceed by induction onN . The induction hypothesis is

(I.H.1) P(N) for all N < N0.

Then we must showP(N0). This follows ifQ(p,M, v),

Q(p,M, v)
def⇔

p ⇓M v & M ≤ N0 ⇒
∀p′. ` p RC{S} p′ ⇒

∃v′. p′ ⇓ v′ & ` v S v′,

holds for allp,M, v. We proveQ(p,M, v), for all p,M, v, by induction on the
derivation ofp ⇓M v. For any derivationp0 ⇓M0 v0, the induction hypothesis is

(I.H.2) Q(p,M, v) for all premisesp ⇓M v in the derivation ofp0 ⇓M0 v0,

and we must showQ(p0,M0, v0). We assumep0 ⇓M0 v0 andM0 ≤ N0, where
p0 = e{~u/~x}, ~x ` e RC e′ and` ~u S ~u′ such that̀ e{~u/~x} RC{S} e′{~u′/~x}. We will
showe′{~u′/~x} ⇓ v′0, for somev′0 such that̀ v0 S v

′
0.

Consider the derivation of~x ` e RC e′. There are two cases.
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(Ctx R) Suppose~x ` e R e′. Since` ~u S ~u′, there exist~w and ~w′ such that
` ~u �∼

◦
~w RC ~w′ .◦ ~u′. As�∼

◦ and.◦ are precongruences, we get

e{~u/~x} �∼ e{~w/~x} R{RC} e′{~w′/~x} . e′{~u′/~x}

Sincee{~u/~x} ⇓ v0, alsoe{~w/~x} ⇓ v with ` v0 �∼
◦
v. From assumption

R{RC}∩Rel ⊆ 〈S〉 followse′{~w′/~x} ⇓ v′ with ` v S v′. Finally,e′{~u′/~x} ⇓ v′0
with ` v′ .◦ v′0, and` v0 �∼

◦
v S v′ .◦ v′0 implies` v0 S v′0 because

�∼
◦
S .◦ ⊆ S by transitivity of�∼

◦ and.◦.

(Ctx Comp) If ~x ` e R̂C e′, we argue as in the proof of Lemma 6 above (with
RC andS in place ofS andS+), except that here we do not keep track
of the cost of the evaluatione′{~u′/~x} ⇓ v′0. Again the result is immediate
if e is a variable. Otherwise we proceed by analysis of the derivation of
e{~u/~x} ⇓M0 v0. Only the cases when this is derived by (Eval fn) or (Eval
apply) are different from those in the proof of Lemma 6.

Case (Eval fn) e{~u/~x} is a function ande{~u/~x} = v0. Sincee is not a variable,

it is itself a function,e = fn y => d for somed ∈ Exp~xy. Then~x ` e R̂C e′

must be derived by (Comp fn) so thate′ = fn y => d′ where~xy ` d RC d′.
Since` ~u S ~u′, there exist~w and ~w′ such that̀ ~u �∼

◦
~w RC ~w′ .◦ ~u′. As

�∼
◦,RC, and.◦ are compatible, we get

y ` d{~u/~x} �∼
◦
d{~w/~x} RC{RC} d′{~w′/~x} .◦ d′{~u′/~x}.

Let (let ~x = ~v in e) abbreviate a suitablelet construction which beta
reduces toe{~v/~x}. Then

y ` d{~w/~x} /.∼
◦ (let ~x = ~w in d) RC (let ~x = ~w′ in d′) /.∼

◦ d′{~w′/~x}.

Since�∼ and. contain/.∼ and are transitive,

y ` d{~u/~x} S d′{~u′/~x},

Hencè e{~u/~x} S e′{~u′/~x}, as required.

Case (Eval apply) e = e1e2, e1{~u/~x} ⇓M1 v1 = fn y => d1, e2{~u/~x} ⇓M2 v2,

d1{v2/y} ⇓M3 v0, andM0 = M1 + M2 + M3 + 1. Since~x ` e R̂C e′,
e′ = e′1e

′
2 with ~x ` ei RC e′i. We observe thatMi < N0 becauseMi < M

andM ≤ N0, for i = 1, 2, 3. By induction hypothesis (I.H.2),ei{~u/~x} ⇓Mi
vi

implies e′i{~u
′
/~x} ⇓ v′i with ` vi S v′i, for i = 1, 2. So v′1 = fn y => d′1

wherey ` d1 S d′1, that is, there existd, d′ ∈ Expy such thaty ` d1 �∼
◦

d RC d′ .◦ d′1. Since�∼
◦ and.◦ are closed under substitutions,d1{v2/y} �∼

d{v2/y} andd′{v′2/y} . d′1{v
′
2/y}. From the former andd1{v2/y} ⇓M3 v0, we get

d{v2/y} ⇓≤M3 v with ` v0 �∼
◦
v. AsM3 < N0 and` d{v2/y} RC{S} d′{v′2/y},



Relational reasoning about contexts 43

induction hypothesis (I.H.1) andd{v2/y} ⇓≤M3 v imply d′{v′2/y} ⇓ v′ with
` v S v′. Sinced′{v′2/y} . d′1{v

′
2/y}, d′1{v

′
2/y} ⇓ v′0 with ` v′ .◦ v′0. Then

` v0 S v′0 because�∼
◦
S .◦ = �∼

◦
S .◦ and�∼

◦
S .◦ ⊆ S. By (Eval

apply), we concludee′{~u′/~x} ⇓ v′0.

This establishesRC{S} ⊆ 〈S〉 and then (A.2) follows, as required. 2
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Petrank, and Gábor Tardos. Linear Hashing. June 1997. 22 pp.
A preliminary version appeared with the title Is Linear Hash-
ing Good? in The Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 465–474.

RS-97-15 Pierre-Louis Curien, Gordon Plotkin, and Glynn Winskel.
Bistructures, Bidomains and Linear Logic. June 1997. 41 pp.


