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Topological Completeness for
Higher-Order Logic

S. Awodey* C. Butz'

Abstract

Using recent results in topos theory, two systems of higher-order logic
are shown to be complete with respect to sheaf models over topological
spaces—so-called “topological semantics”. The first is classical higher-
order logic, with relational quantification of finitely high type; the
second system is a predicative fragment thereof with quantification
over functions between types, but not over arbitrary relations. The
second theorem applies to intuitionistic as well as classical logic.

Introduction

Higher-order logic (also known as “type theory”) is logic that includes quan-
tification over functions or relations. Many basic mathematical objects and
theories can only be defined using this logic; the natural numbers and topo-
logical spaces are familiar examples. A more precise specification of what we
call classical higher-order logic is given in §1 below.

As is well-known, higher-order theories are generally incomplete with re-
spect to (standard) models in Sets; that is, T = o does not imply T I~ o for
T a theory in higher-order logic and I~ the entailment relation of any reason-
able deductive calculus. It is by now also well-known that higher-order logic
can be modeled in suitable generalized categories of sets, namely (elemen-
tary) topoi, and that with regard to such topos-valued semantics, standard
higher-order deduction is complete (see [11] for details).

*Philosophy Department, Carnegie Mellon University, Pittsburgh PA 15213-3890, USA.
awodey@cmu.edu

TBRICS, Basic Research in Computer Science, Centre of the Danish National Research
Foundation, Computer Science Department, Aarhus University, Ny Munkegade, Bldg. 540,
8000 Aahrus C., Denmark. butz@brics.dk



Our results in this paper are concerned with topos models of a very spe-
cial and natural kind, namely sheaves over topological spaces. If X is a
space, a model in the category Sh(X) of all sheaves on X shall be called
a topological model. We will show that higher-order logic is complete with
respect to such models; for the reader unfamiliar with sheaf theory, we wish
to emphasize their elementary topological character. Under the equivalence
Sh(X) ~ Etale/X a sheaf on a space X is essentially the same thing as
an étale space over X: a space E equipped with a local homeomorphism
p: E — X (also called an étale bundle). The various fibers p~'z of E (the
stalks of the sheaf) for the points z € X may be regarded as sets varying
continuously over X. A morphism of étale spaces is just a continuous map
f:E— E' over X, ie. with p'f = p as in the commutative triangle

E / E'

X.

Products, exponentials (“function spaces”), etc. of étale spaces of course
agree with those calculated as sheaves. A topological model of a single-
sorted theory thus consists of an étale space p: £ — X over a base space X
together with suitable operations, which are simply continuous maps over X.

As the reader who is familiar with sheaf theory will have noted, our
topological models are just what are usually called “sheaves of ... s”, at
least in the case of equational, first-order theories. Thus a topological model
of the theory of groups is a sheaf of groups, and so on.

Despite the ultimately simple character of topological models, we use the
more general language and methods of sheaf theory and topoi to study them.
Our first theorem, proved in §3 below, asserts the completeness of standard,
classical higher-order deduction ¢ with respect to such topological semantics.

Theorem A. Let T be a higher-order theory. There exists a classical topo-
logical model M of T such that, for any higher-order sentence o in the lan-
guage of T,

TH o if and only if M E°o.

Moreover, the model M has the property that every continuous function be-
tween the interpretations of type symbols is logically definable.



What permits theorem A to be true is our notion of a classical model. In
an arbitrary topological sheaf topos Sh(X) there are two natural candidates
for the interpretation of the type 2 of formulas (or “propositions”, or “truth
values”) of a higher-order theory; to wit, the sheaf ) of open subsets of
X and the coproduct 1 + 1. In the language of étale spaces, 1 + 1 is the
double covering X x 2 — X. As detailed in §2 below, a classical model
uses the latter to interpret the type of formulas. Function and power types
are then interpreted as exponentials of sheaves (sometimes called “internal
homs” or “sheaf-valued homs”). This standard treatment of exponentials is
what chiefly distinguishes topological models from so-called Henkin models
(see the appendix below for the exact relation between the two). Thus in
particular, for any type Z the power type 27 is interpreted as the sheaf of
complemented subsheaves of the interpretation of Z. By further requiring of
a classical model that the types be interpreted by so-called decidable sheaves,
we can model classical higher-order logic in non-boolean topoi like Sh(X),
which is impossible when interpreting the type 2 by the subobject classifier
Q2. Indeed under that interpretation the analogue of theorem A fails—even
permitting arbitrary Grothendieck topoi in place of topological sheaf topoi—
as can be seen using Godel incompleteness.

The issue of how to interpret the type of formulas of course vanishes when
one considers the fragment of higher-order logic that results from omitting
that type. This fragment—which we call A-logic and describe in §4 below—
may be regarded as a marriage of elementary logic and the A-calculus. In
addition to the usual propositional and quantificational language of elemen-
tary logic, it includes equations between and quantification over functions,
functions of functions, etc. But since there is no type of formulas, there is
no quantification over “propositional functions”, i.e. over relations.

Many familiar mathematical constructions, theorems, and proofs can be
formalized in A-logic. A simple example is Cayley’s theorem that every group
is isomorphic to a group of permutations of its elements. The axiom of choice,
in the familiar form

Vo € X3y € Yop(z,y) = 3f € Y¥Vz € X.¢(x, fx),

is also a statement of A-logic. An example of a (non-elementary) A-theory
is synthetic differential geometry, applications to which of the present work
shall be discussed elsewhere.

Our theorem B states the completeness of A-logic with respect to topolog-
ical models. More generally than theorem A, theorem B holds for standard,
intuitionistic deductive entailment f-.

Theorem B. Let T be a A\-theory. There exists a topological model M of T



such that, for any A-sentence o in the language of T,
Tko if and only if M Eo.

Moreover, the model M has the property that every continuous function be-
tween the interpretations of type symbols is logically definable.

Theorem B rests more squarely on one of the main supports of theorem
A, namely a recent covering theorem for topoi due to the second author and
I. Moerdijk. This covering theorem is the real heart of our completeness
theorems; we sketch its application to our situation as an appendix to this
paper. So as not to obscure the conceptual simplicity of this application, our
treatment of the standard details of higher-order syntax and topos semantics
is held quite brief.

Before getting down to business, we make two remarks on the statements
of the completeness theorems. First, each has the form “there exists a model
M such that T F o just if M = ¢”, rather than the more familiar (for set-
valued semantics) “T o just if for all models M, M |= ¢ ”. The stronger
form given here is made possible by considering models in topoi other than
Sets. The situation is analogous to that of the familiar Heyting-valued com-
pleteness theorem for first-order intuitionistic logic [8], which follows directly
from our theorem B and indeed is the inspiration thereof. Second, and more
substantially, the additional “Moreover ... ” clause of each theorem states a
further property of the respective logical system that may be termed “defini-
tional completeness”. It ensures that any function which is “present in every
model” is logically definable. As in the case of deductive completeness, this
definitional completeness is established in a strong form simply by exhibiting
a single model in which every function of suitable type is definable. In light
of the topological nature of the models at issue here, logical definability then
coincides with continuity in that “minimal” model. For further discussion of
this property (in the context of the A-calculus) we refer to [1].

Acknowledgments. We have both benefitted greatly from conversations
with Ieke Moerdijk on the spatial covering theorem and its logical applica-
tions. The Stefan Banach Mathematical Research Center in Warsaw, and
the organizers of the Rasiowa memorial conference held there in December
1996, are thanked for supporting our collaboration.

1 Theories in classical higher-order logic

The systems of classical higher-order logic that we consider are essentially
the same as those presented in [4, 11], which in turn are modern formulations
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of [7]. We summarize one particular formulation for the reader’s convenience
and for the special purposes of §4.

Type symbols are built up inductively from a given list of basic type sym-
bols Xi,...,X, and the type of formulas 2 by the type-forming operations
Y x Z and Z¥.

Terms are built up inductively from wvariables and a given list of basic
terms cq,... ,c,. Each variable and basic term has a type. The terms and
their types are as follows, writing 7 : Z for “7 is a term of type Z”.

o If 7y : Zy and 75 : Zy, then (1, 72) : Z1 X Zs.

o If 7: 7y X Zy, then m(7) : Z; and ma(T) : Zs.

e If 7: Z and y is a variable of type Y, then \y.7: Z¥.
e Ifa:ZY and 7:Y, then a(r) : Z.

e lfr 7 :Z thent=17"":2.

o If ¢,9 : 2 and y is a variable of type Y, then the following are terms
of type 2:

T, L, ~p, oA, oV, ¢ =, Vy.p, Jy.p.

A basic language (or signature) consists of basic type symbols X, ..., X,
and basic constant symbols ¢y, ..., ¢,. A theory consists of a basic language
and a list of sentences (closed formulas) oy, ... , 0y therein, called azioms.
Given a theory T, the language L(T) of T is the set of terms in the basic
language of T.

The entailment relation p 1 between formulas is specified in the usual
way by a deductive calculus. To include the possibility of “empty” types, it
is convenient to give a family of entailment relations ¢ - ¢ indexed by lists
x = (x1,...,x;) of distinct variables including all those occurring free in ¢
and 1. These relations are generated by the following conditions (“rules of
inference” ):

1. Order

(a) pbx e
(b) ¢ Fx®¥ and ¢ Fx ¥ implies ¢y ¥

(¢) ¢ Fxy ¥ implies @[1/y] Fx Y[1/Yy]

2. Equality



Vhxp=>vand Vb4 ¢ = ¢ implies ¥y =1

3. Products

(a) T |_x <7T17—7 7T27—> =T
(b) Thxm(m,m) =7, i=1,2

4. FEzxponents

(@) Thkx Az.7)(x) =7
(b) T kx Az.a(z) =

5. Elementary logic

)
)
(c) oFx b iff AP, L
(d) dxpand I ¢ iff dEx @AY
) IVebxt iff byt and gy
) dA@het iff 9Fep= 1
g) Vhxyp iff U Vy.p
) Dt i Fhyx, e

In the foregoing, the 7’s are arbitrary terms; ¢, ¥, 9 are formulas; and «,
are terms of the same exponential type. In writing e.g. ¢[7/y]| F«x ¥[7/y] in
1(c) it is assumed that [r/y] and ¥[r/y] are formulas with no free variables
apart from 1, ... ,x;; so the term 7 must have the same type as the variable
y and no other free variables. As usual, the substitution notation o[ /y] is
understood to include a convention to avoid binding free variables in 7.

A sentence o is called provable if T - o, also written - o. For a theory T,
the notions of T-entailment and T-provability are given by adding the rules
o for each axiom o of T.

The classical entailment relation ¢ results from + by adding the rule

¢ Vp.p V —p.



Remark 1. It is sometimes convenient to give a more succinct statement of
the logical calculus by defining some of the logical primitives in terms of oth-
ers. We mention one particularly simple primitive basis which will be useful
in the next section (cf. [11]). Exponential types Z¥ occur only in the form
2Y (“power types”, usually written P(Y)); A-terms Az.¢ and evaluations
a(1) are then restricted accordingly, and more naturally written {z|p} and
T € a. Projection operators m;(7) are eliminated in favor of additional rules
of inference. The logical operations T, L, =, A, V, =, V, 3 are defined in
terms of = and (—, —), {z|—}, €. We shall use the fact that this primitive
basis suffices in the following way: to interpret the language of a theory it
suffices to interpret the basic language, the type of formulas, product and
power types, and the term-forming operations (—, —), {z|—}, €, =

In the opposite direction, one can enlarge the primitive logical basis by
including basic relation and function symbols in addition to basic constant
symbols, although these are not needed in the presence of higher relation
types. Relation symbols will be useful in §4, however, where there is no type
of formulas; and both relation and function symbols are used in elementary
logic, where there are no higher types at all.

2 Semantics in topoi

Let T be a theory in classical higher-order logic, as defined in the foregoing
section. It is fairly obvious how to interpret T in an arbitrary boolean topos
B: An interpretation M of T in B assigns to each basic type symbol X an
object X s of B, and to the type 2 of formulas, the coproduct 1z + 1z in B
(which is the subobject classifier),

2y =1+ 15.
The interpretation M is then extended to product and power types by setting

(Y X Z)y =Yy X Zy (product in B),
(2Y) 01 = (2p7) ) (exponential in B).

On terms, M assigns to each basic constant symbol ¢ of T, having say type
Z, a morphism

Cp e 1B_>ZM

of B, and variables are interpreted as identity morphisms. The interpretation
is then extended inductively to all terms in £(T) in the evident way, using



the internal logic of B (cf. [12, §§VI.5-7], also for the external meaning of
the logical operations thus modeled). For example,

(=7 =00(r, 7"\,
where §: Zy; X Zyr — 1 + 15 classifies the diagonal morphism
A= <1ZM7 1ZM>: ZM — ZM X ZM,

when Z is the type of the terms 7, 7’.
In particular, M assigns to each formula ¢(y1,. .. ,y,) with free variables
y; of types Y; a morphism

oW1, s yn)as V) X oo x (Yo)u — 1+ 15
of B. A sentence o is said to be true in M, written M | o, if
oy = true: 1y — 15+ 15,

where true: 13 — 1p + 1p is the first coproduct inclusion, which is the
universal subobject. Of course, an interpretation M is a model of T if each
axiom of T is true in M.

2.1 Representing the category of models

Given models M and N of a theory T in a boolean topos B, there is an evident
notion of an isomorphism h: M —— N of T-models, namely a family of isos
h = (hx: Xy — Xy) (indexed by the basic types X of T) that preserve the
interpretations of the constant symbols of T, in the obvious sense. Together
with the evident composites and identities, one thus has for any theory T
and any boolean topos B a category of models of T in B, denoted

MOd']T (B) .

Observe that Modr(B) is always a groupoid, i.e. a category in which every
morphism is iso. For example, if T is the theory of topological spaces and
B is the topos Sets, then Modr(B) is the category of all topological spaces
and homeomorphisms. One can of course also consider other morphisms of
models, but the groupoid of isomorphisms suffices for our purposes.

A logical morphism between boolean topoi plainly preserves models and
their morphisms. Such a functor f: B — B’ therefore induces a functor

MOdT(f)I MOdT(B) — MOdT(BI)
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(a groupoid homomorphism) on the associated categories of models.

Now, every theory T in classical higher-order logic has a (higher-order)
classifying topos, a boolean topos By determined uniquely (up to equivalence)
by the property: for any boolean topos B there is an equivalence of categories,
natural in B,

(1) Log(Br,B) ~ Mod(B),

where Log(Br, B) is the category of logical morphisms By — B and natu-
ral isomorphisms between them (cf. [2]). The classifying topos By can be
constructed “syntactically” from L£(T) in the style of [4, 11]; in particular,
it is a small category (indeed, it is countable). In virtue of its universal
mapping property (1), Br is freely generated as a boolean topos by the “uni-
versal model” Ur € Modr(Br) associated to the identity logical morphism
Br — Br under (1). By the syntactic construction of By this universal model
has the following properties, which we record for later use:

Proposition 2. (i) For any sentence o € L(T),

TH o justif Urlo.

(11) For any types Y and Z and any morphism f: Yy. — Zy, in Br, there
is a formula ¢(y, z) € L(T) such that

graph(f) = {(y,2) | ¢(y,2) }v
(as subobjects of Yy, X Zy, ).

Observe that (i) of proposition 2 and the universal mapping property (1)
together entail the soundness and completeness of the deductive calculus of
§1 with respect to topos semantics: T ¢ ¢ if and only if for every T-model
M, M Eo.

2.2 Classical semantics

We now extend the foregoing topos semantics for classical higher-order logic
to non-boolean topoi. Let T be a fixed theory and £ an arbitrary topos. We
begin with a bit of notation: Let true: 1¢ — Q¢ be the subobject classifier
in &£, and let us write

|—| = (true, false): 1g + 1g — Q¢

for the canonical map from the coproduct which, observe, is a monomor-
phism. An arbitrary morphism ¢: E — ¢ of £ factors through |—| just if

9



the subobject S, = E it classifies is complemented, i.e. if there is a subobject
S — E with S, + S = E (canonically). When this is the case, let us write
©: E — 1g + 1¢ for the unique morphism such that

as indicated in

Qe.

Recall that an object E of £ is said to be decidable if its diagonal A: F —
E x E is complemented, thus just if 6: E x E — 1¢ + 1¢ exists.

Next, we define an interpretation of the basic language of T in £ exactly
as in a boolean topos; in particular the type 2 of formulas is interpreted as
l¢ + 1g, which is plainly decidable. An interpretation M such that for each
type symbol Z the object Z,; in £ is decidable shall be called a classical
interpretation (or c-interpretation).

Finally, by remark 1 any c-interpretation M can be extended to all of £(T)
exactly as in a boolean topos, by interpreting the term-forming operations
(—, =), {z|—=}, € as before and taking 0: Zy; x Zy; — lg + l¢ to interpret
= at each type Z. Thus just as before a c-interpretation M assigns to each
formula ©(y1, ... ,y,) with free variables y; of types Y; a morphism

gO(yl,... ,yn)MZ (le)M X ... X (Yn)M — 1g+1g.

Definition 3. The relation ¢ of satisfaction for c-interpretations is defined
by:

M E®o iff |opm|=true.

Thus a c-interpretation M satisfies a sentence o just if the following triangle
commutes

18%184_18

true |_|

Qe.
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A c-model of the theory T is of course a c-interpretation that satisfies
the axioms of T. A c-interpretation M is therefore a c-model just if for each
axiom o the interpretation

onv:lg — 1+ 1¢

is the first coproduct inclusion, just as in the boolean case. Indeed, if the
topos £ is boolean, then every object is decidable, and a c-model in £ is the
same thing as a model.

Proposition 4 (Soundness). If M is a c-model then for any sentence o,
THo implies M E°o.
Proof. Consider the classifying topos Br with universal model Uy. There is
an evident functor m : Br — £ with M = m(Ur) and
OM = Om(Up) = m(ov,)

for each sentence . Although m is not logical if £ is not boolean, it still takes
true : 1z, — 1p, + 1p, to true : 1¢ — 1¢ + 1¢. The claim thus follows from
the soundness of standard topos semantics (in particular, from proposition
2). O

Remark 5. If the interpretation Z,; is decidable then for any type Y the
canonical inclusion (Z,;)¥™) »— Q(m*Zm) factors as indicated in the follow-
ing diagram.

(18 + 18)(YM><ZM)

|_|(YM><ZM)

(ZM)(YM) > > OYmxZr)

Thus even when defined in terms of power types as mentioned in remark
1, the exponential types Z¥ are still interpreted as exponentials by a c-
interpretation.

3 Topological completeness

In this section we consider small topoi equipped with the finite epi topology.
The covering families for this Grothendieck topology on a topos £ are finite
families of morphisms (C; — E); such that the canonical map [[,C; — F
is epic. Of the following two technical lemmas, we omit the straightforward
proof of the first; its second part is folklore.

11



Lemma 6. (i) The finite epi topology is subcanonical.

(ii) For each morphism e : E' — E in &, the sheafified Yoneda embedding
y : £ — Sh(E) preserves not only the pullback functore* : E/E — E/E',
but also its left and right adjoints,

S.He* I, : E/E — EJE.

(Indeed, this is true for any subcanonical topology on a small category
and any locally cartesian closed structure present there.)

Lemma 7. Let F': B — &£ be a left-exact functor from a boolean topos B to
any topos €. If F 1is continuous for the finite epi topology then it preserves
finite coproducts and first-order logic. If F' also preserves exponentials, then
it preserves c-models.

Proof. An object of a topos has an empty covering family for the finite epi
topology just if it is initial; so the continuous functor F' preserves initial
objects. The coproduct inclusions By, By ~— B; + By are a covering family
of monos with By A By = 0 — B; + By. Since F' is also left-exact, it then
preserves coproducts as well. Moreover, it then preserves boolean comple-
ments of subobjects, whence it preserves negation — since B is boolean. The
logical operations = and V are then also preserved, since in a boolean topos
these can be constructed from negation and operations that are preserved
by left-exact, continuous functors generally. Finally, if F' also preserves ex-
ponentials then by the foregoing it preserves the interpretations of all types
and the associated term-forming operations, in addition to first-order logic;
whence it clearly preserves c-models. O

Theorem A will now follow by applying the covering theorem of the ap-
pendix, which states that every Grothendieck topos with enough points can
be covered by a topological space via a connected, locally connected geomet-
ric morphism. We remind the reader that a Grothendieck topos G is said
to have enough points if the geometric morphisms p : Sets — G are jointly
surjective (i.e. if the inverse images p* : G — Sets of these are jointly faith-
ful), and that a geometric morphism f* - f.: &€ — F of topoi is connected
if the inverse image functor f* is full and faithful, and locally connected ([3]:
“molecular”) if f* commutes with II-functors.

Theorem A. LetT be a higher-order theory. There exists a topological space
Xt and a c-model M of T in Sh(Xt) such that:

(i) for any sentence o € L(T),
TH o if and only if M ¢ o;

12



(11) given types Y, Z, every continuous function f: Yy — Zy over Xr is
definable: there is a formula p(y,z) € L(T) such that

graph(f) = {(y, 2)|¢(y, 2) }m
(as subsheaves of Yar x Zyy).

Proof. First, one has the universal model Ut in the classifying topos Br,
as in §2.1. The Grothendieck topos Sh(Br) of sheaves on By for the finite
epi topology is coherent, and so has enough points (cf. [12]). The covering
theorem of the appendix therefore guarantees the existence of a topological
space Xt and a connected, locally-connected geometric morphism

m: Sh(Xt) — Sh(Br).

The inverse image m*: Sh(Br) — Sh(Xt) of m satisfies all hypotheses of the
foregoing lemma 7, as does the sheafified Yoneda embedding

y: B’H‘ — Sh(BT)

In particular, these functors preserve exponentials since they preserve II-
functors (using lemma 6). The composite m* o y: By — Sh(X7) therefore
also satisfies the hypotheses of lemma 7, whence one has the c-model

M =m"oy(Ur)

in Sh(Xr). Since each of its factors is full and faithful, so is the functor
m* o y; the assertions (i) and (ii) thus follow from proposition 2. O

Remark 8. (Infinitary generalizations) Theorem A clearly applies equally to
“theories” T with infinitely many type and/or constant symbols and/or ax-
ioms, since in such cases the foregoing proof can begin with a small topos
Br which is a suitable colimit of classifying topoi for (finite) theories. We
also merely mention that for the case of infinitary logic, with set-indexed
meets and joins of formulas, a theorem analogous to theorem A holds, with
complete Heyting algebras in place of topological spaces.

4 M-logic

What we call A-logic differs from classical higher-order logic in that it has no
type 2 of formulas. Type symbols are now built up inductively from basic
type symbols by the operations —x? and —°. Terms are built up inductively
from variables, basic constant symbols, and just the term-forming operations

13



(=, 1), m (=), m2(—), Ay.(—), and ?(—). Formulas are then constructed from
terms and basic relation symbols in the customary way, using the language
of first-order logic with equality. Finally, a A-theory consists of (finitely
many) basic type, constant, and relation symbols, and closed formulas in
these parameters.

As rules of inference for the (intuitionistic) entailment relation ¢ Fy 1
on formulas one may take a standard deductive calculus for (intuitionistic)
many-sorted, first-order logic with equality, augmented by the usual rules
for the (typed) A-calculus. Indeed, the rules given in §1 above are suitable,
under the omission of 2(c).

The notion of a model of a A-theory in a topos is essentially the same
as that already given in §2. It is, however, now more natural to interpret
basic relation symbols and other formulas by subobjects (rather than their
classifying morphisms), as is usually done for first-order logic (cf. [12]). In
particular, the equality sign = is interpreted in the standard way as a diagonal
morphism, and since classical logic is not being assumed, the notion of a c-
model is not required.

Deduction is clearly sound with respect to such semantics. To show that
it is also complete—even with regard to just topological models—one can
proceed as in the classical higher-order case in §3:

(i) Construct the syntactic category St of provable equivalence classes of
formulas, to be equipped with the finite epi topology (which is sub-
canonical).

(ii) Apply the sheafified Yoneda embedding y: Sy — Sh(Sr) (which pre-
serves A-logic by lemma 6) to get a full and faithful model in a Grothen-
dieck topos with enough points.

(iii) Apply the covering theorem of the appendix to get a connected, locally
connected geometric covering map Sh(Xt) — Sh(Sr) from a topological
sheaf topos Sh(Xr).

We leave it to the reader to fill in the details of this sketch to provide the
proof of the following.

Theorem B. Let T be a A-theory. There exists a topological space Xt and
a model M of T in Sh(Xrt) such that:

(i) for any A-sentence o in the language of T,

Tko if and only if M | o

14



(11) given types Y, Z, every continuous function f: Yy — Zy over Xr is
definable: there is a A-formula ¢(y, z) in the language of T such that

graph(f) = {(y, 2)|¢(y, 2) }u

(as subsheaves of Yy X Zyy).

Appendix: The spatial cover

In the proofs of theorems A and B, use was made of the following covering
theorem for topoi, which is part of theorem 13.5 of [5] (also see [6]; cf. [10]
for a related result).

Covering theorem. For any Grothendieck topos G with enough points there
s a topological space X¢g and a connected, locally connected geometric mor-
phism

¢: Sh(Xg) — G.

Thus in particular the inverse image functor ¢*: G — Sh(Xg) is fully faithful
and preserves exponentials and the internal first-order logic of G.

The purpose of this appendix is to describe the space Xg and the covering
map ¢: Sh(Xg) — G in the case of principal interest here, namely when
G = Sh(Br) for By the small classifying topos of a (classical) higher-order
theory, equipped with the finite epi topology. Thus we consider the situation
of theorem A; that of theorem B of course has a similar description. Before
going into details, let us mention that in fact there are many different spaces
which will do the job, depending on various parameters that one is free to
choose. We exhibit here just one such choice, intended to be illuminating.

To begin, recall from [9] that classical higher-order logic is complete with
respect to general models, nowadays called Henkin models. The basic feature
of a Henkin model M of a theory T is that a function type Z¥ (or power
type 2Y) is interpreted by a subset (Z¥)y C (Zp)¥™) of the set of all
functions from Yy, to Zj; (resp. of the power set ©Yy/), rather than by the
set itself. Of course, certain closure conditions also have to be satisfied. We
mention only by the way that such models can be shown to arise “naturally”
as images of the universal model Ur under continuous, left exact functors
Br — Sets, and that the said completeness can be inferred from this fact.
For the following, it will be convenient to define the underlying set or universe
|M| of a Henkin model M to be the (disjoint) union of the sets Z,, for all
types Z,

(M| = | J{Zu | Z a type}.
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To define the space Xt for the topos Sh(Br), fix a sufficient set St of
countable Henkin models M of T, i.e. St satisfies:

M |= o for all M € S implies Tko

for all T-sentences o. For example, we could take (a set of representatives
of) all countable Henkin models of T as the set St. We then define a labeling
of a Henkin model M in St to be a partial function

N O dom(a) = | M|

such that for each a € |M]| the fiber a~*(a) is infinite.
The points of the space Xt are labeled Henkin models in St, i.e. pairs

(M, )

where M € St and « is a labeling of M. The topology is generated by basic
open sets of the form

Upzyn = {(M,a) | a(n;) is defined and of type Z;,
and M = o(a(ni),...,a(ny)) }

for (2) = ¢(z1, ..., zm) a T-formula and 7 = (n4, ... ,n,) a tuple of natural
numbers.

To describe the covering map ¢: Sh(Xt) — Sh(Br) we sketch the con-
struction of the c-model @ in Sh(Xrt) induced by ¢*. Here we use the equiv-
alence, mentioned in the introduction, Sh(Xr) ~ Etale/ Xy of sheaves on Xt
and étale bundles over Xt. For each type Z we have the set

with the evident projection
Ty Ze — X.
We generate a topology on Zg by declaring to be open:
e the sets 7, (U) for U C Xy open (thus making 75 continuous),
o the sets V,, = {(M, o, a) | a € Zy;, a(n) is defined, and a(n) = a}.

It is easily checked that 7, then becomes a local homeomorphism (an étale
map). The assignment Z +— Zg extends in the obvious way to a left exact,
continuous functor Br — Sh(Xt) that preserves exponentials, inducing the
covering map ¢: Sh(Xr) — Sh(Br). Finally, the stalk 2*® of the c-model ®
at a point z = (M, «) of X is just the Henkin model M itself, which gives
the relationship between our results and [9].
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