SIXaJUu0D INoge Buluoseay [euone|ay (Uasse ‘g 'S 72-/6-SY SOlYd

BRICS

Basic Research in Computer Science

Relational Reasoning about Contexts

Sgren B. Lassen

BRICS Report Series RS-97-24
ISSN 0909-0878 September 1997

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/24/

Relational Reasoning about Contéxts

S. B. Lassen

BRICS/, Department of Computer Science, University of Aarhus

1 Introduction

The syntactic nature of operational reasoning requires techniques to deal with
term contexts, especially for reasoning about recursion. In this paper we study
applicative bisimulation and a variant of Sands’ improvement theory for a small
call-by-value functional language. We explore an indirect, relational approach for
reasoning about contexts. It is inspired by Howe’s precise method for proving
congruence of simulation orderings and by Pitts’ extension thereof for proving ap-
plicative bisimulation up to context. We illustrate this approach with proofs of the
unwinding theorem and syntactic continuity and, more importantly, we establish
analogues of Sangiorgi's bisimulation up to context for applicative bisimulation
and for improvement. Using these powerful bisimulation up to context techniques,
we give concise operational proofs of recursion induction, the improvement theo-
rem, and syntactic minimal invariance. Previous operational proofs of these results
involve complex, explicit reasoning about contexts.

Related work

Applicative bisimulation (Abramsky 1990) is an operational theory for higher-
order languages, inspired by bisimulation theories for concurrency (Park 1981;
Milner 1989). It excels in reasoning about infinite data structures. These exist
in every higher-order language but are particularly relevant in lazy functional lan-
guages (Gordon 1995; Pitts 1997) and functional object-oriented languages (Gor-
don and Rees 1996). But applicative bisimulation is not very helpful for reasoning
about recursive control structures. There are more ‘intensional’ operational theo-
ries (Talcott 1997; Sands 1997b) which address recursion effectively by counting
computation steps. But even they are of limited use for proving results such as the
validity of the fundamental induction rules for recursion: recursion induction (also
known as Park induction), syntactic continuity {nduction), syntactic minimal
invariance (syntactic projections), and the improvement theorem. Existing opera-
tional proofs are complex and involve explicit reasoning about term contexts.

Intuitively, a context is a term containing a hole, that may be filled by another
term. This is an evocative idea, but for formal arguments contexts are difficult

*To appear in Gordon and Pitts (1997).
tBasic Research in Computer Science, Centre of the Danish National Research Foundation.

1

2 Lassen

to work with, both technically and notationally. For this reason, Howe deals
only indirectly with contexts in his influential congruence proof for applicative
bisimilarity (Howe 1989; Howe 1996). Instead the proof is ‘relational’: a larger
relation which is closed under contexts is constructed and is shown to coincide
with applicative bisimilarity by bisimulation and induction on the evaluation re-
lation. This relational approach yields a formally and notationally very precise
proof. Moreover, Howe’s congruence proof applies to many different typed and
untyped higher-order languages and operational orderings; see, e.g., Sands (1991,
Ong (1992, Ferreira, Hennessy, and Jeffrey (1995, Lassen (1997, Gordon (1997).

Pitts (1995) extends Howe’s congruence proof for applicative bisimilarity to
also establish an up to context rule for applicative bisimulation. The proof is also
‘relational’ and illustrates the versatility of Howe’s implicit, relational approach to
reasoning about term contexts. Specifically it shows how to use this proof method
to establish applicative bisimulation up to context results. (We present the proof in
Section 5.2.) The results we present in this paper stem from the study of this work.

Sangiorgi’s bisimulation up to context is a powerful refined bisimulation proof
rule for process calculi (Sangiorgi and Milner 1992; Sangiorgi 1994). Bisimu-
lation up to context allows you to disregard a common term context when relat-
ing terms in bisimulation proofs. Unfortunately, his correctness proofs do not
carry over to applicative bisimulation for higher-order languages. Gordon (1995)
and Sands (1997b) present restricted applicative bisimulation up to context rules.
They demonstrate the power of this approach to produce concise proofs of equiv-
alences which are difficult to derive by other operational methods. Both Sangiorgi
(1996, 1995) and Sands couple bisimulation up to context with efficiency pre-
orders, called ‘expansion’ and ‘improvement’, respectively. As suggested by Pitts
(1995), we also introduce an improvement preorder. The problem which we ad-
dress in this fashion leads us to adopt an improvement theory based on a different
cost measure than that of Sands (1997b).

Overview

Section 2 defines the syntax and operational semantics of the untyped, functional
ML fragment which we study below. Section 3 introduces an algebra of relations
on terms. This is essential for the calculations with relations in later sections. A
substantial example is the proof of the unwinding theorem in Section 4. Applica-
tive (bi)simulation is defined in Section 5. Preliminary applicative simulation up
to context results are established and applicative bisimilarity is shown to be a con-
gruence by Howe’s and Pitts’ techniques. A deficiency of applicative simulation
up to context is discovered which leads us to introduce an improvement preorder in
Section 6. Improvement enjoys a strong up to context rule from which congruence
and the improvement theorem follow. Section 7 uses improvement to strengthen
the applicative simulation up to context rule from Section 5. Finally, Section 8
concludes. An appendix contains proofs from Sections 6 and 7.

Relational reasoning about contexts 3

2 A functional ML fragment

We operate with a small call-by-value functional language with lists, an untyped
fragment of ML (Milner, Tofte, and Harper 1990).

Syntax

Let f, g, x,y, z range over an infinite set of variables. The syntax of expressions
is:

(Exp) dje = x | fnzx=>e | nil | e ey | erey
| letfun fr=dineend | letvalx=dineend

| (casedofnil =>e| x1:1 xy=>ey| f=>e3).

Expressions are identified up aerenaming of bound variables.
Inlet val z=d in e end andfn =z => ¢, z IS bound ine.
In let fun fx =d in e end, f andx are bound inZ, and f is bound ire.
Incase dof nil => ey | a1 3 => ey | f =>e3, x; andx, are bound in
e, andf is bound ines.
Terms are parsed as in ML. The scopdrofandcase extends as far to the
right as possible. Application associates to the left and has higher precedence than
which associates to the right. For instance, the tétim => z:: y: zyz
parsesasnx => (z:: (y:: ((zy)=2))).
The set of values is given by the grammar:

(Val) w,v,w == x | fnx=>e | nil | vy wve.

Let e{U/d = efvi/z,, ..., Vn/x,} be the result of simultaneous, capture free sub-
stitution of valuesy = v, ...v, for free occurrences of = z; ...z, ine. (See
Stoughton (1988) for a precise definition of simultaneous substitution.y B
always mean an ordered list of pairwise distinct variables. We writer to mean
variablex occurs int.

Let Fzp; and Valz be the set of expressions and values, respectively, with free
variables contained i@. Notice Val; C Exp;. We call expressiong, g € Exp,
closed.

A closed value is either the empty list1, ‘cons’ of two closed values; :: w5,
or afunctionfn z => ewithe € Exp,. The case construct has three corresponding
branches. This allows both decomposition of lists and dynamic dispatch on the
‘type’ of values. (The latter would not be well-typed in ML but is common in
untyped languages, e.g., Scheme (Clinger and Rees (editors) 1991pims® a
predicate that tells whether a value is a closure; this feature is necessary for the
formulation of syntactic minimal invariance in Proposition 11 but otherwise our

4 Lassen

results are unaffected by the exact choice of language constructs for accessing
values—as long as application is the only means of ‘destructing’ functions.)

We takelet val = = d in e end as a language primitive instead of encoding
it as (fn z => e) d, because the encoding introduces a function application step.
This difference affects the improvement theory of Section 6 and will be important
later in the proof of Proposition 11.

We definel) to be a divergent expression:
0« let fun fo=f fin f f end.

We write rec f = => d for the recursive function,

rec fx=>d © = let fun fz =d in d end.

Forexamplefnz =>Q =rec fz => f f.
A call-by-value fixed point combinatory, can be expressed as:

Yv % fnf=>(fng=>fnz=>f(gg)z) (fng=>tnz=>f(g9)2).

So explicit recursion is redundant; later on we proee f = => e is semantically
equivalent toyv (fn f => fnx => e).

Evaluation semantics

We define the operational semantics of closed expressions by an evaluation relation
| C Ezp, x Valy between expressions and values. An important measure of
‘computational cost’ which we shall use extensively is the number of function
applications (‘computation steps’) in evaluations. Therefore we introduce a family
of evaluation relations indexed by this measug, C Ezpy x Valy for N > 0,
inductively defined by the rules in Table 1.

‘Plain’ evaluation is just) o Unso Inyieup Jviff 3N > 0.p §y v. Itis
also given inductively by Table 1 with aN subscripts erased from the rules.

Note thatv |} v for all v € Valy. Moreover, evaluation is deterministic:
Proposition 1 (Determinacy) If p ||y v andp |y v/, N = N andv = v'.
Examples

1. LetI be the identity function] © fn o => x, then

Ipintiv iff plyw,

forall p € Expy, v € ValyandN > 0. (Therefore we shall use applications
of I as syntactic representations of function application steps in analogy with
Sands’ ‘ticks’ (1997b).)

Relational reasoning about contexts

(Evalfn) fnz =>e€ |¢ fnx =>c¢

(Eval nil) nil |}¢ nil
er v v1 ex b, v2
eri ey Inen, v V2
ey, fnz=>e ey ly, vy eft2fa} Uy, v
e1 €2 Ny 4Nyt Ngt1 U
e{lrec fz=>d)/p} ||y v
let fun fr=dineend |y v

dlin, v e{Wa} Iy, v

etvalz=dineend {n,4n, ¥

(Eval cons)

(Eval apply)

(Eval let fun)

(Eval let val) il

e1 if v9g =nil
€0 ‘U’Nl Vg € »U«N2 v oe—= 62{7)1/(]31, UQ/(EQ} if Vg = V1 :: V2
es{vo/f} if vo=fnz=>d

(Eval case)

case eg of nil => ¢,

Table 1: Evaluation relation

6 Lassen

2. The divergent expressidn does not evaluate to anything. Any derivation
Q |y v would have(2 || y_; v as premise, and this is impossible because
of determinacy.

3. Lete® & (fng=>fnz =>e(gg)r) (fn g => fnz => e(gg)z), SO that
Yv =fn f => f>. Then

Yvu o fnx =>uu*z because u™ |, fnx => u u*™ ,

foru € Valy.

Let an evaluation contextE, be a term with a hole,—, at redex position
(Felleisen and Friedman 1987). They are given by the grammar:

(Ev. ctx) E — | Ex e | e E | EFe | eE

| letvalz=FE ineend
|

(case Eofnil=>e) | z1: za=>ey| f=>e3).

We write E[e] for the term obtained fron&' by filling in e for the hole—. (We

adopt a liberal definition of redex position which does not suggest an evaluation
order in ‘cons’ expressions; :: ey, and function applicationg; e;. One can
indicate a left-to-right evaluation order by excluding evaluation contexts of the
forme:: FE ande E wheree is not a value. But evaluation order is immaterial
here as we do not consider small-step reductions of terms and our language has no
side effects.)

Evaluation contexts satisfy
Elp| ynvv iff IMu.plyu & Elu]Iy_p v. (2.1)
Combined with the examples above, we see Hi&t| diverges and

EIp/Iny1v iff IE[p Inyv iff Elp Iy o (2.2)

3 Relations

This section introduces our notation for relations and operations on them. Com-
patible refinement and context closure are of particular importance. Their precise
definitions are key to the relational proofs in later sections. The relational alge-
bra given here is quite general and language independent, except that only value
substitutions are considered as our language is call-by-value.

Open and closed relations

A binary relationR is a set of pairs. We use infix notatioa, R b, to mean
(a,b) € R.

Relational reasoning about contexts 7

Let Rel be the universal relation on closed expressions,

Rel = {(p,p) | p,p’ € Expy}.

We call everyR C Rel aclosedrelation. For instanced = {(p,p) | p € Ezpy}
is the closed identity relation.

Moreover, we define
Rel® = {((Z)e, (Z)€) | e, €’ € Expz},

where(Z)e is a ‘meta-abstraction’ of € Ezp,; the (%) prefix is a binder and’ is
subject toa-renaming. We call alR C Rel° openrelations and write’ - e R €
whenever(Z)e R (Z)e'. By identifying everyp € Ezp, with the 0-ary abstraction
()p, we haveRel C Rel® and closed relations are special cases of open ones.

We call Rel® theopen extensionf Rel. Generally, given any closed relatiéh
its open extension?® C Rel°, is given by

YVor,...,v, € Valg. e{01---Vnfry ...z} Re{01---VUnfry .. 2}
r1...x, e R°¢€

For example/d® is the open identity relation.
Both Rel and Rel° are closed under relation composition, which we write by
juxtapositionag RS b ¥ 3caRe A cSh. Open extension satisfies

R°S° C (RS). (3.1)

Relation Substitution

For R, S C Rel°, therelation substitutiorof S into R, written R{S} C Rel®,
relates expressions obtained by simultaneous substitutiSirelated values into
R related expressions,

TFeRe yHUTSV

it el RISy ¢ V)
wherey - v S ¢ is shorthand fog/ - v; S v}, foralli =1...n,ifv=1v,...v,
andv’ = v} ...v),. Relation substitution is associative. Note th5} C Rel if
S C Rel. As a drill in the notation let us show

RCS° iff R{d CS. (3.2)

For the forward implication, suppose C S° ande{U/#} R{Id} ¢'{V/i} because
ke R € anduvy,...,v, € Valp. ThenZ F e S° ¢ and, by definition of
open extensions{U/z} S ¢'{U/i}. Conversely, ifR{Id} C S andZ - e R ¢’ then
e{U/dy R{Idy ¢{V/D ande{V/z S e {U/d}, for all vy,...,v, € Valy. From the
definition of open extension we gét- e S° ¢/, as required.

8 Lassen

(Compz) Zaxy - x Rz

ZxkFeRe
Frfnz=>e R fonz=>¢
(Comp nil)z - nil R nil
ThHe Re, ZhFe Rel
(Comp cons)—— 21— 22
The i e R el ¢
el Re] ZFey Ré,
ke es R €€,
Zfr-dRd Zft-eRée
(Comp let fun)— / = !
ZH letfun fr=dineend R let fun fz=d ine’ end
ZFdRd ZrxhkeRe
Fhletvalzr=dineend R letvalz=d ine end
r-dRd ZFe Re) Trizabey Re, ZflesR e,

(Comp fn)

(Comp apply)

(Comp let val)

(Comp case)

case d of nil => ¢; case d’ of nil => ¢
il | 210 z9=>es | R | z1: zy=>¢€,
| f=>e; | f=>¢€f

Table 2. Compatible refinement

For any open relatio®, we sayR satisfiesveakeningf
TyteRe = FzybeRe, ifx ¢y

We call R substitutivef R{R} C R, and we say thakR is closed under substitu-
tionsif R{Id°} C R. In the latter cas&{Id} = R N Rel. Every open extension,

R°, satisfies weakening and is closed under substitutions. Any substitutive and
reflexive open relation also satisfies weakening and closure under substitutions.
Each of these properties is preserved by relation composition.

Compatible refinement

For every open relatio®, its compatible refinemer(Gordon 1994)?6 C Rel®
relates expressions with identical outermost syntactic constructor and immediate
subterms pairwise related . Table 2 makes this definition precise for our lan-
guage. Compatible refinement is monotone, preserves weakening, and commutes
with relation compositionﬁ? = RS.

An open relationR is compatibleif # C R. Every compatible relation is
reflexive, as can be shown by structural induction on expressions.

Relational reasoning about contexts 9

Compatibility can also be expressed in terms of contextsoAtextC' is an
expression with ‘holes’. I{C' hasn holes,Cley, ..., e,| denotes the expression
obtained by filling expressions .. .e, into the holes inC, possibly involving
capture of free variables ef if the i’th hole occurs in the scope of bindersdh
fori =1,...,n. ArelationR is compatible if whenevet; ande are related byg,
fori =1,...,n,soareCle,...,e,) andClel, ..., €], for all contextsC'. But a
precise formulation of this which accounts for free variables and variable capture
becomes complicated. The formalisation abdve, R, is easier to work with.

Throughout, we exploit compatible refinement as a tractable, indirect notation
for contexts.

Lemma 1 Any compatible and transitive relation which is closed under substitu-
tions is substitutive.

Proof SupposeR is compatible, transitive and closed under substitutions. |If
Z+eReandy k- @ R, theny - e{l/d} 1d°{R} e{t//7} andyj F e{t/7} R{Id%}
¢{t/}. SinceR is compatiblej - e{i/? R e{&/3} follows by easy structural
induction one; in general /d°{R} C R for any compatible relatiof. Moreover,
7+ efi/ft R ¢{W)i} sinceR is closed under substitutions. By transitivity we
concludey - e{i/z} R €'{i'/z}, as required. 0

Context closure

For any relationR, its context closureR¢ C Rel°, relates expressionse’ with
matching outermost contekt,

e=Cldy,...,d,], € =C[d,...,d],

and subtermd;, d; related byR. This can be defined inductively by means of
compatible refinement,

yreRe ., fl—el/%\ce'
CtxR) =———— if y C Ctx Comp)———~—
(Cix)a_:’l—eRCe’ly_x (Cix p)a_f’l—eRCe’

wherey C 7 means that all variables ihoccur inZ, in any order. The side condi-
tion ¢ C & ensures thaR® satisfies weakening, evenif does not. Furthermore,
context closure is monotone, idempot¢Rt)¢ = R¢, and R¢ is compatible, by
(Ctx Comp).

Lemma 2 If R is closed therk® is substitutive.

Proof (Sketch) Whenevef + e R ¢ andy + ¢ R ¢/, we can prove
7+ e{Ui} RC ¢{U/z} by induction on the derivation af - e RC ¢’

Weakening is used as we enter the scope of binders. For examiple gfRC ¢’
is derived by (Ctx Comp) and (Comp fn), then= fn z => d, ¢’ = fn 2z => d/,

10 Lassen

andzz - d R® d'. By weakeningjz - ¢ R® ¢ holds. Furthermorejz + z R z,
by (Compzx) and (Ctx Comp). We calculate
FzFdRCd & gz 0z RC 02

= iz F d{izzz RC d{V'7/z2) by induction hypothesis

= gz Fd{d RCd{/3

= §F (fnz=>d{U@) RS (fnz => d'{U/7) by (Comp fn)

= Jke{id} RCe{'/B by (Ctx Comp).

0

Substitutive context closyr&>¢, is a substitutive extension of ordinary context
closure,R¢. EachRS¢ relates expressionse’ with matching outermost context
C,

e = Cldi oz, ..., d {00/}, ¢ = Cld 1), ..., d {on'/3),
subtermsl, d; related byR, and substitutions with values, v;’ inductively related

1) 7

by RSC. Itis important that?>¢ has a succinct inductive definition,

7 e R{RS} ¢ ZheRSCe
SC Subst) SC Comp)o——c—
(! 7 Zt e RSC ¢/ (p)a?l—eRSCe’

Clearly R C R°SC and if R is closed they coincide. The advantageRS¢ is

that it is always substitutive. Substitutive context closure is monotone, idempo-
tent, andR>¢ is compatible, substitutive, and satisfies weakening. Compatibility
is direct from (SC Comp). Weakening and substitutivity follow by induction on
derivations. Sincé&>¢ is compatible and substitutive, it is also reflexive and closed
under substitutions.

Readers familiar with ‘meta-terms’ (Klop, van Oostrom, and van Raamsdonk
1993) will notice that substitutive context closure corresponds to closure under
substitution of related meta-abstractions for meta-variables in meta-terms, whereas
ordinary context closure is the closure under conventional variable capturing con-
texts. In fact, Pitts (1994b) advocates meta-terms, called ‘extended expressions’,
as a generalised notion of contexts in place of conventional variable capturing con-
texts because the latter cannot be identified up-tenaming of bound variables.
However, our relational representation of contexts allows us to reason about con-
ventional variable capturing contexts updeequivalence.

4 The unwinding theorem

As a first illustration of our relational approach to reasoning about contexts, we
give a relational proof of the unwinding theorem. It says that a recursive function
in a context converges if and only if one of its finite approximants doesfiftie
approximant®of rec f = => d are given inductively by

rec® fz=>4

rec™V f =>4

fnx =>(,

' fn 2 =>let val f=(rec™ f 2 =>d)ind end.

Relational reasoning about contexts 11

We sayp convergesff Jv. p || v.

Theorem 1 (Unwinding) For every recursive functionec f x => d and every
contextC, Crec f x => d] converges if and only if there exists> 0 such that
C[rec™ f z => d] converges.

Our proof below shows how the relational notation offers a tractable formula-
tion of a complex syntactic argument. For instance, the proof is not complicated
by the fact that we prove the theorem for arbitrary recursive functions, possibly
with free variables.

First we construct a family of relatiodsR,,} -, with eachR,, given by

n>0
fFrecfx=>d R, rec™ fa=>d,
T+ let fun fr=dindend R, letval f=(rec™ fz =>d) ind end,
if d € Ezpg,,. For eachn > 0, we construct a relatioti,, which satisfies
- Clrec f 2z =>d] U, Clrec™ f z=>d|, (4.1)

for arbitrary context€’. In the course of the proof of the main lemma beldyy,

must be preserved by evaluation in an appropriate sense. Therefore we cannot
takeU,, to be the context closure @t,,. We are going to strengthen the induction
hypothesis by taking/,, to be the larger relation

SC
U, “ (U Rm> .

m>n

By this definition,U,, satisfies (4.1), it is substitutive, aidd, C U, whenever

n’ < n. These are key properties for the proof that are easier to formulate pre-
cisely in terms of relations rather than contexts. The inductive definition of substi-
tutive context closure is also convenient for formal reasoning. By the construction
of U,, whenevert + e U, €, we can argue by cases on the derivation: either
7+ e R, {U,} ¢ for somem > n, by (SC Subst), and we can decompesnd

e’ into expressions related b, and substitutions of values related by; or

rhke ﬁ; e/, by (SC Comp), and we may proceed by analysis of the derivation by
the rules for compatible refinement in Table 2. For instance, we can deduce, for
all valuesv andv’,

FFv Uy v implies ZFv U, v, (4.2)
sincelU,,; C U, andZ - rec f x =>d R recmtl) f x =>d, for all m.
Lemma 3

Q) f-p U, n p andp |y v, alsop’ |y v" andr v U, v/, for somev’.

12 Lassen

(2) If-p Uy p' andp’ |y o', alsop |y v andt- v Uy v/, for somew.

Proof In outline, the proof argument for (1) is that any occurrenceeaf in p
is “unfolded” (evaluated recursively) at moat times in the evaluatiop |}y v
and evaluates in “lock-step” with amec™ ™) in o’ (m > n). In the end, each
residual occurrence afec in v is matched by someec™") in v’ (m’ > n). The
proof of (2) is similar; evaluation afec(™ in p’ is matched by evaluation akc
in p such that any residual occurrenee:™) in v’ is matched byec in v.

We spell out the proof of (1) in detail as illustration of the relational proof
technique explored in this paper. By induction on the derivatiop ¢fy v, we
inductively construct a related derivatigh |l v’. Consider the derivation of
Fp U..n p'. There are two cases:

(SC Subst)F p R, {U..n} 7/, for somem > n + N, andp = r{U/zd, p' =
rm {6/, wherez - r R, r,,, and- @ Uy, y 0.

If r =rec fx=>d,r, =rec™ fz=>d, thenp,p are valuesN = 0,
v=p,p Yo' =p,and-v=p U, p ="'

If r = let fun fz =d in e end, 7, = let fun™ fa2 =d in e end, then
p {n v must be derived by rule (Eval let fun) froa{ut/zf} |5 v, where
t = (rec f o => d){Wz. We lett’ = (rec™ f z => d){i//z} and observe
thatk t U,y t' andr efit/zf} U,,n e{@t/zf}. By induction hypothesis
e{ét/zf} Ly v with - v U, v'. And from the definition of-,, and by (Eval
let val), alsop’ |y v'.

(SC Comp) F p Uy, 7. We proceed by analysis of the derivationpof y v.

Case (Eval apply)p = pip2, p1 vy, v1 = fnx => ¢, po |y, 0o,
e{v2/x} |y, v, @andN = N; + Ny + N3 + 1. By (Comp apply),p’ =
Py vy with = p; U,y p; and by the induction hypothesis |y, v, with

F v; Upin-n, vi. Notice thatn + N — N; > n+ N3+ 1, fori = 1,2.
Thereforer vy U, 4N, v5 and from (4.2) followsy; = fn oz => € such
thatz - e U, n, €. SOt e{t2/r} Unn, € {3/}, by substitutivity, and
e {va/a} |y, v with - v U, v/, by induction hypothesis. By (Eval apply),
we conclude’ ||y v'.

Case (Eval let fun) p = let fun fx =e; in e; end and
ex{(rec fz=>e1)/fl |y v. We havey’ = let fun f z = €} in €, end, with
fre U,y ejandf ey U,y €,. Then also

F (rec f x=>e1) Upin (rec f oz =>€))

and

- esfree =) Uy eyfleee f 2 =>)
by compatibility and substitutivity ot/,,, 5. By the induction hypothesis
ey{(rec fz=>¢€1)/fl |y o' such that- v U, . By (Eval let fun), we
concludey’ | v'.

Relational reasoning about contexts 13

Case (Evalcase)p = caseppof nil => e | z1:1 xp=>ey| f =>e3,
po In u, ¢ N, v, N = Ny + Ny, where

€1 if w=nil
q=< ex{Wfry,U2fre} ifu=u;: uy
es{Wf} if u=fnz=>e.

By (Comp case)y’ = case pj of nil => ¢ | 211 z3=>¢€,| f=> €,

with = po Unsn Py, - €1 Unsn €1, 122 F eg Upin €, f 1 e3 Upgn €.

By induction hypothesigj, {5, v’ such that- u U, n, v, sincen + N =
(n+N2)+ N;. By analysis of the derivation of u U,,, y, u’ we see that they
have matching outermost constructor and, if this is not function abstraction,

alsot- u m u’. Accordingly, let

€ if u=nil =
/ / - i
q = 65{“}/9317“2/932} ifu=wu il ug, v = uywith = u; Upyn,)
es{"/1} ifu=fnz=>ecu =fnz=>¢.

SinceNy, < N, U,+n C U, n, and, by substitutivity ot/,,, n,, = ¢ Unin, ¢
By induction hypothesig’ | y, v" with - v U,, v" and we conclude’ |}y v’
by (Eval case).

The remaining cases are simpler. This completes the proof of (1).

The proof of (2) is very similar and proceeds by induction on the derivation
of p’ | v'. The (Eval apply) case exploits that the applied function cannot be
rec® f z => e as this would diverge. 0

Proof of The Unwinding Theorem If Clrec f z => d| |y v, from (4.1) and
Lemma 3(1) follows, for alh > N, 3v'. C[rec™ f x => d| |} v'. Conversely,
if Clrec™ f x => d] |y ¢/, alsoFv. Clrec f = => d]| ||y v, by (4.1) and
Lemma 3(2) becaugg, C U. a

The backward direction of the proof can also be derived from the (computationally
adequate) theory of applicative bisimulation below, instead of Lemma 3(2).

An important consequence of the unwinding theorem is a ‘syntactic continuity’
property of contextual equivalence (Pitts 1997). In Sections 5.4 and 6.3 we see how
Lemma 3 entails syntactic continuity for applicative similarity and improvement.
Syntactic continuity is a ‘domain-theoretic’ property that holds in all computation-
ally adequate continuous models; see Pitts (1996a) anthBrg1996).

There exist a number of operational proofs of these results, both for small-step
reduction semantics (Mason, Smith, and Talcott 1996; Sands 1997a) and big-step
evaluation semantics like ours (Pitts 1997). But note that our proof holasgp#
recursive terms and that Lemma 3 gives very precise information about the oper-
ational relationship betweenand its finite approximants. Our relational notation

14 Lassen

makes it feasible to express and reason about the details of contexts and substi-
tutions. A characteristic of such relational proofs is that operational issues are
dealt with in one sweeping induction on the derivation of evaluations and syntac-
tic issues are dealt with in terms of the general algebra of relations. No auxiliary
lemmas about evaluation and contexts are needed.

In the remainder of the paper we apply the relational technique used in the proof
above to the study of operational preorders and equivalences.

5 Similarity

The primary operational relation we study is Abramsky’s applicative bisimulation
(Abramsky 1990). It is the basis for a co-inductive generalisation of Milner’s con-
text lemma (Milner 1977) to untyped functional languages. The basic idea is that
higher-order functions are infinite data structures, built from the ‘lazy’ function
abstraction data constructor, and are related co-inductively by applicative bisimu-
lation in analogy with bisimulation of infinite behaviours in process calculi.

In this section we develop the theory of applicative (bi)simulation for our lan-
guage, including preliminary simulation up to context results based on Howe’s and
Pitts’ congruence proof techniques. This part is mainly a presentation of unpub-
lished work by Pitts (1995) and serves as a basis for our further developments of
this idea in Sections 6 and 7. Our aim is to develop techniques for reasoning about
recursion. We shall see that simulation up to context is particularly useful for this
purpose. In order to complete the discussion of proof rules for recursion we also
prove a syntactic continuity property.

We consider an applicative bisimulation preord€r,C Rel, which we call
similarity. Expressions are similar if they evaluate to similar values.

p<p iff Yo.plo=W.p v & v (5.1)

Functions are similar if they are similar on all arguments; by definition of open
extension this may be expressed as

fnx=>e¢ < fnx=>¢ iff zke<’é. (5.2)

Following Howe (1996) we extend similarity to arbitrary values with matching
outermost constructor and immediate subterms pairwise similar.

nil < nil. (5.3)
vt vy Sowpnowy iff vy <o and vy <0l (5.4)
We regard (5.2)—(5.4) as a definition of similarity on values by structural induction.
We formalise this by means of a variant of compatible refinement on values, akin
to Gordon’s ‘matching values’ (Gordon 1995). For every open relaliptet R
relate ‘matching’ values built from identical value constructors and with function

Relational reasoning about contexts 15

(Matchz) ZzyjF = R

‘rFeReé
(Match fn) — grrene
IHfnx=>e R fnzxz=>¢

(Match nil) Z - nil R nil

Pl R o+, Bl
(Match cons).— o+t Y1 T Y2 0

—

Fho s vy Rl v
Table 3: Matching values

bodies pairwise related bi. This is defined inductively by the rules in Table 3.
Now (5.2)—(5.4) can be expressed by

v<d iff Fo <o (5.5)

We take the mutually recursive equations (5.1) and (5.5) as a co-inductive defini-
tion of similarity. To make this definition precise, we define a monotone simulation
operator on relationg,), which maps any open relatidd C Rel° to the closed
relation(R) C Rel given by

p(RYY & Voplo = Pl & FoRY.
We define similarity co-inductively as the greatest fixed point o,
< ¥ JR(R), (5.6)

andbisimilarity, ~, as the greatest symmetric fixed point, definable as

~ = UR(R) N ((R°)P)°P,

wherea S® b & b S a, for every relationS. Closed relations form a complete
lattice, ordered by subset inclusion, afifl) and (-°) N ((_°)°?)°? are monotone
operations with respect to this ordering. The Tarski-Knaster fixed point theorem
asserts that their greatest fixed points exist and are also greatest post-fixed points.

Since evaluation is deterministis, is the largest symmetric relation contained
in <,

~ € <nger.
Therefore it suffices to focus attention on the more primitive relationn par-
ticular, we shall only formulate simulation proof rules fgrand omit the obvious
analogues for-.

16 Lassen

Equations (5.1)—(5.4) hold becauseis a fixed point,< = (<°). An imme-
diate consequence of (5.1)aemputational adequaayith respect to termination
behaviour,

pAXQ iff Jv. pl o (5.7)

We shall callR C Rel asimulationif it is a post-fixed point of(_°), that is,
R C (R°). By the co-inductive definition (5.6) is the largest simulation, and
we have the co-induction simulation rule:

R C (R°)
RCS

Simulation is a powerful proof technique. To prove two expressions similar, we
exhibit a simulation containing them. For exampfg,is reflexive because the
identity relation is a simulationd C (Id°), and< is transitive becausg < is a
simulation,< < = (<9)(5°) C (<° <°) C (£ 5)°), where we use the fact that
(_) satisfies

(RY(S) C(RS),forall R, S C Rel°. (5.8)

Hences< is a preorder ané is an equivalence relation.

We call expressionsandp’ Kleene equivalerif they both diverge or both eval-
uate to the same value (because of determinacy, each expression can evaluate to at
most one value). Kleene equivalence is easily seen to be a symmetric simulation
and hence is included . An immediate consequencesisundnessf evaluation
with respect to bisimilarity,

pl v implies p~wv. (5.9)

Many useful program laws are instances of Kleene equivalence. For instance, beta
laws such as
(fnx=>e)v ~ e{V/a}.
let fun fz=dineend ~ e{recfz=>d)/s.

These also hold for open expressions avfd by definition of open extension.
From the beta law for recursive function declarations follows a fixed point law for
recursive functions,

rec f £ =>d ~ fnz => d{(rec fz=>d)/f
by (5.2) and the definition afec f = => d.
As an example of a co-inductive argument about recursive data, consider
def _ def _ -
u=recfr=>f wv=recfxr=>fny=>Ff (5.10)

By definition of recursive functiong, = fn x => p andv = fn x => ¢, where
D ' et fun fz=f in f end,

q et fun fr=(fny=> f) in (fny => f) end.

Relational reasoning about contexts 17

Observe thap || v andq || fn y => v. Bothu andv perpetually return a
function no matter how many arguments they are applied to. To see that they are
bisimilar, we construct the relatioR = {(p, q), (p,v)} satisfyingu (R°) v and

v ((R°)°?) u. Both R and R°? are simulations, henc C ~, andu ~ v follows

by definition of~ becausé_) is monotone.

Similarity extends to open expressions by open extensionA manipulation
of fixed points and monotone operators yiefgds= vR.(R)°. We call R anopen
simulationif R C (R)°, in which caseR C <°, by co-induction.

R C (R)°

Rz (5.11)

By (3.2), R C (R)° iff R{Id} C (R). If R is closed under substitutions then
R{Id} = RN Rel andR is an open simulation ik N Rel C (R).

5.1 Simulation up to context

Often when one wants to prove that a relati®rs contained in similarityR C <,
either R is not itself a simulation or it is not possible to show this directly. The
solution is to extend to a larger relatior$ which is a simulation and thus C <

and R C <. In fact, this is the co-inductive dual of “strengthening the induc-
tion hypothesis” in induction arguments. The proofs of syntactic continuity and
precongruence are examples of this. In both cases the constructed relations are
tailored to the respective problems. However, often the process of ‘compléting’
follows a common pattern. We shall investigate refined simulation rules which im-
plicitly extend R so as to become a simulation. Gordon (1995) presents a number
of such refinements of bisimulation for a typed, call-by-name functional language.
One of these is Milner'disimulation up to bisimilaritf{Milner 1989). For< this

says:

<<o Ro <o>

Proposition 2 (Simulation up to <) RC<

Proof If R C (<° R° <°), then< R < is a simulation:

SRS C () (S°R°<°) (S°) as<isafixed point for(_°)
c (X 5 R° U by (5.8)
C (<°R) <° is transitive
C (SR (3.2).
Therefore< R < C < and, sinces is reflexive,R C <. O

It is possible to derive an ‘equational’ simulation rule which does not involve
the simulation operatot,), nor the evaluation relation.

18 Lassen

R ° S

IN A
N

C
Proposition 3 —
P R

Proof The inclusion< R° < C (<° R° <°) follows easily from the definitions
of < and(_), and the rule is an immediate consequence of Proposition 2. O

Recall the example (5.10), where
u=rec fx=>f wv=recfar=>fny=>f

An ‘equational’ proof ofu ~ v using Proposition 3 looks as follows. L& =
{(u,v), (u, fny => v)}. By the fixed point law fotrec we calculate

u ~ fnrx=>u R° fnz=>fny=>0v ~ v,
u ~ fnzx=>u R° fny=>v,

hencek C < andR°® C <, by symmetrical applications of Proposition 3. There-
fore R C ~ andu ~ v.

Proposition 3 is not a complete proof rule because it can only relate expressions
p andp’ wherep’ converges: ih < R° < p/, there exist values andv’ such that
p < v R° v < ¢, and thernp’ converges, by (5.1). This prevents us from relating
two diverging expressions. We can repair this deficiency as in Gordon (1994), by
throwing in the singleton relatiofi(€2, §2) },

RC S (RU{(QO}) S
RCZ

(5.12)

Another refinement of bisimulation known from process calculi is Sangiorgi's
powerful bisimulation up to contextSangiorgi 1994). Here and in ensuing sec-
tions we study variants of this proof principle for similarity and improvement.

As a first formulation of simulation up to context we have the following result
for closed relations and context closure. The proof is adapted from Pitts (1995).

C
Proposition 4 (Simulation up to context) %
Proof AssumeR C (R®). We shall prove

RN Rel C (R). (5.13)

SinceR is closed,R¢ is substitutive, by Lemma 2. ARC is also reflexive, it is
closed under substitutions. Therefore (5.13) implies ftfais an open simulation,
RC C (R)°, and thenkR¢ C <°, by the open simulation rule (5.11). A8 C RS,
the result follows.

By definition of (_), (5.13) means that wheneverp RC¢ p' andp | v, there
existsv’ such thaty’ |} +" and v RC v/. The proof is by induction on the
derivation ofp | v.

Relational reasoning about contexts 19

(Ctx R) If - p R/, thenp (R) p' is immediate from assumptidi C (R°).

(Ctx Comp) Otherwise- p RC p' and we proceed by analysis of the derivation
of p || v. Each case is as in the proof of Lemma 3, except that we omit the
arithmetic onN subscripts exercised there and we observe that the results
are matching values. We show three representative cases:

Case (Eval cons)p = p1 i po, pi 4 vi, andv = vy i vy, Sincek p RC /|
we havey’ = pj i py with = p; RC p. By induction hypothesig; || v; such
that v; RC v}, fori =1,2,s0p’ | vj:: vjandk vy vy RC o) v),
by (Eval cons) and (Match cons).

Case (Eval app\ly)p =pip2, ;1 b v =fnz =>e, py | vy, ande{V2/z} ||
v. Sincek p RC p/, alsop’ = p) p, with - p; R® p,. By the induction
hypothesigy, |} v} with F v; RC v, fori = 1,2. Thenv, = fnx => ¢’
with = - e R® ¢’ and, by compatibilityi- v, R v}. By substitutivity and
induction hypothesis; e{v2/z} RC ¢/ {v2/z} ande'{va/z} || v’ with - v RC v'.
We conclude’ || v' by (Eval apply).

Case (Eval case)p = case pg of nil => ey | w1 Ty =>es| f => e3,
po 4 wandq | v, where

ey if w=nil
q= 62{“1/5131, u2/{l?2} if u= Uy == Ug
es{Wf} if u=fnx=>d.

By (Comp case)y’ = case pj of nil => ¢ | 211 z3=>¢€4| f=> €},
with - p, R€ Dy, e RC ¢/, T172 - eg RCé€,, f-es RC e5. By induction
hypothesigy, || v’ such that- « RC «'. By analysis of the derivation of the
latter, we construct

€ if u=nil =
¢ = ex{tfer, Mot i u=ri g u' = wpwith g REw
eg{u/f} if u=fnzx=> d’u/:fnx => d/’

wherel- ¢ R{R%} ¢'. By compatibility and substitutivityR< C RC and

RC¢{RS C RC. By induction hypothesig’ |} v’ with - v RC +' and we
concludey’ |} v' by (Eval case).

We conclude (5.13), s& is an open simulation contained ff. O

Proposition 4 is not a complete proof rule. For examfiey => z andfn x =>
I z are bisimilar but they are not related by any closed relaitosuch that: —
z R I z, because: andI x have no common context aritirelates only closed
expressions.

20 Lassen

A more satisfactory and complete rule for simulation up to context would be

R C ((R))

C < (5.14)

Unfortunately, our attempts to prove (or refute) this have failed and we leave it as
an open problem. A simple calculation, using (3.2), shows that (5.14) is equivalent
to the ‘open’ rule:
R C (R)°
RC <

It differs from Proposition 4 in thakR may be open so thak® may capture free
variables in expressions related By The premise is equivalent #@{Id} C (R°),
by (3.2). In Section 7 we prove a weaker version where we require that the premise
holds not only for identical instantiation®{Id}, but also forR¢ related instantia-
tions, R{R},
R{RS} N Rel C (RC)
RC <

If Ris closed ther}%{ﬁ} = R and (5.15) reduces to Proposition 4.

We have found neither simulation up fonor up to context to be particularly
useful in themselves. It seems that their potential is only realised when combined.
In connection with the precongruence proof for similarity below, we will show a
stronger version of Proposition 4.

(5.15)

R C (R°X°)

" . . <
Proposition 5 (Simulation up to context and<) RC<

This can be used to show that thefixed point combinator enjoys a least pre-fixed
point induction rule:
Proposition 6 fnz =>e{V/f} < v implies Yv (fn f=>fnx =>¢) < w.
Proof Letu & fn f=>fnzxz =>e€ w © fnx => uw u® 2. Recallu® =
(fo f => fnx => u(f f)z) (fo f => fnz => u(f f)z). We haveYv u |, w,
u® {1 w, andYv u ~ u.

Now assume the premise holds. It suffices to shéw< v. We proceed by
simulation up to context ang. Let R oo {(u>®,v)}, thenR C (R¢ <°) holds
because® || w = fn x => u u* x and we have

Ffnz=>wuu*z R¢ fnx=>uvzx
= tna=> el

S

by Kleene equivalence, assumption, and (5.5). Bisimulation up to context and
yieldsR C <. Henceu™ < v and we conclud&v u < v, as required. a

Relational reasoning about contexts 21

For example, by the fixed point law foec , we get
Yv(fn f=>fnx=>¢) < rec fxz=>ec. (5.16)

Proposition 5 is still too restrictive for many purposes. For instance, it is not clear
how to prove the converse of (5.16) and the least pre-fixed point induction rule
for rec . One might expect simulation up t§ and simulation up to context to

combine as follows:
RC (5°RC59)

RC< (5.17)
But this fails. As a counterexample (due to Andrew Gordon) take
R Y {(fnz =>nil, fnz => Q)}. (5.18)

Clearlyz - nil £° Q and fnx => nil € fnz => Q. BUut R C (~° R® ~°)
because

zFnil ~° (fnr =>nil)nil R® (fnz => Q)nil ~° Q. (5.19)

This failure corresponds to the situation for process calculi, where a symmetric
rule for weak bisimulation up to context and weak bisimulation also fails (San-
giorgi 1996). There the rule is repaired by introducing a more fine-grained effi-
ciency preorder, called expansion. In Section 6 we develop a corresponding im-
provement relation for our language. Then we repair (5.17) by replacing the left
occurrence of similarity in the premise with improvement (Proposition 10).

5.2 Precongruence

A precongruencés a compatible preorder, that is, a preorder which is preserved
by all language constructs. Precongruence is an important property of similarity
because it allows compositional (in)equational reasoning. Moreover, it shows that
bisimilarity coincides with conventional contextual equivalence (an issue which
we shall not address in this paper, however). We shall now prove that similarity is
a precongruence by means of Howe’s general method for proving congruence of
simulation orderings (Howe 1996). We employ an extension of the method, due
to Pitts (1995), which also establishes the simulation up to context results of the
previous section.

Recall that<° is a preorder. It is a precongruence if it is also compatible,
<c> C <°. Howe proves this by simulation but smge is not itself a simulation he
constructs a larger ‘candidate relation’ which is. Pitts parameterises the candidate
relation by a closed relatioR. For everyR C Rel, the parameterised candidate
relation, R, is defined inductively by

pRpY Zkp o€ .71;|—eRﬁ The <oe

(CandR) TEpR e (Cand Comp) T R o

EachR* satisfies all the properties of Howe’s candidate relation:

22 Lassen

Lemma4 (1) R'is reflexive, compatible, and substitutive.
(2) R! contains similarity<° C R.

(3) R! contains its composition with similaritg? <° C R*.

Proof Compatibility,f't@\ﬁ C Rf, is immediate from (Cagg Comp) becauyseis
reflexive. Every compatible relation is reflexive, BbandR! are reflexive. Again
by (Cand Comp) follows (2). Sincg® is transitive, (3) is also immediate from the
definition of R*. Weakening,

IjFe R ¢ = ZxjFeR'e,

can be shown by induction on the derivationiaf - e R* ¢/, using the fact that
<° satisfies weakening, being an open extension. Finally, substitutivity,

freR e & gru R @ = yr e{d R {3,

is proved by induction on the derivation 8f- e R* ¢/, using (3), weakening, and
the fact that<° is closed under substitutions. O
R C (R%)

Lemma5 W

Proof As in the proof of Proposition 4, it suffices to proy# N Rel C (R*),
then R* will be an open simulation ang* C <°.

We assumeé- p R* p” andp |} v, and we will prove that there exist§ such
thatp” |} " andt v RF v”. The proof is by induction on the derivation pf| v.

First consider the derivation of p R* p”. We see that there exists such
thatp’ < p” and eithep R p’ orp R* p'. In either case we argue exactly as in
the proof of Proposition 4 to get that |} ', for somev’ such that- v Rf v'.
Then, by definition of, there exists” such thap” |} v” and- v' <° v”. Since
Rf <° C Rf <°andR! <° C R*, I v Rf v” follows, as required. O

Howe’s candidate relation is jut, for which the premise of the lemma holds
trivially and thus establishg® C <°. We have the reverse inclusion from above,
so <° and()* coincide. Sincd) is substitutive and compatible, sofs. As <° is
also a preorder, itis a precongruence.

Proposition 7 <° is substitutive and a precongruence.

Consequently,° is also substitutive and is a congruence, that is, a compatible
equivalence relation.

Lemma 5 also entails Proposition 4: singeis reflexive we see that® C R,
thereforeR C (RC) implies R C (R*) and Lemma 5 gives C <° and thus
R C <. Moreover, sinceR* <° C R¥, alsoR® <° C R*, so Lemma 5 entails
Proposition 5 too.

Relational reasoning about contexts 23

5.3 Equational theory

Let us summarise our results about bisimilarity from above. We supplement some
equational laws that follow directly from (5.1)—(5.4) by inspection of evaluations.

Extensionality
v~ iff Fo~ed iff Fo~o .
Fre~e iff Yuy,...,u, € Valy. e{U/d ~ e {U/z.
The latter is just the definition of open extension.

Congruence and substitutivity
p~Dp.
p~p and p' ~p" imply p~p"
p~p implies p ~ p.
Fp~°p implies p~p.
che~"¢ and v~v imply e}~)z},
Strachey’s property (Gordon 1994)
either p~Q or v.p~o.
Functions
(fnx =>e)v ~ e{V/a}.
Combined with the extensionality laws we get:

fnz=>e~fnx=>¢€ iff Yu.(fnz=>e)v~ (fnz=>¢)v.

Let We have laws corresponding to those of Moggi's computational lambda cal-
culus (Moggi 1989), here presented as in Talcott (1997).

letvalz=wv ineend ~ e{V/x}.

let val x = p in E[z] end ~ E]p),
whereFE is any closed evaluation context.

Actually, these laws follow from the laws farase below becauséet can be
encoded by means chse ,

| &1 @o=>eft1 T2/}

<1et valx =p
| f=>ell/d}

case p of nil => e{nil/y}
ineend) ~

24 Lassen

Case
case v of nil => ¢, e1 if v =nil
| z1:0 29=>e3| ~ ea{V1xy, V2fze} Ifv =v1 10 vy
| f=>e3 es{V/f} ifv=1fnz=>e.

case p of nil => E[nil]
| 0 xzo=>FE[z;: =] | ~ Elp]
| f=>E[f]

Fixed point rec is a fixed point operator:
rec f x =>d ~ fnx =>d{(rec fz=>d)/p
Furthermorerec is rationally open (Brarier 1996):
Clrec fz=>d] ~ Q iff Vn>0.Clrec™ fz=>d ~ Q.

This rule is useful for equational reasoning about divergence, without direct ref-
erence to the evaluation relation. Rational openness and the unwinding theorem
are easily derived from each other using adequacy (5.7). (Rational openness also
follows from syntactic continuity and syntactic bottom below.)

5.4 Inequational theory

We also list some order-theoretic properties of similarity, taken from Pitts (1997),
in order to complete our discussion about proof rules for recursion.

Extensionality, precongruence, and substitutivity As for ~ above, except sym-
metry.

Syntactic bottom (2 is least with respect tg,,
Q<p.
This is direct from (5.1).

Recursion induction rec f x => e is the least pre-fixed point of the functional
fn z => e{7/f},

fnxz =>e{V/f} < v implies rec fx=>e < v.
In Section 5.1 we proved this result for tiie combinator, Proposition 6. The re-
cursion induction rule forec follows from syntactic continuity below; see Pitts
(1997). In the following sections we shall discuss other proofs of recursion induc-
tion using improvement and simulation up to context.

Relational reasoning about contexts 25

Syntactic continuity Every recursive function is the least upper bound of its finite
approximants and all language constructs are continuous with respect to this least
upper bound,

Clrecfz=>¢] < q iff Yn>0.Clrec™ fz=>¢] < ¢

Proof We employ Lemma 3 from the proof of the unwinding theorem in Sec-
tion 4 to give a co-inductive proof. A similar proof is outlined in Pitts (1997).
Here we can use the relations from the formulation of Lemma 3 to construct the
appropriate simulations. Note that we do not require tleatf x => e is closed.

First consider the backward implication (which is the most interesting). Recall
the relationd’,, from Lemma 3(1). We construct the relation

T = (W),

n>0

Observe thatvn > 0. Crec™ f x => ¢] < q implies - Clrec f 2 =>¢] T q.
We show thatl" is an open simulation, theéfi C <° and the result follows. So
suppose- p T p’ andp |y v. By definition of 7', foralln > 0, p U, 14N Pns
for somep,, < p’. From Lemma 3(1) we get, |y v, With - v U, 1 v,. By the
same argument as for (4.2) holds

FuU,u implies Fu U, v, (5.20)
+

so we get- v U, v,. Sincep, < p’ alsop’ || o/, with - v, <° v/, hence
- v U, <° v,,. Evaluation is deterministic so all, are identical. Therefore
- U, <° v, for alln > 0, and we conclude v T v} andp (T) p', henceT is
an open simulation as it is closed under substitutions.
The forward implication holds i€ [rec™ f x =>] < C[rec f x => ¢] for
all n. This is derivable from syntactic bottom and precongruence, by induction on
n. It also follows from Lemma 3(2). To see this we first extend (5.20) with

FoU® v implies Fov U U< o (5.21)

This holds because (rec® f z =>¢) <° (rec f z => €), by syntactic bottom.
Lemma 3(2) gived/;* N Rel C (Uy® U <°) and we deducé,” U <° is an open
simulation and/y* C <°. From (4.1) we get

Clrec™ fz=>¢| < Clrec f z => ¢,
as required. a

Determinacy of evaluation plays a key role in the above proof of syntactic con-
tinuity. One can add nondeterminism to the language such that the operational
semantics and theory of applicative bisimulation still satisfy the unwinding the-
orem, rational openness, and recursion induction, but syntactic continuity fails.
Braliner (1996) uses this example to illustrate that syntactic continuity is a strictly
stronger property than rational openness.

26 Lassen

6 Improvement

Following Sands (1997b) we introduce a stricter operational ordering and equiva-
lence that takes computational cost into account, in our case the number of function
applications in evaluations. Improvement theory has independent interest as a for-
mal approach to the study of program efficiency but Sands has also demonstrated
that it is a powerful tool for reasoning about conventional operational equivalence
and recursion. Here we are interested in the latter use of improvement.

We study the theory in some detail as its scope goes far beyond repairing the
rule for simulation up to context ang of the previous section. Our relational
approach is instrumental in establishing a rule for improvement simulation up to
variable capturing contexts. This is interesting in its own right, especially in the
absence of a satisfactory counterpart for similarity, and it entails Sands’ improve-
ment theorem.

As motivation for our definition of improvement below, recall that (5.19),
zFnil ~° (fnz =>nil)nil R (fnz => Q)nil ~° Q,

was used to prové&® C (<° R¢ <°) and thus invalidated the symmetric up to
context ands rule (5.17),

RC ("R 5°)

RCS

Herenil is bisimilar to(fn => nil) nil but the latter is more “expensive” as it
takes one more function application step to computeniSds not “improved” by
(fn 2z => nil)nil. This will be the requirement by which we shall repair (5.17)
in Section 7.

We measure the number of function applications in evaluations, essentially be-
cause applications ‘destruct’ function abstractions. In fact, the counterexample
to (5.17) can be constructed with any ‘lazy’ value constructor and associated de-
structors, but function abstraction and application happen to be the only lazy value
constructor and destructor in ML. In general the cost measure must count every
destruction of any lazy constructor. We should mention that this is tailored to sup-
port reasoning about applicative similarity and it is not meant as a contribution
to the discussion of what constitutes a good measure of program effeciency for
functional languages (Lawall and Mairson 1996).

We define an improvement preordér, and a cost equivalence relatiofs,
co-inductively like similarity and bisimilarity but with the additional requirement
thatp > ¢q implies thatg evaluates in less function application steps thahe
definitions and the basic theory are quite analogous to those of Section 4.

Let the improvement simulation operator;, be given by

p(Rrp & YNYu.plyov = .ple, v & FvRY,

for R C Rel®, p,p’ € Ezp,. Notationp’ |, v' meansIN’ < N.p' |y v
The compound operatdr®); is monotone and we definmprovement?>, as the

Relational reasoning about contexts 27

greatest fixed point

> < R(R), (6.1)

~Y

Cost equivalence?, is the greatest symmetric fixed point and is also the largest
symmetric relation contained in improvement,

T = knk™”.

Cost equivalence is computationally adequate, (5.7). But the evaluation rela-
tion is not sound, (5.9), with respect to cost equivalence; instead we have a more
detailed correspondence between evaluation and cost equivalence:

plyv implies p<® 1V

Application of the identity function is used as syntactic representation of function
application stepsI’Vv meansN-fold application ofI to v.

We call post-fixed points of_°); improvement simulationand we have co-
induction improvement simulation rules:

R C (R RC (R);

RCP RCP® (6:2)

We call R animprovement simulatiomi R C (R°); andR is anopen improvement
simulationif R C (R)j.

Improvement refines similarity; C <, because

(R); C (R), forall R C Rel®, (6.3)

S0 every improvement simulation is also an (applicative) simulation.

6.1 Improvement simulation up to context

Refined simulation rules are equally important for improvement as they are for
applicative simulation. It turns out that we are able to prove stronger refinements
of improvement simulation than was the case for applicative simulation. In the
process we will also derive that improvement is a precongruence.

C (St e : "
Lemma 6 %, wheres & (R°)¢ and ST is the transitive closure.

The proof is postponed to Appendix A.

Proposition 8 >° is substitutive and a precongruence.

28 Lassen

Proof As [> itself satisfies the premise of the lemma, we (&)< C >°.
Therefore>° is compatible and transitive, and hence a precongruence. Since
is closed under substitutions, it is also substitutive by Lemma 1. m

Another consequence of Lemma 6 is a full symmetric rule for improvement
simulation up to context and improvement.

Proposition 9 (Improvement simulation up to context and>)

RC (& (R R

(
<k

Proof FromR C (>° (R°)¢
(RUR))" C&’andR C

>°); we get thatRU> C (((RU >)°)¢"),. Hence
>, O

6.2 Equational theory

The equational theory of cost equivalence is analogous to that of bisimilarity, ex-
cept for some applications of the identity functianto account for computational
cost. Since these ‘syntactic computation steps’ can be erased up to bisimilarity,
the cost equivalence theory here entails the corresponding theory of bisimilarity in
Section 4.

The cost equivalence version of Strachey’s property accounts for the cost of
computing a value:

either p<+Q or 3IIN.Tv. p e 1V,
The beta law for function application records the computation step:
(fnzx=>¢€)v & Ie{V}.

Notice thatlet val = = d in e end is one step ‘cheaper’ than the conventional
encoding(fn x => e) d. This will be important in the proof of Proposition 11.

The remaining equational laws for bisimilarity in Section 5.3 carry over to cost
equivalence unchanged.

The laws can be used to move around syntactic computation steps. For instance,
the evaluation context law farase yields

case pof nil => ¢; casepofnil =>1¢
I | XTq .. Tg => €9 ~ | T1 . T =>1ey
I f =>e3 | f =1 €3,

becaus¢I—) is an evaluation context. A further law of this kind,

E[Ip] & I E[p],

Relational reasoning about contexts 29

movesI across evaluation contexts; itis direct from (2.2). Such laws form a useful
‘tick algebra’ (Sands 1997b) for equational reasoning about computation steps.

Cost equivalence satisfies a unique fixed point rule:
fnz =>e{Vf} & v implies rec fz=>e & v.

This rule follows from recursion induction and co-induction rules below. For il-
lustration, we can use it to prove the following correspondence between explicit
recursion and th#v fixed point combinator.

1?2 (rec fz=>1%) & Yvu, whereu= (fn f=>fnxz =>¢),

by calculatingYv v & 12 fn z => u u® 2 andz + I3 e{(fnz => v u® z)/f} ©°

u u® z. As usual, a corresponding result for bisimilaritgc f x => e ~ Yv u,
follows as a corollary. This and Proposition 6 constitute a proof of recursion in-
duction for similarity.

6.3 Inequational theory

All the inequational theory for similarity in Section 5.4 also holds for improve-
ment.

The proofs of syntactic bottom and syntactic continuity for improvement are
again analogous to those for similarity above. The lemmas from the proof of the
unwinding theorem in Section 4 were carefully phrased to also account for com-
putational cost and the syntactic continuity proof for similarity is easily extended
with this bookkeeping.

We supplement recursion induction,

fnz =>e{Vf} & v implies rec fx=>e & v,

Y

with recursion co-induction,
v B fnz=>e{Uf} implies v > rec fx=>e,

which says that recursive functions are also greatest post-fixed points with respect
to improvement. We can use improvement simulation up to contextangrove
the recursion (co-)induction rules.

Proof of recursion (co-)induction We only prove the first (induction) rule. The
second (co-induction) rule follows by a symmetric argument because the improve-
ment simulation up to context ariglrule, Proposition 9, is symmetric.

Assumefn x => e{V/f} > v. By extensionality;- fn z => e{V/f} >° v. Let
R be the singleton relatiom, R v, wherer = rec f = => e. Thenr is a fixed
point,r & fnz => e{’/f}, and- r &° fnx => e{’/f}. Nowr ($° (R°)C %), v
because |, r, v |y v, and

Fr 2% fna => e{/f} (R°)C fna => e{V/f} >° v.

30 Lassen

HenceR C ($° (R°)¢ >°);. By Proposition 9, we concludg C >, i.e.,r > v.
0

Recursion co-induction and the unique fixed point rule are call-by-value ver-
sions of Sands’ improvement theorem. This is apparent from the following refor-
mulation, derived by means of equational laws<ar

vk let fun fz=dyindyend >° let fun fx =d; in d; end
= let fun fr=dyineend &> let fun fx=d; ine end,

for dy,d, € Exp;, ande € Ezp,. The same holds fog.

It should be noted that a reason why our improvement theory satisfies the im-
provement theorem is that recursion is bound up with function abstraction in ML,
that is, recursive unfoldings require a function application step (cf. the general ver-
sion of the improvement theorem in Sands (1997a)). Hence our cost measure is
actually more fine-grained than Sands’ count of unfoldings of recursion in Sands
(1997b). In languages where recursion is not coupled with function abstraction,
the two cost measures are incomparable and the two resulting improvement theo-
ries will be complementary.

7 Applicative simulation up to improvement

A motivation for introducing improvement is its use in refining applicative simu-
lation. We can extend Proposition 5 as follows.

Proposition 10 (Applicative simulation up to > and context and <)

RC (>° Rc<°)
RCS

This rule allows us to give a direct proof of recursion induction for similarity,
analogous to the proof for improvement above: supgase => e¢{V/f} < v and
let R = {(rec f x =>e,v)}, then

rec f x => e & fnx => e{(rec f . =>¢)/AA RC fn x => efv/f} <,

and we deduce? C (®° R <°); henceR C <, by Proposition 10, and
rec f x => e S v, as required.
In analogy with Proposition 9 we would like to have a stronger rule:

RC (2" (R)C)
RC<

(7.1)

But we do not know if this holds. It would entail (5.14) which we left as an open
problem. In Appendix A we prove a weaker version:

Relational reasoning about contexts 31

R{RS} N Rel C (>° RC <°)

Lemma 7 RC <

It extends the open rule for simulation up to context (5.15) which we discussed in
Section 5.1 as an approximation to (5.14).

When R is closed, Lemma 7 reduces to Proposition 10 above. But the utility
of the lemma goes beyond that of Proposition 10 as we will now demonstrate by
proving a syntactic minimal invariance property and by deriving equational rules
for reasoning about open expressions.

7.1 Syntactic minimal invariance

As a non-trivial example, we consider a syntactic version of the domain-theoretic
minimal invariance property for our language (Pitts 1994a).

Let 7 be the recursive function

7 rec f r=>casexof nil =>nil
| A .772:>f.'171:: f.’L'Q
| 9=>fny=> f(g(f v)).

(This would not be well-typed in ML where one would define a corresponding
type-indexed family of functions instead.)

Minimal invariance says that is the identity functiony ~ I. We can prove
this by means of Lemma 7.

Proposition 11 (Syntactic minimal invariance) = ~ 1.

Proof 7 < I follows by recursion induction from

case r of nil => nil
Tt | 150 2o =>Tx1: Tz ~° x,
| g=>fny=>1(g9(Iy))

which is easily verified by case analysis on the value.of
We invoke Lemma 7 to prove < 7. Let R C Rel® be given by

yFyRmy,
andS = >° R <°. We proveR{RS} N Rel C (S), i.e.,
Fov RCo implies 7o' | v" with +FoSv,
by induction on the derivation ¢f v RC /.

(Match nil) v =nil, v’ = nil. Thenz v’ || nil. Clearly v S nil.

32 Lassen

(Match cons) v = vy 1w, v = vf i v}, andk v; RC o). By induction
hypothesisr v; |} v/ with v; S v]. Sor o' || v" =] 1 ofand-v S 0",

(Matchfn) v =fny=>e¢,v' =fny=>¢€,andy ke RC ¢ Thenm v' || v =
fny => (v (7 y)) and- v S v because

ykFe $° letvaly=yinletvaly=e iny end end
RC letvaly=7y inlet val y=¢ in 7y end end

o

~° (V' (T y)),
and®° R¢ ~° C 8.

We concludeR C <° by Lemma 7. Therefore < 7w, for all closed values,
andI < 7 holds by extensionality. O

Simulation up t@> and context angt, Lemma 7, substantially simplifies the proof.
Mason, Smith, and Talcott (1996) give a direct operational proof of this result. It
is also possible to recast their proof in the relational proof style used throughout
this paper.

The finite approximants ot (as defined in Section 4) are ‘syntactic projec-
tions’. Syntactic minimal invariance and syntactic continuity entail that their least
upper bound is the identity function and thus:

p Sq iff Yn>0.mp S g (7.2)

wherer, is then'th finite approximant of the recursive function

In Milner’s construction of the fully abstract continuous model of PCF (Milner
1977) and in the operational model constructions for a call-by-value language like
ours in Mason, Smith, and Talcott (1996), syntactic projections are used to address
domain-theoretic notions of finite elements andlgebraicity syntactically.

Viewed as a proof rule, (7.2) is a sort of generalised Take Lemma (Bird and
Wadler 1987) or higher-order structural induction principle; see Smith (1997).
Pitts (1996b, 1994a) has also developed this idea and its domain-theoretic back-
ground and he has studied various applications.

7.2 Equational rules

From Lemma 7 we can derive an ‘equational’ version akin to Proposition 3.

RC>°RCSO

—_Y

Proposition 12 RC<

Proof If R C >° RC <° then
R{RG C (=° RC <){RG

{4} (RHRG)($°{1dY)

(&
(&

N 1N

2" (R4RY) 5° (7.3)

Relational reasoning about contexts 33

becausé>" and<° are closed under substitutions.
Moreover, we can shoRC{R%} C ¢° R <°, i.e.,

FruRCW and §HTRCT imply ¢k w{id ©° RC ° o/ {3,

by induction on the derivation af - v RC «’. In the (Match fn) case the substi-
tutions ofu andw’ into the function bodies can be replaced by let bindings up to
cost equivalence.

Therefore>® (RC{R%}) <° C >° RC <° and

R{RSNRel C > RC< from (7.3)
C 2(RY S by definition of(_)
C (B)WR)(<L°) > and< are simulations
C (R"R°X°) by(58),
and we concludé& C >°, by Lemma 7. O

Proposition 12 is a useful proof rule in itself—for instance, the proof of re-
cursion induction using Proposition 10 above is more directly an instance of the
equational proof rule of Proposition 12. Furthermore, from it we can derive a
version of a proof rule by Sands (1997b), called ‘bisimulation up to context and
improvement’: let relatiom- C Rel be given by

p>q iff pRIg

RQDORCSO
RC<°

Proposition 13

Proof Supposer C >° R <°. We constructS C Rel® by
T (fnz=>e) S (fnz=>¢),
whenever: ¢ Z and there exis{ andd’ such that
fFdRd and fFdp>°eRCe <°d.
Observe that
FHdP>° (fnz=>e)nil and Z+ (fnz=>¢)nil <°d'.

ThereforeR C >° S€ <°. We haveS C >° SC <° because

Zh (fnz=>e) RC (fnz=>¢),

and

RC C (275C57)C C (B)C(S9)° () € &S <

HenceS C <°, by Proposition 12, an& C >° S¢ <° impliesR C <°, because
<° is a precongruence and contaips O

34 Lassen

Sands (1997b) has demonstrated how (versions of) this rule allows simple cal-
culational proofs of many functional program equivalences from the literature. Itis
particularly useful for call-by-value languages with inductively defined data types
for which conventional applicative simulation is of little use.

For illustration, we solve Exercise 10.20 from Winskel (1993). Let

f def rec f x =>fny => casex of nil =>y

| x1: x9=> f(append(rziy)zs)(sz1y)
| h=>0,

g Lof recgx =>fny=>casezof nil=>y

| 2110 ma => gaa(g(rzy)(sz1y))

| h=>0,
wherer, s € Valy (presumably they are functions but we need not require that)
andappend is the list concatenation function,

def .
append = recax=> fny=>caserofnil =>y
| z1:0 o =>z1 axqy
| g=>Q.

We will now prove thatf andg are bisimilar by means of Sands’ proof rule. As
a first attempt, let relatio® be given by

T (fuov) R (guov),

wheneven, v € Valz. By extensionalityf ~ g if R C ~°.
By means of the equational laws for cost equivalence, we calculate

FF fupv $° I*caseugof nil =>wv
| 210 o =>1letvalz=rxzv
inletvaly=sz;v
in f(appendx z5)y
end
end
| h=>4Q,

FFgupv $° I?casewgof nil =>v
| 210 o =>1letvalz=rxzv
inletvaly=szyv
ingzy(gxy)
end
end
| h=>Q.

The resulting expressions are identical except for the subté(ampend x z5) y
andg z2(g z y). We need to extend® to also relate these. L&k(u,,...,uy) abbre-
viateappend u,,(append u,,_1(...(append u; uo)...)). Now, let R be given by

T (f Qun,..., u0) v) R (guo(-..(9unv)...)),

Relational reasoning about contexts 35

forall n > 0 anduy,..., u,, v € Valz. From the calculations above we see that
ZF (£ Q(up)v) = (fuov) >° RS~ (gug),

becauserz zory F (f(appendzza)y) = (fQ(x,z2)y) R (gaa(gzy)). If
n > 1 we calculate

TE fQ(up, Up_1,..., Ug) v
®° TI%case u, of nil => f Q(u,_1,..., ug) v
| z1:0 xp=>1letvalx=rzv
inletvaly=sxzyv
in I% f Q(x, T2, Up 1,0, Ug) Y
end
end
| h=>0,
>° 1?case u, of nil => f @(uy,_1,..., uy) v
| z1:0 xp=>1letvalx=rzv
inletvaly=sxz;v
in fQ(x, 29, Up_1,..., Ug) Y
end
end

| h=>9,

ZE gug(...(gup_1(gu,v))...)
®° TI%case up of nil => gug(...(g Up_1 v)...)
| z1:0 zo=>1letvalz=rxzv
inletvaly=sxzyv
in guo(.--(gun-1(922(92y)))..)
end
end

| h=>0Q.

SinceZzzoxy F (f Q(x, 2, Up—1,..,u0) Yy) R (guo(...(gun—1(gz2(g29)))...))
andZ F (f Q(up_1,...,u0) v) R (guo(...(gu,—1v)...)), we get that

T (fQ(tp, Up_1,.., o) v) >° RE ~° (gug(..(gUun_1(gunv))...)).

HenceR C >° R® ~° and thuskR C <° by Proposition 13. From the calcu-
lations above it is easy to obtaf#f? C >° (R°?)¢ ~° too, and hencé& C <°,
again by Proposition 13. We conclude tatC ~° andf ~ g.

The shortcoming of Lemma 7, compared to (7.1), is less apparent in the derived
equational rules of Propositions 12 and 13. But note that they worlogen
relations, in contrast to the ‘closed’ equational rule for simulation up to similarity
of Proposition 3. We do not know if stronger, closed versions hold:

L RCE(R)C S L RC> (RS
() RC< (44) RC<

(7.4)

36 Lassen

They are consequences of (7.1) becasgr°)¢ < C (>° (R°)¢ <°) and (i)

follows from (i) as in the proof of Proposition 13. Propositions 12 and 13 are
weaker than (7.4): sometimes reasoning about open terms does not suffice as it
may be necessary to argue by cases on the values of the free variables. One such
example is syntactic minimal invariance, Proposition 11. It would follow from
(7.4)1), by structural induction on closed values, but not from Proposition 12.

8 Conclusion

The ‘relational’ proof style of Howe (1996) and Pitts (1995) has been used through-
out this paper. It is a rather low-level approach but is precise and tractable and
applies to a wide range of problems involving term contexts and evaluation. Our
proofs of the unfolding theorem and various simulation up to context results sub-
stantiate this. The algebra of relations in Section 3 and, in particular, context
closure facilitate the construction of relations for this style of proofs. Our results
are stated for an untyped ML fragment but should carry over to other typed and
untyped higher-order languages.

Simulation up to context is a proof technique with a great practical potential
for applicative bisimulation and improvement. This is witnessed by our proofs of
recursion induction, the improvement theorem, syntactic minimal invariance, and
Exercise 10.20 from Winskel (1993), as well as by the examples of Gordon (1995)
and Sands (1997b). But an important problem is left open, namely the validity of
(5.14) and (7.1),

R C ((R°)%) RC (&° (R <)
RCS< RC<

The significance of the gap between these and the weaker rule of Lemma 7,

R{RS} N Rel C (>° RC <°)
RC<e

is unclear. In Section 7 we demonstrated how Lemma 7 allows us to prove a range
of non-trivial results.

Acknowledgements After some time of fruitless investigations into applicative
bisimulation up to context, this work got under way when Andrew Pitts showed
me his notes on the subject (Pitts 1995). | am grateful for his encouragement and
valuable guidance in this project. | wish to thank David Sands for discussions; his
work has been influential in every aspect of this research. Finally, | am indebted
to Andrew Gordon, Peter @rbaek and an anonymous referee for detailed comments
and helpful suggestions. | am supported by a grant from the Danish Natural Sci-
ence Research Council.

Relational reasoning about contexts 37

A Proofs

This appendix contains the rather delicate proofs of Lemmas 6 and 7. The first of
these uses the following lemma.

Lemma 8 Compatibility is preserved by transitive closure.

Proof First observe that compatibility is preserved by relation composition: if
R andS are compatible, so is their compositiéhS,

RS=RSCRS.

Next, supposeR is compatible. IfZ - e R* ¢, each immediate subterm
of e is related to a corresponding subteetnof ¢/, Zy; - e; R™ e, for some
y;. This means that there exists; > 1 such thatZy; F e; R™ e}, where
R™ is them;-fold composition ofR with itself. Letm be the greatest of these
m,, for all pairs of subterms. SincR is compatible it is also reflexive. Hence
ry; F e; R™™ e; and thenty; F e; R™ e, for all corresponding subternes
ande,. Hencez + e Rm ¢, by definition of compatible refinement, and then
¥ F e R™ ¢ because compatibility is preserved by relation composition. So
7+ e RT ¢ and we conclude thak™ is compatible. 0

RC (ST o
Proof of Lemma 6 # wheres & (R°)C,
StCbk
Proof AssumeR C (S*);. We are going to prove th&" is an open improve-
ment simulation,

St C(ST)9.

ThenS* C >°, by the improvement simulation rule (6.2).

First we need some properties$f.

By definition of context closure§ is compatible. Compatibility is preserved by
transitive closure, Lemma 8, $0 is also compatible.

Open extensionk?, is closed under substitutions and s®i®ecause closure
under substitutions is preserved by context closure. It is also preserved by relation
composition and, consequently, by transitive closure. Therefoiis closed under
substitutions.

By Lemma 1,57 is substitutive because it is compatible, transitive and closed
under substitutions.

We proceed to prove+ C (ST)j. SinceS™ is closed under substitutions, it
suffices to shows™ N Rel C (ST);. This is equivalent to asserting that predicate
P(N), defined by

et Vp,piv. Fp ST & plnvv =

P(N) W.p Yy v & Fo St

38 Lassen

holds for allN. The proof is by a series of nested inductions\dyon the deriva-
tion of - p St p/, and on the derivation of || ;- v.

The outer induction hypothesis is
(LH.1) P(N) forall N < Ny.
Then we must show(Ny). This follows if
Vp,pv. FpSp & plen,v = .9 ey, ¥ & Fo STV, (A)
because, suppositgp S p/,
Fp=poSp1 S Spm=0,
andp |, v, by repeatedly applying (A.1) te p; S p;1, we getp’ |<n, v’ with
Fo=uvy St - - Stu, =1,
and we can conclude v ST v’ because+ is transitive,
St...8t=8+...5F C S+
We strengthen (A.1) slightly and prove that predic@tg, M, v),

pluv & Mﬁﬂo =
Qp, M,v) & vp'. Ep SIS = o
.op v & Fo ST,

holds for allp, M, v. This entails (A.1) as p S p’ clearly implies- p S{S+} p’
with empty substitution o6+. Observe also tha{S*} C ST becaus&+ C ST,
by compatibility, andS{S*} C S+, sinceS C S* andS™ is substitutive. In fact,
Q(p, M, v) follows from (I.H.1) wheneved! < Nj.

We proveQ(p, M, v), for all p, M, v, by induction on the derivation gf |}, v.
For any derivatiom, |}, vo, the induction hypothesis is

(LH.2) Q(p, M, v) for all premises |}, v in the derivation ofy {1z, vo,

and we must shov@(pg, Moy, vo). We assumey {1, vo and My < Ny, where
po = e{l/d}, T+ e S ¢ andF @ S+ @ such that- e{i/? S{S+} ¢ {&/z}. We will
showe' {U/z} 1)<y, v}, for someu}, such that- vy ST v}

The strategy is to exploit the assumpti@n- e S €’ to build the derivation
e {U)3 J<n, v The substitutions ofi and’ are separated out in the induction
on the derivation o{U/z} |5, vo. If it is derived by means of the (Eval apply)
rule, we need to perform these substitutions and we end up with terms related by
S+ rather thanS{S*}. Then we invoke the stronger induction hypothesis (I.H.1).
It applies because the premises of the (Eval apply) rule will all have cost-indexes
smaller thamV/, and N,.

RecallS = (R°)¢ and consider the derivation @f- e S ¢'. There are two
cases.

Relational reasoning about contexts 39

(Ctx R) Supposey = e R° ¢ with 7 C 7. Note that? I~ e S e becauseS
and S are reflexive. Therefore e{U/:c} S{S+} e{U/? From the (Ctx
Comp) case below we gef/z |l<y, v with - vy ST v 0 Moreover,
- e{t)i} R 6’{“/_} The assumptio® C (S+)I |mpI|eSe’{u/m} J<nry 5
with - v S+ v}. SinceST is transitive, we obtaifr v, St v}, as required.

(Ctx Comp) Suppose - e S €. If this is derived by the (Comp) rule, there =
e/ = x;, for somer; € ¥, and the result is immediate becamzs{é/a?} Yo u;,
e {W/3 |y v, and, by assumptior; u; ST u). Otherwisee ande’ are not
variables, and we proceed by analysis of the derivatiar{@f} 1., vo.

Case (Eval fn) e{t/z} is a function e{t/z = v,, andM, = 0. Sincee is not
a variable, it is itself a functiors, = fn y => d for somed € Ezp;,. Then
#+ e S ¢ must be derived by (Comp fn) so thdt= fn y => d’ where
Ty d S d. Hencee {U/i} |}y ¢ {U/i} andF e{l/z} S+ ¢ {&/z}, by (Eval fn)
and (Match fn) becauser d{@/z S{S+} d'{i/7} andS{5T} C S+.

Case (Eval nil) By reasoning similar to the previous case, we se@de’
are bothnil. Hencee'{'/8 |, ¢{i'/ andr e{U/z S+ ¢ {i/3}, by (Eval
nil) and (Match nil).

Case (Eval cons)Sincee is not a variable, it must be of the forem= e; @1 e,
ande; {W/z} |y, vs, fori = 1,2, such that\ly = M, + M, andvy = vy vs.
Thenz + e S ¢ impliese’ = ¢, 1 ¢, andZ F e; S ¢,. Observe
that M; < N, becauseM; < M, and M, < N0 Induction hypothesis
(.LH.2) andez{u/m} U, v; imply e {@/8 |<py, v with - v; ST v, Hence
IR lapg, vh With - vy = vy i1 vy ST o) i b, by (Eval Cons) and
(Match Cons).

Case (Eval apply) e = eiey, e {/R |ay, v1 = fny => d, eg{ﬁ/m} Iar, o,
d{v2fy} Jar, vo, aNdMy = My + My + M3 + 1. Sincez - e Se, e =ee,
with Z - e; S e}. We observe that/; < Ny becausél; < M andM < Ny,
for i = 1,2,3. By induction hypothe5|s (LH.2%: W& U, v; implies
’{U/m} U<M o) with - v; St o), fori = 1,2. Sov, = fny => d'
wherey + d S+ d'. Hencel- d{vz/y} St d’{vé/y}, becauses™ is substi-
tutive. SinceMs3; < N, induction hypothesis (1.H.1) an@{V2/y} {rr o
imply d' {54} J<pr v) with = vy ST v). By (Eval apply), we conclude
a Yty 05,
Case (Eval letfun) e = let fun fy =e; in e; end, ex{UW/ES} g vo,
wherew = rec fy =>e;. Sincer e Se e =let fun fy=¢€| ine€), end
with Zfy F e S €} andZf + ey S €,. Letw' = rec fy => ¢,
thenz F w S w' becauseS is compatible. Consequently,- w S+ w'
and - e, {iwzf S{SH ’{ﬁ'ﬂ//*f} By induction hypothe5|s (1LH.2),
ex{UW/Ef} oz, vo impliesel ' w'/zf} <y, vl with - vy ST v}. By (Eval
let fun), we conclude’ {&/z} <, v).

40 Lassen

Case (Eval case) = caseeyof nil => e | Y11 yo2 =>ex | f => e3,
eo{Wzy s, v, ¢ dar, vo, aNdMy = My + M,, where

e {U/d if v =nil
q= 62{ﬁv1v2/fy1y2} if v= V1 -+ U2
es {WV/zf} if v="~fny=>d.

Sincez ke S ¢, ¢ = case epofnil =>¢€| | y1 1 yo=>¢€h| f=>e,
with ey S ey, T e1 S €], Ty1ya - ex S €}, andzf - e3 S ef. Observe
that M; < N, becauseM; < M, and M, < N,. Induction hypothesis
(ILH.2) andeo{i/z} 1 ar, vimply ey {&/@ J<p, v' with v ST o', According
to the derivation of- v S+ ¢/, let

6/1{17//:?} if v =nil =7’
q/ = eé{ﬁ’vivé/fylyﬂ ifo=v 1 wv,v = Ui .- Ué, - v, §F U;
ey { vz f} if Fo=toy=>dSt fny=>d =

By inspection of the definitions of andq’, we see that ¢ S{S*} q. In-
duction hypothesis (1.H.2) ang{} s, vo imply ¢’ {}<ps, vj With = vy ST vy,
By (Eval case), we concludé{@'/z |<, vh.

Case (Eval let val) Similar to the previous case.

All cases considered, we conclu@®p,, My, vo), as required. This completes the
induction step forQ and we haved(p, M, v) for all p, M, v.

Therefore (A.1) andP(Vy) hold. This completes the induction step Br so
P(N) holds for allN.

ThenS™ N Rel C (S*); and ST is an open improvement simulatiofi;” C
(S*)s. The conclusionS* C °, follows co-inductively by the improvement
simulation rule (6.2). O

Lemma 6 is invalid for similarity (i.e., with_) and <° in place of(_); and
>>°). The proof above uses the improvement aspect ofto assert thap’ || v/
computes no slower than} v whent p S p'. If there is no bound on the cost of
p’ |} v/, the transitivity argument, why (A.1) implié8(N,), breaks down.

The proof of Lemma 6 makes use of the transitive closur® iof two ways.

(z) ST is substitutive. This is used in the (Eval fn) and (Eval apply) cases of the
induction step.

(43) Inthe (CtxR) case transitivity is used to avoid substitution of values related
by S+ into expressions related .

Lemma 7 is essentially a weaker version of Lemma 6 for similarity. The proof
is similar to that of Lemma 6 but solvés) and(i:) without transitive closure.

Relational reasoning about contexts 41

(7) Substitutions can be replaced by let bindings up to cost equivalence; thereby
the compatibility ofR¢ suffices and substitutivity is not necessary.

(17) The requirement that the premise of Lemma 7 holdsH@RC} rather than
just R circumvents the problem of substitution into expressions related by
R.

R{RS} N Rel

Proof of Lemma 7 7

C (" R- <)
C <°

Proof AssumeR{RC N Rel} C (>° R <°). We are going to prove
R{Id} C (S), whereS =>° RC <°, (A.2)

Observe thatS C <° RY{Id}° <°, because>" C <° and R® C R“{Id}°, by
(3.2). By simulation up to similarity, Proposition 2, we get that (A.2) implies
RY{Id} C <. HenceR® C <°, by (3.2), and the conclusio? C <¢, follows
because? C RS,

S is compatible becausg’, R, and <° are and compatibility is preserved

by relation composition. Therefoig is reflexive andS is a reflexive relation on
values. HenceR“{Id} C R“{S}, and (A.2) holds ifR“{S} C (S). The latter is
equivalent to the predicaf@(NV) holding for all N, where

det Vp,p',v. l—pRC{g}p’ &plnvv =
P(N) < .y v & FouSY,

We proceed by induction oN. The induction hypothesis is
(LH.1) P(N) forall N < Np.
Then we must show (N,). This follows if Q(p, M, v),
pluv & M <Ny =
Qp, M,v) & V. Fp RSy =
H.p v & FouSY,

holds for allp, M,v. We proveQ(p, M, v), for all p, M, v, by induction on the
derivation ofp |}, v. For any derivatiom, |, vo, the induction hypothesis is

(LH.2) Q(p, M, v) for all premisesp |}, v in the derivation opg | s, vo,

and we must shov@(py, Mo,vo)._We assumey g, vo and My < No, where
po = e{#/i}, ¥ - e RC ¢ andr- @ S @ such that- e{t/z} RE{S} e'{Z/z. We will
showe'{t/z} |} v}, for someu, such that- vy S v},

Consider the derivation af - e R ¢’. There are two cases.

42 Lassen

(Ctx R) Supposer - e R €. Sincel S i, there exist and«’ such that
> RCw <°a'. As>° and<° are precongruences, we get

e{l/d) & e{Ud R{RG ' {0z} < €'{7/3)

Sincee{@z} |} vy, alsoefd/z} |} v with - vy >° v. From assumption
R{RSNRel C (S) follows &/ {0/ || o' with - v S v'. Finally,e'{@'/& | v}
with - o/ <° o), andk vy 2° v S o' <° o), impliesk v, S v}, because
>° S <° C S by transitivity of >° and<°.

(CtxComp) If ¥ e RC e/, we argue as in the proof of Lemma 6 above (with
R and S in place of S and S+), except that here we do not keep track
of the cost of the evaluatioel {€/2 |} v}. Again the result is immediate
if e is a variable. Otherwise we proceed by analysis of the derivation of
e{W/z |, vo. Only the cases when this is derived by (Eval fn) or (Eval
apply) are different from those in the proof of Lemma 6.

Case (Eval fn) e{t/z is a function and{W/z} = v,. Sincee is not a variable,
itis itself a functione = fn y => d for somed € Ezp;,. Thenz - e RC ¢/
must be derived by (Comp fn) so thét= fn y => d’ wherezy - d R® d'.
Sincel- @ S ', there exists and«w’ such that- o ? W RC @ <° i, As
>° RC, and<° are compatible, we get

y - (¥ &° dffjs RYRYG d'{/5 <° d' {3,

Let (let ¥ = v in e) abbreviate a suitableet construction which beta
reduces t@{U/z. Then

y b AR ©° (let & = in d) RC (let Z = ' in d') ©° d'{0'/3.
Sincel> and < contain® and are transitive,

y - d{ijg s I/,
Hence- e{i/s} S ¢ {i/3}, as required.

Case (Eval apply) e = ejey, er {/@ Iay, v = fny => dy, ex{U/d oy, v2,
di {2/} Uag, vo, and My = My + My + Ms + 1. SinceZ + e RC e,
e = ehel, with ¥ - e; R¢ e,. We observe thatl; < N, becausé\l; < M
andM < N, fori = 1,2, 3. By induction hypothesis (I.H.2},; {#/z {1, v;
implies e/ {&'/& |} v} with - v; S v/, fori = 1,2. Sov| = fny => d
wherey - d, S dj, that is, there exist,d’ € Ezp, such thaty - d, >°
d R¢ d <° d). Since>’ and<° are closed under substitutions {v2/y} >
d{ozfyy andd' s} < d{v5/}. From the former and,; {U2/y} {1y, vo, We get
d{U2/} J<pr, v With v >° 0. As Mz < Ny andt- d{v2/} RS} d'{vo)},

Relational reasoning about contexts 43

induction hypothesis (I.H.1) and{v2/y} {}<ar, v imply d'{z/y} | o' with
v S v, Sinced {vol} < oo, di{vafyt | vl with o' <° v}, Then
- v S vl becausé>® S <o = >° S <ecand>® S <° C S. By (Eval
apply), we conclude’ {&/z | vj.

This establishe&“{S} C (S) and then (A.2) follows, as required. O

References

Abramsky, S. (1990). The lazy lambda calculus. In D. Turner (REejgearch
topics in functional programmingp. 65-116. Addison-Wesley.

Bird, R. and P. Wadler (1987troduction to Functional Programmingnter-
national Series in Computer Science. Prentice-Hall.

Bratiner, T. (1996, November). An axiomatic approach to adequacy. Technical
Report DS-96-4, BRICS, Department of Computer Science, University of
Aarhus. Ph.D. thesis.

Clinger, W. and J. Rees (editors) (1991, July-September). Révispdrt on
the algorithmic language schentg@SP Pointers 1\(3), 1-55.

Felleisen, M. and D. P. Friedman (1987). Control operators, the SECD-machine,
and the\-calculus. In M. Wirsing (Ed.)Formal Description of Program-
ming Concepts IlIFIP.

Ferreira, W., M. Hennessy, and A. Jeffrey (1995, September). A theory of weak
bisimulation for core CML. Technical Report 05/95, COGS, University of
Sussex.

Gordon, A. D. (1994)Functional Programming and Input/Outpu@ambridge
University Press.

Gordon, A. D. (1995, July). Bisimilarity as a theory of functional program-
ming. Mini-course. BRICS Notes Series NS-95-3, BRICS, Department of
Computer Science, University of Aarhus.

Gordon, A. D. (1997). Operational equivalences for untyped and polymorphic
object calculi. See Gordon and Pitts (1997).

Gordon, A. D. and A. M. Pitts (Eds.) (199'Hligher Order Operational Tech-
nigues in Semantic®ublications of the Newton Institute. Cambridge Uni-
versity Press.

Gordon, A. D. and G. D. Rees (1996). Bisimilarity for a first-order calculus of
objects with subtyping. IRFOPL'96 Symposium on Principles of Program-
ming LanguagesACM.

Howe, D. J. (1989). Equality in lazy computation systemgitinAnnual Sym-
posium on logic in computer sciendeEE.

44 Lassen

Howe, D. J. (1996). Proving congruence of bisimulation in functional program-
ming languagednformation and Computation 122), 103—-112.

Klop, J. W., V. van Oostrom, and F. van Raamsdonk (1993). Combinatory
reduction systems: introduction and surv@yeoretical Computer Sci-
ence 121279-308.

Lassen, S. B. (1997). Action semantics reasoning about functional programs.
Mathematical Structures in Computer Scien8pecial issue dedicated to
the Workshop on Logic, Domains, and Programming Languages (Darm-
stadt, May 1995). To appear.

Lawall, J. L. and H. G. Mairson (1996). Optimality and inefficiency: what isn’t
a cost model of the lambda calculus.I@®FP’96 International Conference
on Functional Programmingop. 92-101. ACM.

Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics
to domain theoryinformation and Computation 128), 26—-47.

Milner, R. (1977). Fully abstract models of typed lambda-calcthieoretical
Computer Science, 4-23.

Milner, R. (1989).Communication and Concurrendyrentice-Hall.

Milner, R., M. Tofte, and R. Harper (1990yhe Definition of Standard ML
Cambridge, Mass.: MIT Press.

Moggi, E. (1989). Computational lambda-calculus and monadéthnnual
Symposium on logic in computer scienpp. 14-23. IEEE.

Ong, C.-H. L. (1992, August 7). Concurrent lambda calculus and a general
pre-congruence theorem for applicative bisimulation (preliminary version).
Unpublished.

Park, D. M. (1981). Concurrency and automata on infinite sequences. In
P. Deussen (Ed.)Conference on Theoretical Computer Sciendelume
104 ofLecture Notes in Computer Scienpg. 167-183. Springer-Verlag.

Pitts, A. M. (1994a, November). Inductive and co-inductive techniques in the
semantics of functional programs. Course held at BRICS, Department of
Computer Science, University of Aarhus.

Pitts, A. M. (1994b, December). Some notes on inductive and co-inductive tech-
niques in the semantics of functional programs (draft version). BRICS Notes
Series NS-94-5, BRICS, Department of Computer Science, University of
Aarhus.

Pitts, A. M. (1995, March). An extension of Howe’s construction to yield
simulation-up-to-context results. Unpublished Manuscript.

Pitts, A. M. (1996a). A note on logical relations between semantics and syntax.
Submitted to the Journal of the Interest Group in Pure and Applied Log-
ics, Special Issue for 3rd Workshop on Logic, Language, Information and
Computation (WoLLIC'96) May, 1996 Salvador (Bahia), Brazil.

Relational reasoning about contexts 45

Pitts, A. M. (1996b). Relational properties of domailmgormation and Com-
putation 127 66—90.

Pitts, A. M. (1997). Operationally-based theories of program equivalence. In
P. Dybjer and A. M. Pitts (Eds.)semantics and Logics of Computation
Cambridge University Press.

Sands, D. (1991). Operational theories of improvement in functional languages
(extended abstract). IRroceedings of the Fourth Glasgow Workshop on
Functional ProgrammingWorkshops in Computing Series, pp. 298-311.
Springer-Verlag.

Sands, D. (1997a). From SOS rules to proof principles: An operational metathe-

ory for functional languages. IROPL'97 Symposium on Principles of Pro-
gramming Language#\CM.

Sands, D. (1997b). Improvement theory and its applications. See Gordon and
Pitts (1997).

Sangiorgi, D. (1994, August). On the bisimulation proof method. Technical Re-
port LFCS-94-299, University of Edinburgh.

Sangiorgi, D. (1995, April). Lazy functions and mobile processes. Technical
Report RR-2515, INRIA-Sophia Antipolis.

Sangiorgi, D. (1996). Locality and interleaving semantics in calculi for mobile
processeslheoretical Computer Science 3% 39-83.

Sangiorgi, D. and R. Milner (1992). The problem of “weak bisimulation up to”.
In W. R. Cleveland (Ed.)CONCUR '92 Volume 630 ofLecture Notes in
Computer Sciencé&pringer-Verlag.

Smith, S. F. (1997). The coverage of operational semantics. See Gordon and
Pitts (1997).

Stoughton, A. (1988). Substitution revisit@teoretical Computer Science,59
317-325.

Talcott, C. (1997). Reasoning about functions with effects. See Gordon and Pitts
(1997).

Winskel, G. (1993)The Formal Semantics of Programming Languagesm-
bridge, Mass.: MIT Press.

Recent BRICS Report Series Publications

RS-97-24 Sgren B. LasserRelational Reasoning about ContextSeptem-
ber 1997. 45 pp. To appear as a chapter in the booigher Or-
der Operational Techniques in Semanticsds. Andrew D. Gor-
don and Andrew M. Pitts, Cambridge University Press.

RS-97-23 Ulrich Kohlenbach. On the Arithmetical Content of Restricted
Forms of Comprehension, Choice and General Uniform Bound-
edness August 1997. 35 pp.

RS-97-22 Carsten Butz. Syntax and Semantics of the logi€} . July
1997. 14 pp.

RS-97-21 Steve Awodey and Carsten ButZlopological Completeness for
Higher-Order Logic July 1997. 19 pp.

RS-97-20 Carsten Butz and Peter T. JohnstoneClassifying Toposes for
First Order Theories July 1997. 34 pp.

RS-97-19 Andrew D. Gordon, Paul D. Hankin, and Sgren B. Lassen.
Compilation and Equivalence of Imperative Objectduly 1997.
iv+64 pp. Appears also as Technical Report 429, University of
Cambridge Computer Laboratory, June 1997. To appear in
Foundations of Software Technology and Theoretical Computer
Science: 17th Conferencd=CT&TCS '97 Proceedings, LNCS,
1997.

RS-97-18 Robert Pollack.How to Believe a Machine-Checked Proaduly
1997. 18 pp. To appear as a chapter in the bookwenty Five
Years of Constructive Type Theargds. Smith and Sambin, Ox-
ford University Press.

RS-97-17 Peter Bro Miltersen. Error Correcting Codes, Perfect Hashing
Circuits, and Deterministic Dynamic Dictionaries June 1997.
10 pp.

RS-97-16 Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez
Petrank, and Gabor Tardos. Linear Hashing. June 1997. 22 pp.
A preliminary version appeared with the title Is Linear Hash-
ing Good? in The Twenty-ninth Annual ACM Symposium on
Theory of Computing STOC '97, pages 465-474.

RS-97-15 Pierre-Louis Curien, Gordon Plotkin, and Glynn Winskel.
Bistructures, Bidomains and Linear LogicJune 1997. 41 pp.

