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Syntax and Semantics of the Logic Lλωω
Carsten Butz∗

July 24, 1997

Abstract

In this paper we study the logic Lλωω, which is first order logic ex-
tended by quantification over functions (but not over relations). We
give the syntax of the logic, as well as the semantics in Heyting cat-
egories with exponentials. Embedding the generic model of a theory
into a Grothendieck topos yields completeness of Lλωω with respect
to models in Grothendieck toposes, which can be sharpened to com-
pleteness with respect to Heyting valued models. The logic Lλωω is the
strongest for which Heyting valued completeness is known. Finally,
we relate the logic to locally connected geometric morphisms between
toposes.

In this paper we study aspects of completeness of the logic Lλωω, which is
intuitionistic first order logic extended by quantification over functions. This
logic may be seen as well as λ–calculus enriched with first order logic. The
details of the syntax are given in section 1.

The logic Lλωω is of interest for many reasons: it is reasonably powerful
and (therefore) incomplete with respect to models in Sets. But the logic Lλωω
is complete with respect to Heyting valued models. In fact, the infinitary
variants Lλκω are the strongest logics we know that are complete with re-
spect to Heyting valued models. Secondly, the logic Lλωω characterises a class
of geometric morphisms between Grothendieck toposes, namely the locally
connected ones: We show that a geometric morphisms f :F → E between

∗BRICS, Basic Research in Computer Science, Centre of the Danish National Research
Foundation, Computer Science Department, Aarhus University, Ny Munkegade, DK–8000
Århus C, Denmark, butz@brics.dk.
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Grothendieck toposes is locally connected if and only if the inverse image f∗

preserves the internal Lλωω–logic of the topos E .
The first two sections discuss the syntax and semantics of the logic Lλωω.

Models of Lλωω-theories naturally live in Heyting categories with exponentials
(i.e., cartesian closed Heyting categories). After relating the logic to locally
connected geometric morphism we present some completeness results in sec-
tion 4: Lλωω is complete with respect to models in Grothendieck toposes,
therefore as well complete with respect to models in cartesian closed Heyting
categories. A recent covering theorem for Grothendieck toposes implies that
it is enough to look at Heyting valued models to get completeness. The last
section contains some remarks about the infinitary variants Lλκω.

We assume familiarity with basic notions of categorical logic, see for ex-
ample [14], or [9]. The results presented here are closely related to the joint
paper with S. Awodey, [2]. In fact, they give a detailed exposition of one of
the completeness result presented there. In case of pure typed λ-calculus, a
more detailed exposition can be found in [1].

Our overall presentation is in the line of categorical model theory, as was
done for geometric logic in [15] and for first order logic in [6]. One of the
more prominent theories which can be formulated in the logic Lλωω is SDG,
synthetic differential geometry [13]. In contrast to this we do not intend to
do proof theory here, as was one of the items in [14].

1 Syntax

We begin by describing the syntax of the logic Lλωω. Given a set type of basic
sorts A,B, . . ., the set type∗ of derived types is the closure of type under
products and exponentials:

type∗ : : = A | Y × Z | ZY .

Thus, the only difference to full higher order logic is the absence of the type
of propositions Ω.

Definition 1.1 A λ-signature S consists of a list typeS of basic types and sets
constS, functS, and relS of constants, function and relation symbols, where
each of these symbols is typed over type∗.
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Since type∗ has built in product types, we can assume that all functions
and relations are unary. As usual, we write expressions like c:A, f :Z → Y ,
or R ⊂ Y to indicate the typing.

Next we define the sets term(Y ) of terms of type Y , which depend on a
given λ-signature S:

— Each set term(Y ) contains countably many variables of type Y , and
expressions like y:Y have their obvious meaning.

— If c is a constant of type Y , it is a term of type Y . If t is a term of
type Y , and f :Y → Z is a function symbol, then f(t) is in term(Z).

— If t1 ∈ term(Y1) and t2 ∈ term(Y2), then 〈t1, t2〉 is a term of type Y1×Y2.
Conversely, if t is in term(Y1 × Y2), then π1t is a term of type Y1, and
π2t is a term of type Y2.

— If t is a term of type Y and α ∈ term(ZY ), then α(t) is a term of
type Z. If t is a term of type Z (possibly containing the free variable
y:Y ), then λy.t(y) is a term of type ZY .

The formulas are generated by the following rules:

— If t1 and t2 are terms of the same type, then t1 = t2 is a formula.

— If R ⊂ Y is a relation symbol and t is a term of type Y , then R(t) is a
formula.

— The logical constants ⊥ and > are formulas. If ϕ and ψ are formulas,
so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ→ ψ.

— If φ(y) is a formula (possibly containing the free variable y:Y ), then
∀y:Y ϕ(y) and ∃y:Y ϕ(y) are formulas.

If we type the formulas by the (imaginary) type Ω, these term and formula
forming operations can be summarised in the familiar way:

Y Y1 × Y2 Y1 Z ZY Ω

c 〈t1, t2〉 π1t̄ α(t) λy.t(y) t = t′

f(t) R(t)
⊥,>

ϕ ∧ ψ, ϕ ∨ ψ
¬ϕ, ϕ→ ψ

∀yφ(y), ∃yφ(y)
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where c:Y , f :Z → Y , R ⊂ Z, and the sub-terms are of type

Z Y1 Y2 Y1 × Y2 ZY Ω

t, t′ t1 t2 t̄ α ϕ, ψ
t(y) φ(y)

For each finite set X of variables we define a deduction relation `X between
formulas. If we write an expression p `X q it is always assumed that the free
variables occurring on both sides are contained in the set X. Below, `X p
abbreviates > `X p, and p ` q stands for p `∅ q. As in [14] we group the
rules into different classes:

Structural rules.

1.1 p `X p;

1.2 p `X q and q `X r implies p `X r;

1.3 p `X q implies p `X∪{y} q;
1.4 ϕ(y) `X ψ(y) implies ϕ(b) `X\{y} ψ(b),

provided that y is a variable of type Y and b is a term of type Y
with no free occurrence of variables other then those in X \ {y}.
It is being assumed that b is substitutable for y in both sides, i.e.,
no free variable in b becomes bound after substitution.

Logical rules.

2.1 p `X >;

⊥ `X p;

2.2 r `X p ∧ q iff r `X p and r `X q;

p ∨ q `X r iff p `X r and q `X r;

2.3 p `X q → r iff p ∧ q `X r;

2.4 p `X ∀yψ(y) iff p `X∪{y} ψ(y);

∃yψ(y) `X p iff ψ(y) `X∪{y} p.

Extralogical axioms.

3.1 ` ∀z:Y1 × Y2 (z = 〈π1z, π2z〉);
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3.2 ` ∀z:Y1 × Y2∀z′:Y1 × Y2 (z = z′ → (π1z = π1z
′ ∧ π2z = π2z

′));

3.3 ` ∀y1:Y1∀y2:Y2 (π1〈y1, y2〉 = y1 ∧ π2〈y1, y2〉 = y2);

3.4 (Comprehension)

` ∀y:Y [λy′.t(y′)](y) = t(y);

3.5 (Extensionality)

∀f :ZY ∀g:ZY ((∀y:Y f(y) = g(y))→ f = g).

Axioms for equality.

4.1 `{y} y = y;

y = y′ `{y,y′} y′ = y;

y1 = y2 ∧ y2 = y3 `{y1,y2,y3} y1 = y3;

4.2 y = y′ `{y,y′} f(y) = f(y′);

for each functions symbol f :Y → Z;

y = y′ `{y,y′} R(y)↔ R(y′);

for each relation symbol R ⊂ Y .

The calculus defined so far is intuitionistic. The deduction relations `cX
are defined by adding the logical rule

> `X p ∨ ¬p.

In general, we write T ` p (or T `X p) for derivability in the calculus with
added axioms ` τ for τ in T . In case T consists just of one formula, the
two notions {τ} ` p and τ `p coincide, so that that T ` p just extends our
definition of `. Similar calculi as above for full second order logic can be
found in [4] and in [14].

2 Semantics

It should be clear from the syntax that the right categories hosting models
of Lλωω–theories are (ω–) Heyting categories with exponentials (i.e., cartesian
closed Heyting categories or logoi with exponentials in the language of [9]).
Recall that a Heyting category is a regular category C that has, in addition
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to finite intersections of subobjects, unions of finite families of subobjects.
Moreover, pulling back subobjects along a fixed morphism has a right adjoint.
(It follows that the lattice of subobjects of each object in C is a Heyting
algebra, and this Heyting algebra structure is preserved under pullbacks.)
The most prominent examples of Heyting categories with exponentials are
elementary toposes, in particular, Grothendieck toposes.

Let C be a Heyting category with exponentials. An interpretation M

of a λ–signature S in C assigns first of all to each basic sort A ∈ typeS an

object A(M). This assignment extends naturally to all types, by (Y ×Z)(M) =

Y (M) × Z(M) and (ZY )(M) = Z(M)Y
(M)

. Furthermore, the interpretation M
assigns a global element c(M): 1 → Y (M) for each constant c:Y in constS, a
function f (M):Y (M) → Z(M) for each function symbol f :Y → Z in functS,
and a subobject R(M) � Y (M) for each relation symbol R ⊂ Y in relS. Using
the structure of the category C, we extend this interpretation to arbitrary
terms and formulas. In particular, for a formula ψ(y:Y ) (y = (y1, . . . , yn) of
type Y = Y1, . . . , Yn) we get a subobject

{y | ψ(y)}(M) � Y
(M)

= Y
(M)

1 × · · · × Y (M)
n .

As usually, we say that M is a model of a closed formula τ (M |= τ) if {· |
τ}(M) � ∅(M) = 1C is the top element in the Heyting algebra of subobjects
of 1C. This way we get a sound notion of models:

Proposition 2.1 (Soundness) The deduction relation ` is sound for the
notion of models just defined, i.e., for any set of Lλωω-formulas T and any
λ-formula τ , T ` τ implies T |= τ . 2

One of our main goals will be to prove the converse of Proposition 2.1,
i.e., completeness.

Next we turn the class of models of a theory in a fixed Heyting category C
with exponentials into a category. A morphism h between S-interpretations
M and M ′ is a family of maps {hY :Y (M) → Y (M ′)}Y ∈type∗S

, satisfying the
following three conditions:

(i) hY1×Y2 = 〈hY1 , hY2〉:Y
(M)

1 × Y (M)
2 → Y

(M ′)
1 × Y (M ′)

2

for all types Y1, Y2 ∈ type∗S.
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(ii) For all Y and Z in type∗S the following two diagrams commute:

Y (M) × (ZY )(M)
〈hY ,hZY 〉 //

ε

��

Y (M ′) × (ZY )(M ′)

ε

��

Z(M)
hZ //

ĉonst
��

Z(M ′)

ĉonst
��

Z(M)
hZ

// Z(M ′) (ZY )(M)
h
ZY

// (ZY )(M ′)

where ĉonst is the transposed of the projection map π2:Z
(−)× Y (−) →

Z(−).

(iii) The maps {hY }Y ∈type∗S
preserve the interpretation of constants, function

and relation symbols. For example, for a constant c:Y this means that

Y (M)
hY // Y (M ′)

1

c(M)

OO

c(M
′)

::
u

u

u

u

u

u

u

u

u

u

commutes.

For the following definition we remind the reader of the forcing relation

 in C (usually only defined if C is a topos): For a λ-formula ψ(y:Y ), for U

in E , and for generalised elements αi:U → Y
(M)
i we write U 
 ψ(α1, . . . , αn)

if the map 〈α1, . . . , αn〉:U → Y
(M)

factors through {y | ψ(y)}(M) ↪→ Y
(M)

.

Definition 2.2 Let M and M ′ be two S-interpretations in C. A morphism
of S-structures h:M →M ′ is called an Lλωω–homomorphism if for each Lλωω-
formula ψ(y:Y ) and generalised elements αi:U → Y

(M)
i

U 
 ψ(α1, . . . , αn) implies U 
 ψ(hY1 ◦ α1, . . . , hYn ◦ αn).
We denote by Modλ(T, C) the category of models of T in C, with mor-

phisms the Lλωω–homomorphisms. Note that the condition of the definition is
equivalent to the following: h:M →M ′ is an Lλωω–homomorphism if and only

if for each formula ψ(y:Y ) the composite hY ◦ i: {y | ψ(y)}(M) ↪→ Y
(M) →

Y
(M ′)

factors through {y | ψ(y)}(M ′), viz.

Y
(M) //

Y
(M ′)

{y | ψ(y)}(M)
?�

OO

//___ {y | ψ(y)}(M ′).
?�

OO
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3 A topos theoretical characterisation of Lλωω
Recall that a geometric morphism f :F → E between Grothendieck toposes
is called locally connected (or molecular [3]) if the inverse image f∗ commutes
with

∏
–functors. Equivalently, f is locally connected iff for all E in E the

inverse image of the induced geometric morphism f/E in

F/f∗E //

f/E
��

F
f

��

E/E // E

preserves exponentials. Locally connected geometric morphisms are open
(see [11]) and hence preserve the internal first order logic. We sum this up
in the following lemma:

Lemma 3.1 The inverse image of a locally connected geometric morphism
f :F → E induces a functor

f ∗: Modλ(T, E)→ Modλ(T,F),

for any Lλωω–theory T . 2

To prove a somehow converse of the lemma we need the following char-
acterisation of locally connected geometric morphisms:

Proposition 3.2 A geometric morphism f :F → E between Grothendieck
toposes is locally connected if and only if it is open and the inverse image f∗

preserves exponentials.

Proof. We know already one direction. For the other fix an object E in E
and p = (P → E), q = (Q→ E) in E/E . We note first that the exponential
qp is given by r = (R→ E) for

R = {α ∈ QP | ∀x:P p(x) = q(α(x))},

which uses only exponentials, first order logic and (implicitly) the counit
P ×QP → Q. But all the data is preserved by f∗, so

f ∗R = {α ∈ f ∗(Q)f
∗(P ) | ∀x: f ∗P f ∗p(x) = f ∗q(α(x))},

and f/E
∗(qp) = f/E

∗(r) = (f ∗R→ f ∗E) = (f/E
∗q)(f/E

∗p). 2
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Combining the proposition with the characterisation of open maps in
terms of first order logic we get

Corollary 3.3 A geometric morphism f :F → E is locally connected if and
only if its inverse image preserves the internal Lλωω–logic of E , i.e., the in-
terpretation of any Lλωω–formula in the topos E . 2

4 Completeness

Here we construct minimal models of Lλωω–theories in a similar way as was
done in [6] or [16].

Let T ⊂ Lλωω(S) be a set of axioms. We define a syntactic site Syn(T ) as
follows:

— Objects are pairs ([ϕ(x), X) where X is a (derived) type, x is a variable
of type X, and [ϕ(x)] is an equivalence class of Lλωω–formulas. Two
formulas ϕ1(x1) and ϕ2(x2) are equivalent if

T ` ∀x(ϕ1(x)↔ ϕ2(x)),

where x is a new variable.

— Arrows from ([ϕ(x), X) to ([ψ(y)], Y ) are triples ([σ(x, y)], X, Y ) such
that [σ(x, y)] is an equivalence class of Lλωω–formulas and, moreover, σ
is provably functional:

T ` ∀x∀y(σ(x, y)→ ϕ(x) ∧ ψ(y))

T ` ∀x(ϕ(x)→ ∃yσ(x, y))

T ` ∀x∀y∀z(σ(x, y) ∧ σ(x, z)→ y = z).

Here we used the same names for the variables occurring in ϕ, ψ and σ,
indicating that we do not care about possibly renaming the variables.

— We say that a finite family of arrows ([σi(xi, y)], Xi, Y ): ([ϕi(xi)], Xi)→
([ψ(y)], Y ) is a cover if

T ` ∀y(ψ(y)→
∨

I
∃xiσi(xi, y)).
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It is easy to show that Syn(T ) has all finite limits and some exponentials
(namely those of the form ([z = z], Z)([y=y],Y ) = ([w = w], ZY )), and the
topology is subcanonical . But the category Syn(T ) fails to be cartesian
closed. Still, there is a canonical interpretation of our language in this cate-
gory, and this interpretation yields a conservative model of T in Syn(T ).

Write Bλ(T ) for the topos of sheaves on Syn(T ), equipped with the
finite cover topology. The Yoneda embedding y: Syn(T )→ Bλ(T ) provides
an interpretation U of the underlying language as follows:

A(U) = y([x = x], A),

for each basic sort A. The above mentioned properties of Syn(T ) and the
fact that y preserves exponentials imply that

Y (U) ∼= y([y = y], Y )

for any derived type Y . Constants and relations are interpreted as follows:

c(U): 1→ Y (U) := y([c = y], ∅, Y ): y([>], ∅)→ y([y = y], Y )

f (U):Y (U) → Z(U) := y([f(y) = z], Y, Z): y([y = y], Y )→ y([z = z], Z)

R(U) � Y (U) := y([R(y)], Y )� y([y = y], Y ).

The core of this section is the following proposition:

Proposition 4.1 For each Lλωω(S)–formula ψ(y:Y ) there is a canonical iso-
morphism y([ψ(y)], Y )∼= {y | ψ(y)}(U).

Proof. This is a long induction over the complexity of ψ. Roughly speaking,
Syn(T ) is a Heyting category, and the Yoneda embedding preserves the
first order structure, see [6] for details. Moreover, since the topology is
subcanonical, y preserves exponentials which happen to exist. 2

As a corollary we derive the major result, namely completeness with
respect to models in Grothendieck toposes:

Theorem 4.2 U is a conservative model of T . For a closed formula τ we
have U |= τ if and only if T ` τ . In particular, Lλωω is complete with respect
to models in Grothendieck toposes (and therefore complete with respect to
Heyting categories with exponentials).
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Proof. The first part is immediate from proposition 4.1, the rest is trivial. 2

Using a recent covering theorem for toposes with enough points, we can
strengthen the theorem the following way:

Corollary 4.3 For each consistent set of axioms T ⊂ Lλωω(S) there exists
a topological space X and an OX–valued model M of T (a Heyting valued
model of T which takes its truth values in the complete Heyting algebra OX
of open sets of X) such that M |= τ iff T ` τ for each closed formula τ .

Proof. Given T the site Syn(T ) is coherent and therefore Bλ(T ) has enough
points. By theorem 13.5 of [5] (see as well [7]) there exists a connected,
locally connected geometric morphism

m: Sh(X)→ Bλ(T )

for X a topological space. By lemma 3.1, M = m∗U is a model of T in
Sh(X), which is conservative sincem is a surjective geometric morphism. The
corollary follows since models in Sh(X) correspond to OX–valued models,
see [8] for details. 2

What are the points of the topological space X? Classical second order
logic is complete with respect to models which are called nowadays Henkin
models, see [10]. Combining Henkin’s proof and the standard proof of Heyt-
ing valued completeness for first order intuitionistic logic one shows that our
logic Lλωω (but in fact, full intuitionistic second order logic) is complete with
respect to Heyting valued Henkin models. Fixing a set of enough Heyting-
valued Henkin models ST , points of X are pairs (M,α) where M is in ST and
α is an enumeration of M , similar as in [2], appendix. The enumerations are
used to define the topology.

Before we end this section let us mention that the model U in Bλ(T ) is
minimal in the following sense:

Proposition 4.4 For any model M of T in a Grothendieck topos F there
is a unique (up to isomorphism) geometric morphism χM :F → Bλ(T ) such
that for each Lλωω(S)–formula ψ(y:Y )

{y | ψ(y)}(M) ∼= χ∗M{y | ψ(y)}(U). (1)

11



Thereby, we get a fully faithful functor

χ: Modλ(T,F) −→ Hom(F ,Bλ(T )),

natural in locally connected geometric morphisms F ′ → F .

Proof. Soundness of ` implies that HM : Syn(T )→ F , defined on objects by

([ψ(y)], Y ) 7→ {y | ψ(y)}(M)

is a well defined functor. This functor preserves finite limits and covers,
therefore induces by Diaconescu’s theorem a geometric morphism χM :F →
Bλ(T ) satisfying (1).

By the remark following definition 2.2, Lλωω–homomorphisms h:M →M ′

correspond exactly to natural transformations HM → HM ′, which shows that
χ(−) extends to a fully faithful functor Modλ(T,F) −→ Hom(F ,Bλ(T )),
which is clearly natural in locally connected geometric morphisms. 2

As a final remark we mention that given M in F , the geometric morphism
χM is in general not open, hence in general not locally connected.

5 Concluding remarks

Our main goal was to study the logic Lλωω, but there are as well the infinitary
variants Lλκω, where one allows disjunctions and conjunctions over sets of
formulas of cardinality less or equal to κ. In that case one has to use cartesian
closed κ–Heyting categories as the natural categories where models live. The
calculus of section 1 extends immediately to these infinitary logics, and the
completeness results of section 4 remain true, although the complete Heyting
algebra of corollary 4.3 does not have to come from a topological space:
Given a theory T ⊂ Lλκω(S), the site Synκ(T ), defined similar as above using
formulas from Lλκω, is not coherent and theorem 13.5 of [5] does not apply.
Instead, one has to appeal to the covering theorem of [12]. As noted in
the introduction, the logics Lλκω are the strongest logics we know for which
a Heyting valued completeness theorem holds. Such a statement for full
(intuitionistic) second order logic is certainly wrong: second order logic is
even not complete with respect to models in arbitrary Grothendieck toposes.
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Finally we should admit that there is something wrong with the syntax
of our logic: We should not just extend first order logic by quantification
over function types, but by quantification over definable function types, i.e.,
we should allow expressions like

∀f : {x | ϕ(x)}{y|ψ(y)}( · · · )

where (recursively) ϕ and ψ are formulas of our language. Write Lλ+
κω for this

logic. Given a theory T ⊂ Lλ+
κω (S) we can construct as before a syntactic site

Syn+
κ (T ), which will now be a cartesian closed κ–Heyting category. In fact,

it has the obvious universal property in the category of all cartesian closed
κ–Heyting categories. Therefore, a presentation using Lλ+

κω would parallel
[6] much more. But there are good reasons why we didn’t choose this way:
Even though we know intuitively very well how to handle the syntax of Lλ+

κω ,
the formal presentation is clumsy. Any formula defines a type, so that there
is no distinction between formulas and types, in particular, there are many
identifications and subtypes.
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