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Linear Hashing

Noga Alon∗ Martin Dietzfelbinger† Peter Bro Miltersen‡

Erez Petrank§ Gábor Tardos¶

Abstract

Consider the set H of all linear (or affine) transformations between
two vector spaces over a finite field F . We study how good H is as
a class of hash functions, namely we consider hashing a set S of size
n into a range having the same cardinality n by a randomly chosen
function from H and look at the expected size of the largest hash
bucket. H is a universal class of hash functions for any finite field, but
with respect to our measure different fields behave differently.
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If the finite field F has n elements then there is a bad set S ⊂ F 2

of size n with expected maximal bucket size Ω(n1/3). If n is a perfect
square then there is even a bad set with largest bucket size always at
least

√
n. (This is worst possible, since with respect to a universal

class of hash functions every set of size n has expected largest bucket
size below

√
n+ 1/2.)

If, however, we consider the field of two elements then we get
much better bounds. The best previously known upper bound on the

expected size of the largest bucket for this class was O(2
√

logn). We
reduce this upper bound to O(log n log log n). Note that this is not far
from the guarantee for a random function. There, the average largest
bucket would be Θ(log n/ log log n).

In the course of our proof we develop a tool which may be of
independent interest. Suppose we have a subset S of a vector space
D over Z2, and consider a random linear mapping of D to a smaller
vector space R. If the cardinality of S is larger than cε|R| log |R| then
with probability 1 − ε, the image of S will cover all elements in the
range.

1 Introduction

Consider distributing n balls in s buckets, randomly and independently. The
resulting distribution of the balls in the buckets is the object of occupancy
theory.

In the theory of algorithms and in complexity theory, it is often neces-
sary and useful to consider putting balls in buckets without complete in-
dependence. More precisely, the following setting is studied: A class H of
hash functions, each mapping a universe U to {1, 2, . . . , s}, is fixed. A set
S ⊆ U to be hashed is given by an adversary, a member h ∈ H is chosen uni-
formly at random, S is hashed using h, and the distribution of the multi-set
{h(x)|x ∈ S} is studied. If the class H is the class of all functions between
U and {1, 2, . . . , s}, we get the classical occupancy problems. Carter and
Wegman defined a class H to be universal if1

∀x 6= y ∈ U : Prob(h(x) = h(y)) ≤ 1/s.

1We remark that a stricter definition is often used in the complexity theory literature,
and a more liberal definition is often used in the data structure literature.
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For universal families, the following properties are well known; variations of
them have been used extensively in various settings:

1. If S of size n is hashed to n2 buckets, with probability more than 1/2,
no collision occurs.

2. If S of size 2n2 is hashed to n buckets, with probability more than 1/2,
every bucket receives an element.

3. If S of size n is hashed to n buckets, the expected size of the largest
bucket is less than

√
n+ 1

2
.

The intuition behind universal hashing is that we often lose relatively little
compared to using a completely random map. Note that for the property
1, this is true in a very strong sense; even with complete randomness, we
do not expect o(n2) buckets to suffice (the birthday paradox), so nothing is
lost by using a universal family instead. The bounds in the second and third
properties, however, are rather coarse-grained compared to what one would
get with complete randomness. For property 2, with complete randomness,
Θ(n logn) balls would suffice to cover the buckets with good probability (the
coupon collector’s theorem), i.e. a polynomial improvement over n2, and for
property 3, with complete randomness, we expect the largest bucket to have
size Θ(log n/ log log n), i.e. an exponential improvement over

√
n. In these

last cases we do seem to loose quite a lot compared to using a completely
random map and better bounds would seem desirable. However, it is rather
easy to construct (unnatural) families of universal families and sets to be
hashed showing that size Θ(n2) is necessary to cover n buckets with non-zero
probability, and that buckets of size

√
n are, in general unavoidable, when a

set of size n is hashed to n buckets. This shows that the abstract property
of universality does not allow for stronger statements. Now fix a concrete
universal family of hash functions. We ask the following question: To which
extent are the fine-grained occupancy properties of completely random maps
preserved?

We provide answers to these questions for the case of linear maps be-
tween two vector spaces over a finite field, a natural and well known class
of universal hash functions. The general flavor of our results is that “large
fields are bad”, in the sense that the bounds becomes the worst possible for
universal families, while “small fields are good” in the sense that the bounds
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become as good or almost as good as the ones for independently distributed
balls.

More precisely, for the covering problem, we show the following (easy)
theorem

Theorem 1 Let F be a field of size n and let H be the class of linear maps
between F 2 and F . There is a subset S of F 2 of size Θ(|F |2), so that for no
h ∈ H, h(S) = F .

On the other hand, we prove the following harder theorem

Theorem 2 Let S be a subset of a vector space over Z2 and choose a random
linear map to a smaller vector space R. If |S| ≥ cε|R| log |R| then with
probability at least 1− ε the image of S covers the entire range R.

For the “largest bucket problem”, let us first introduce some notation: Let
U be the universe from which the keys are chosen. We fix a classH mapping
U to {1, . . . , s}. Then, a set S ⊆ U of size n is chosen by an adversary, and
we uniformly at random pick a hash function h ∈ H, hash S using h and look
at the size of the largest resulting hash bucket. We denote the expectation
of this size by Lsn. Formally,

Lsn(H) = max
S⊆U,|S|=n

Eh∈H[ max
y∈{1,...,s}

|{x ∈ S | h(x) = y}|]

Usually we think of s being of size close to n. Note that if s = Ω(n2), any
universal class yields Lsn = O(1).

The class H we will consider is the set of linear maps between Fm → F k

for m > k. Here F is a finite field and s = |F |k. This class is universal for
all values of the parameters.

When k = 1 and thus |F | = s the expected largest bucket can be large.

Theorem 3 Let F be a finite field with |F | = s. For the class H of all linear
transformations F 2 → F we have

Lss(H) = Ω(s1/3).

Furthermore if |F | is a perfect square we have

Lss(H) >
√
s.
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Note how close our lower bound for quadratic fields is to the upper bound
of
√
s + 1/2 that holds for every universal class. We also mention that for

the bad set we construct in Theorem 8 for a quadratic field there is no good
hash function, since there always exists a bucket of size at least

√
s.

When the field is the field of two elements, the situation is completely
different. Markowsky, Carter and Wegman [MCW78] showed that for this
case Lss(H) = O(s1/4). Mehlhorn and Vishkin [MV84] improved on this result

(although this is implicit in their paper) and showed that Lss(H) = O(2
√

log s).
We further improve the bound and show that:

Theorem 4 For the class H of all linear transformations between two vector
spaces over Z2,

Lss(H) = O(log s log log s).

Furthermore, we also show that even if the range is smaller than |S| by a
logarithmic factor, the same still holds:

Theorem 5 For the class H of all linear transformations between two vector
spaces over Z2,

Lss log s(H) = O(log s log log s).

Note that even if one uses the class R of all functions one obtains only a
slightly better result: the expected size of the largest bucket in this case
is Lss(R) = Θ(log s/ log log s) and Lss log s(R) = Θ(log s), which is the best
possible bound for any class. Interestingly, our upper bound is based on our
upper bound for the covering property.

We do not know what the right bound is for the class of linear maps over
Z2, i.e., is it as good as O(log s/ log log s)? We leave this as an open question.

1.1 Motivation

There is no doubt that the method of implementing a dictionary by hashing
with chaining, recommended in textbooks [CLR90, GBY90] especially for
situations with many update operations, is a practically important scheme.

In situations in which a good bound on the cost of single operations is
important, e. g., in real-time applications, the expected maximal bucket size
as formed by all keys ever present in the dictionary during a time interval
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plays a crucial role. Our results show that, at least as long as the size of the
hash table can be determined right at the start, using a hash family of linear
functions over Z2 will perform very well in this respect. For other simple
hash classes such bounds on the worst case bucket size are not available or
are even wrong (see Theorem 8); other, more sophisticated hash families [S89,
DM90, DGMP92] that do guarantee small maximal bucket sizes consist of
functions with higher evaluation time. Of course, if worst case constant time
for certain operations is absolutely necessary, the known two-level hashing
schemes can be used, e. g., the FKS scheme [FKS84] for static dictionaries;
dynamic perfect hashing [DKMHRT94] for the dynamic case with constant
time lookups and expected time O(n) for n update operations; and the “real-
time dictionaries” from [DM90] that perform each operation in constant time,
with high probability. It should be noted, however, that a price is to be
paid for the guaranteed constant lookup time in the dynamic schemes: the
(average) cost of insertions is significantly higher than in simple schemes like
chained hashing; the overall storage requirements are higher as well.

1.2 Related work

Another direction in trying to show that a specific class has a good bound on
the expected size of the largest bucket is to build a class specifically designed
to have such good property.

One immediate such result is obtained by looking at the class of d-degree
polynomials over finite fields, where d = c logn/ log log n (see, e.g., [ABI86].)
It is easy to see that this class maps each d elements of the domain inde-
pendently to the range, and thus, the bound that applies to the class of all
functions also applies to this class. We can combine this with the following
well known construction, (which is usually called “collapsing the universe”)
: At the expense of Θ(log n + log log |U |) random bits one can construct a
map g : U → {1, . . . , nk+2} that on any set S will be one-to-one with prob-
ability 1 − O(1/nk). This gives us a class with Lnn = Θ(logn/ log log n) of
size 2O(log log |U |+log2 n/ log logn) and with evaluation time O(logn/ log log n) in a
reasonable model of computation, say, a RAM with unit cost operations on
members of the universe to be hashed.

More efficient (but much larger) families where given by Siegel [S89] and
by Dietzfelbinger and Meyer auf der Heide [DM90]. Both provide families of
size |U |nε such that the functions can be evaluated in O(1) time on a RAM
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and with Lnn = Θ(logn/ log log n). The families from [S89] and [DM90] are
somewhat complex to implement while the class of linear maps requires only
very basic bit operations (as discussed already in [CW79]). It is therefore
desirable to study this class, and this is the main purpose of the present
paper.

1.3 Notation

If S is a subset of the domain D of a function h we use h(S) to denote
{h(s) | s ∈ S}. If x is an element of the range we use h−1(x) to denote
{s ∈ D | h(s) = x}. If A and B are subsets of a vector space V and x ∈ V we
use the notations A+B = {a+b | a ∈ A∧b ∈ B} and x+A = {x+a | a ∈ A}.
We use Z2 to denote the two element field. All logarithms in this paper are
base two.

2 The covering property

2.1 Lower bounds for covering with a large field

We prove Theorem 1. Take a set A ⊂ F of size |A| = b|F |/2c and consider
S = {(x, y) | y 6= 0 ∧ x/y ∈ A ∧ (x − 1)/y 6∈ A}. S has density around one
quarter and no linear map g : F 2 → F satisfies g(S) = F . To see this take a
nonzero linear map g : (x, y) 7→ ax+ by and note that if 0 ∈ g(S) then a 6= 0
and −b/a ∈ A but in this case a 6∈ g(S).

2.2 Upper bounds for covering with a small field - the
existential case

We start by showing that if we have a large enough subset A of a vector
space over Z2 then there exists a linear transformation T to a large vector
space such that T (A) is the entire range. The constant e below is the base
of the natural logarithm.

Theorem 6 Let A be a finite set of vectors in a vector space V of an arbi-
trary dimension over Z2 and let t > 0 be an integer. If |A| > t2t/ log e then
there exists a linear map T : V → Zt

2, so that T maps A onto Zt
2.
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For the proof of this theorem we need the following simple lemma. Note
that although we state the lemma for vector spaces, it holds for any finite
group.

Lemma 2.1 Let V be a finite vector space, A ⊆ V , α = 1− |A|/|V |. Then
for a random v ∈ V it holds that

Ev(1− |A ∪ (v +A)|/|V |) = α2.

Proof. If v and u are both chosen uniformly independently at random from
V then both events u 6∈ A and u 6∈ v + A have probability α and they are
independent. 2
Proof of Theorem 6. Let m be the dimension of V , N = |A| and α =
1− |A|/|V | = 1−N/2m. Starting with A0 = A, we choose a vector v1 ∈ V
so that for A1 = A0 ∪ (v1 +A0)

1− |A1|
|V | ≤ α2.

Such a choice for v1 exists by Lemma 2.1. Then, by the same procedure, we
choose a v2 so that for

A2 = A1 ∪ (v2 +A1) = A+ Span{v1, v2},

1− |A2|
|V | ≤ α4,

and so on up to As = A+ Span{v1, . . . , vs} with s = m− t for which

1− |As||V | ≤ α2s.

Note that one can assume that the vectors v1, . . . , vs are linearly independent
since choosing a vector vi which depends on the previous choices makes Ai =
Ai−1.

We now claim that As = V . Suppose in way of contradiction that As 6= V .
Take a vector v ∈ V outside As, then v + Span{v1, . . . , vs} is disjoint from
As; thus

1− |As||V | ≥ 2s/2m.
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Combining the last two inequalities and recalling that t = m− s we get

2−t ≤ α2s = (1−N/2m)2s < e−N2−t.

Taking the logarithm of both sides yields −t < −N log2 e/2
t contradicting

our assumption on N . Thus, As = V must hold.
Now we choose a linear map T : V → Zt

2 such that its kernel T−1(0) =
Span{v1, . . . , vs}. The equality V = As = A+ Span{v1, . . . , vs} implies that
T maps A onto Zt

2. 2
The bound in Theorem 6 is asymptotically tight as shown by the following

proposition.

Proposition 2.2 For every large enough integer t there is a set A of at least
(t−3 log t)2t/ log e vectors in a vector space V over Z2 so that for any linear
map T : V → Zt

2, T does not map A onto Zt
2.

Proof: Let V = Zt+s
2 with s = bt/10c and let A be chosen at random by

picking each element of V independently and with probability p = 1 − 2−x

into the set with x = (t− 2 log t)2−s. From Chebyshev’s inequality we know
that with probability at least 3/4, A has cardinality at least pN − 2

√
pN

for N = 2s+t. Using p > x/ log e − x2/(2 log2 e) one can show that this
is as many as claimed in the proposition. Let us compute the probability
that there exists a linear map T : V → Zt

2 such that T maps A onto Zt
2.

There are 2t(t+s) possible maps T and each of them satisfies T (A) = Zt
2 with

probability at most
(
1− (1− p)2s

)2t

=
(
1− 2−2sx

)2t

= (1− t2/2t)2t < e−t
2
.

So with probability almost 3/4, A is not small and still no T maps A onto
Zt

2. 2

2.3 Choosing the linear map at random

In this subsection we strengthen Theorem 6 and prove that if A is bigger than
what is required there by only a constant factor, then almost all choices of
the linear transformation T work. This may seem immediate at first glance
since Lemma 2.1 tells us that a random choice for the next vector is good
on average. In particular, it might seem that for a random choice of v1

and v2 in the proof of Theorem 6, Ev1,v2(1 − |A + Span{v1, v2}|/|V |) ≤ α4.
Unfortunately this is not the case: For example, think of A being a linear
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subspace containing half of V . In this case, the ratio α of points that are not
covered is 1/2. As random vectors vi are chosen to be added to A, vectors in
A are chosen with probability 1/2. Thus, after i steps, α remains 1/2 with
probability 1/2i and becomes 0 otherwise. Thus, the expected value of αi is
2−i−1 which is much bigger than 2−2i .

Our first lemma is technical in nature.

Lemma 2.3 Let αi for 1 ≤ i ≤ k be random variables and let 0 < α0 < 1 be a
constant. Suppose that for 0 ≤ i < k we have 0 ≤ αi+1 ≤ αi and conditioned
on any set of values for α1, . . . , αi we have E[αi+1|α1, . . . , αi] = α2

i . Then
for any threshold 0 < t < 1 we have

Prob[αk ≥ t] ≤ α
k−log log(1/t)+log log(1/α0)
0 .

Proof: The proof is by induction on k. The k = 0 base case is trivial.
We assume the statement of the lemma is true for k and prove it for k+1.

Let c = k − log log(1/t). We may suppose c + 1 + log log(1/α0) ≥ 0 since
otherwise the bound in the lemma is above 1.

After the choice of α1, the rest of the random variables form a random
process of length k satisfying the conditions of the lemma (unless α1 = 0);
thus we can apply the inductive hypothesis to get

Prob[αk+1 ≥ t] = Eα1 [Prob[αk+1 ≥ t | α1]] ≤ E[f(α1)],

where we define f0(x) = xc+log log(1/x) for 0 < x < 1 and take f(x) =
min(1, f0(x)) in the same interval and f(0) = 0. The value f(α1) is clearly
an upper bound on Prob[αk+1 ≥ t | α1].

We claim that in the interval 0 ≤ x ≤ α0 we have f(x) ≤ f0(α0)x/α0.
To prove this simply observe that f0(x)/x is first increasing then decreasing
on (0, 1). To see this compute the derivative (f0(x)/x)

′ = (c + log e − 1 +
log log(1/x))f0(x)/x

2. If α0 is still in the increasing phase then we have
f(x)/x ≤ f0(x)/x ≤ f0(α0)/α0 for 0 < x ≤ α0. Suppose now that α0 is
already in the decreasing phase and define x′ = 2−2−c−1

. Notice that we
assumed α0 ≤ x′ in the beginning of the proof, so we have f0(α0)/α0 ≥
f0(x

′)/x′. Let us define x′′ = x′2 = 2−2−c and notice that we have f(x) = 1 if
and only if x ≥ x′′. It is easy to check that x′′ must still be in the increasing
phase of f0(x)/x thus we have f(x)/x = f0(x)/x ≤ f0(x

′′)/x′′ = 1/x′′ for
0 < x ≤ x′′. For x′′ ≤ x < 1 we simply have f(x)/x = 1/x ≤ 1/x′′. Thus we
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must have f(x)/x ≤ 1/x′′ = f0(x
′)/x′ ≤ f0(α0)/α0 for 0 < x < 1. We have

thus proved the claim in all cases for 0 < x ≤ α0. The claim is trivial for
x = 0.

Using the claim we can finish the proof writing:

Prob[αk+1 ≥ t] ≤ E[f(α1)] ≤ E[f0(α0)α1/α0] = f0(α0)E[α1]/α0 =

f0(α0)α0 = α
c+1+log log(1/α0)
0 .

2

We remark that the bound in the lemma is achievable for t = α2j

0 with
an integer 0 ≤ j ≤ k. The optimal process has αi = αi−1 or αi = 0 for
1 ≤ i ≤ k − j, while αi = α2

i−1 for k − j < i ≤ k.

Theorem 7 a) For every ε > 0 there is a constant cε > 0 such that the
following holds. Let A be a finite set of vectors in a vector space V of an
arbitrary dimension over Z2, let t > 0 be an integer. If |A| ≥ cεt2

t then for
a uniform random linear transformation T : V → Zt

2

Prob(T (A) = Zt
2) ≥ 1− ε.

b) If A is a subset of the vector space Zu
2 of density |A|/2u = 1− α < 1 and

0 ≤ t ≤ u is an integer then for a uniform random onto linear transformation
T : Zu

2 → Zt
2

Prob(T (A) 6= Zt
2) ≤ αu−t−log t+log log(1/α).

Proof: We start with proving part b) of the theorem. In order to pick the
onto map T we use the following process (similar to the one in the proof
of Theorem 6). Pick s = u− t vectors v1, . . . , vs uniformly at random from
the vectors in Zu

2 and choose T to be a random onto linear transformation
T : Zu

2 → Zt
2 with the constraints T (vi) = 0 (i = 1, . . . , s), i.e. the vectors

v1, . . . , vs are in the kernel of T . Note that the vi’s are not necessarily linearly
independent and that they do not necessarily span the kernel. After picking
them, an onto transformation satisfying that the vi’s are in the kernel is
chosen at random.

Using notations similar to the ones used in the proof of Theorem 6, let
A0 = A, Ai = A0 + Span{v1, . . . , vi} and αi = 1 − |Ai|/2u for i = 0, . . . , s.
Clearly αi is nonnegative and monotone decreasing in i with α0 = α. The
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equation E[αi+1 | α1, . . . , αi] = α2
i is guaranteed by Lemma 2.1 since Ai+1 =

Ai + vi+1 and vi+1 is independent of αj for j ≤ i. Thus all the conditions of
Lemma 2.3 are satisfied and we have

Prob[αs ≥ 2−t] ≤ αs−log t+log log(1/α).

By the definition of s the right hand side here is equal to the estimate in
the theorem. Finally notice that if T (A) 6= Zt

2 then for the vector w ∈ Zt
2

not in T (A) the set T−1(w) of size 2u−t is disjoint from As and thus αs =
1 − |As|/2u ≥ |T−1(w)|/2u = 2−t. Thus we have the claimed upper bound
for the probability that T (A) 6= Zt

2.
Now we turn to part a) of the theorem and prove it using part b). Part

a) is about a random linear transformation, not necessarily onto, but this
difference from the claim just proved poses less of a problem, the difficulty is
that we do not have an a priori bound on 1− |A|/|V |. In fact, this ratio can
be arbitrarily small. To solve this, we choose the transformation T in two
steps, the first step ensuring that the density of the covered set is substantial,
then applying part b) for the second step.

Let W = Zu
2 , with u = dlog(2|A|/ε)e. We factor T through W . First,

we pick uniformly at random a linear transformation T0 : V → W . Then,
we pick a random onto linear map T1 : W → Zt

2, and set T = T0 ◦ T1. This
results in a uniformly chosen linear map T : V → Zt

2.
Any pair of vectors v 6= w ∈ A collide with probability Prob[T0(v) =

T0(w)] = 1/|W |. Thus the expected number of collisions is
(
|A|
2

)
/|W |. Since

|T0(A)| ≤ |A|/2 implies at least |A|/2 such collisions Markov’s inequality

gives Prob[|T0(A)| ≤ |A|/2] ≤ 2
(
|A|
2

)
/(|A||W |) < |A|/|W | ≤ ε/2. For any

fixed T0 part b) of the theorem gives

Prob[T (A) 6= Zt
2] ≤ αu−t−log t+log log(1/α),

where α = 1 − |T0(A)|/|W |. In case |T0(A)| > |A|/2 we have α < 1 −
|A|/(2|W |) < e−ε/8, thus using the monotonicity of the bound above we get

Prob[T (A) 6= Zt
2] ≤ e−ε(u−t−log t+log(log eε/8)/8. (1)

Choosing cε = 4(2/ε)8/ε we have |A| ≥ cεt2
t and thus u = dlog(2|A|/ε)e >

t+log t+log(8/ε)+(8/ε) log(2/ε). This implies that the bound in Equation 1
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is below ε/2, thus we get Prob[T (A) 6= Zt
2] ≤ Prob[|T0(A)| ≤ |A|/2]+ε/2 < ε

as claimed. 2
We remark that a more careful analysis gives cε that is a small polynomial

of 1/ε.

3 The largest bucket

3.1 Lower bound for the largest bucket with a large
field

We start by showing why linear hashing over a large finite field is bad with
respect to the expected largest bucket size measure. This natural example
shows that universality of the class is not enough to assure small buckets. For
a finite field F we prove the existence of a bad set S ⊂ F 2 of size |S| = |F |
such that the expected largest bucket in S with respect to a random linear
map F 2 → F is big. We prove the results in Theorem 3 separately for
quadratic and non-quadratic fields.

We start with an intuitive description of the constructions. Linear hashing
of the plane collapses all straight lines of a random direction. Thus, a bad set
in the plane must contain many points on at least one line in many different
directions. It is not hard to come up with bad sets that contain many points
of many different lines, however the obvious constructions (subplane or grid)
yield sets where many of the “popular lines” tend to be parallel and thus
they only cover a few directions. This problem can be solved by a projective
transformation: the transformed set has many popular lines, but they are no
longer parallel.

Theorem 8 Let F be a finite field with |F | being a perfect square. There
exists a set S ⊂ F 2 of size |S| = |F | such that for every linear map h : F 2 →
F , S has a large bucket, i.e. there exists a value y ∈ F with |h−1(y)| ≥

√
|F |.

Proof. We have a finite field F0 of which F is a quadratic extension. Let
|F0| = m and |F | = m2 = n. Let a be an arbitrary element in F \ F0 and
define S = {( 1

x+a
, y
x+a

) | x, y ∈ F0}. Note that |S| = m2 = |F |. Notice also,
that S is the image of the subplane F 2

0 under the projective transformation
(x, y) 7→ ( 1

x+a
, y
x+a

).

13



Fix A,B ∈ F and consider the function h : F 2 → F defined by h(x, y) =
Ax+By. We must show that there is some C ∈ F such that |h−1(C)∩S| ≥ m.
If B = 0 then h maps all the m elements of S ′ = {(1/a, y/a | y ∈ F0} to
C = A/a, as needed. Otherwise, we claim that there is a C ∈ F such that
both C

B
and aC−A

B
are in F0. To see this observe that if g1 and g2 are two

distinct members of F0, then ag1 and ag2 lie in distinct additive cosets of
F0 in F , since otherwise their difference, a(g1 − g2) would have to be in F0,
contradicting the fact that a 6∈ F0. Thus, as g ranges over all members of F0,
ag intersects distinct additive cosets of F0 in F , and hence aF0 intersects all
those cosets. In particular, there is some g ∈ F0 so that ag ∈ F0+

A
B

, implying
that C = gB satisfies the assertion of the claim. For the above C, for every
choice of x ∈ F0, y(x) = C

B
x+ aC−A

B
∈ F0. We have now A 1

a+x
+B y(x)

a+x
= C,

showing that h maps all the m elements of S ′ = {( 1
a+x

, y(x)
a+x

) | x ∈ F0} ⊂ S
to C. 2

Theorem 9 Let F be a finite field. There exists a set S ⊂ F 2 of size |S| =
|F | such that for more than half of the linear maps h : F 2 → F , S has a
large bucket, i.e. there exists a value y ∈ F with |h−1(y)| ≥ |F |1/3/3− 1.

Proof. First we construct a set S′ ⊂ F 2 such that |S ′| ≤ |F | = n and
there are n distinct lines in the plane F 2 each containing at least m ≥ n1/3/3
points of S ′.

Let us first consider the case when n is a prime, so F consists of the
integers modulo n. We let A = {i | 1 ≤ i <

√
n} and consider the square

grid S ′ = A× A. Clearly |S ′| < n. It is well known that each of the n most
popular lines contains at least m ≥ n1/3/3 points of S ′. This is usually proved
for the same grid in the Euclidean plane (see e.g. [PA95], pp. 178–179) but
that result implies the same for our grid in F 2.

Now let n = pk and let F0 be the subfield in F of p elements. Let
x ∈ F be a primitive element, then every element of F can be uniquely
expressed as a polynomial of x of degree below k with coefficients from F0.
Let k1 =

⌊
k+1

3

⌋
, k2 = k − k1 =

⌊
2k+1

3

⌋
and let A1 = {f(x) | deg(f) < k1},

A2 = {f(x) | deg(f) < k2} where the polynomials f have coefficients from
F0. Finally we take S ′ = A1 × A2. Clearly |S ′| = n. For a ∈ A1 and b ∈ A2

we consider the line La,b = {(y, ay+ b) | y ∈ F} in F 2. Notice that there are
n such lines and we have ay + b ∈ A2 whenever y ∈ A1. Thus, we have n
distinct lines each containing m = |A1| = pk1 points of S ′. We have m ≥ n1/3

14



as claimed unless k ≡ 1 (mod 3). Notice that for k ≡ 2 (mod 3) our m
is much higher than n1/3. For the bad case k ≡ 1 (mod 3) we apply the
construction below instead.

Finally suppose n = pk, p is a prime and k ≡ 1 (mod 3). To get our set
S ′ in this case we have to merge the two constructions above. Let F0 be the
p element subfield of F , then F0 consists of the integers modulo p. We set
A = {i | 1 ≤ i <

√
p}. Let k1 = (k+ 2)/3 and k2 = (2k+ 1)/3 and let x ∈ F

be a primitive element, so we can express any element of F uniquely as a
polynomial of x of degree less then k with coefficients from F0. We set A1 =
{f(x) | deg(f) < k1∧f(0) ∈ A}, A2 = {f(x) | deg(f) < k2∧f(0) ∈ A} where
the polynomials f have coefficients from F0. Finally we set S ′ = A1 × A2.
Clearly |S ′| < n. For j, j′ ∈ F0 let Lj,j′ = {(i, ji+ j′) | i ∈ F0}. Let a and b

be polynomials with coefficients from F0 with deg(a) < k1 and deg(b) < k2.
Consider the line La,b = {(y, a(x)y+ b(x)) | y ∈ F}. Notice that |La,b∩S ′| =
pk1−1|La(0),b(0) ∩ (A×A)|. Thus, from knowing that the p most popular lines
in F 2

0 contain at least m0 ≥ p1/3/3 points from A×A we conclude that there
exist n distinct lines each containing at least m = m0p

k1−1 ≥ n1/3/3 points
of S ′.

In all cases now we have constructed our set S′ ⊂ F 2 of size |S ′| ≤ n with
n distinct popular lines each containing at least m > n1/3/3 points of S ′. Let
P be the projective plane containing F 2. Out of the n2 + n+ 1 points in P
every popular line covers n + 1. The ith popular line (1 ≤ i ≤ n) can only
have i − 1 intersections with earlier lines, thus it covers at least n + 2 − i
points previously uncovered. Therefore a total of at least

(
n+2

2

)
− 1 points

are covered by popular lines. Simple counting gives the existence of a line L
in P not among the popular lines, such that more than half of the points on
L are covered by popular lines. Let f be a projective transformation taking
the ideal line L′ = P \F 2 to L. We define S = {x ∈ F 2 | f(x) ∈ S ′}. Clearly
|S| ≤ |S ′| ≤ n.

One linear hash function h : F 2 → F is constant zero (and thus all of S is
a single bucket), for the rest there is a point xh ∈ L′ such that h collapses the
points of F 2 of each single line going through xh. As we get all points of L′

equal number of times (n− 1 times to be precise) it is enough to prove that
whenever f(xh) is covered by a popular line S has a big bucket with respect
to h as claimed. So suppose f(xh) is in the popular line L′′. As L′′ contains
at least m points of S ′ thus f−1(L′′) must be a line through xh containing at
least m − 1 points of S (the −1 comes from the possibility of f(xh) ∈ S ′).
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This ensures a bucket of S with respect to h of size at least m−1 as claimed.
2

3.2 Upper bound for the largest bucket with a small
field

Let us now recall and prove our main result.
For convenience here we speak about hashing n log n keys to n values.

Also, we assume that n is a power of 2.
Theorem 5: LetH be the class of linear transformations between two vector
spaces over Z2, then

Lnn logn(H) = O(logn log log n).

This theorem implies Theorem 4.
We have to bound the probability of the event that many elements in the

set S are mapped to a single element in the range. Denote this bad event
by E1. The overall idea is to present another (less natural) event E2 and
show that the probability of E2 is small, yet the probability of E2 given E1

is big. Thus, the probability of E1 must be small. We remark here that a
somewhat similar line of reasoning was used in the seminal paper of Vapnik
and Chervonenkis [VC71].

For the proof we fix the domain to be D = Zm
2 , the range (the buckets)

to be B = Zlog n
2 , and S ⊂ D of size |S| = n log n.

Let us choose arbitrary ` ≥ log n and consider the space A = Z`
2. We con-

struct the linear transformation h : D → B through the intermediate range
A in the following way. We choose uniformly at random a linear transfor-
mation h1 : D → A and uniformly at random an onto linear transformation

h2 : A → B. Now we define h
def
= h1 ◦ h2. Note that as mentioned in the

proof of part a) of Theorem 7 this yields an h which is uniformly chosen from
among all linear transformations from D to B.

Let us fix a threshold t. We define two events. E1 is the existence of a
bucket of size at least t:

Event E1: There exists an element α ∈ B such that∣∣∣h−1(α) ∩ S
∣∣∣ > t.
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We are going to limit the probability of E1 through the seemingly unrelated
event E2:

Event E2: There exists an element α ∈ B such that

h−1
2 (α) ⊆ h1(S).

Consider the distribution space in which h1 and h2 are uniformly chosen
as above. We shall show that

Proposition 3.1 If d = 2`/(n log n) > 1 we have

Prob[E2] ≤ d− log d−log log d.

Proposition 3.2 If t > c1/2(2
`/n) log(2`/n) (with c1/2 from Theorem 7a))

then

Prob[E2|E1] ≥
1

2
.

From Propositions 3.1 and 3.2 we deduce that the probability of E1 must be
small:

Corollary 3.3 For every c > 1 and every power n of 2 a random linear
transformation hashing a subset S of a Z2 vector space of size |S| = n log n
to Zlogn

2 we have

Prob[maximum bucket size ≥ c logn log log n] < c−(1−o(1)) log c.

Here the o(1) term depends only on c.

Proof: We may suppose that c and n are sufficiently large. We set c′ =
c/c1/2 with the absolute constant c1/2 guaranteed by Theorem 7a) and let
` = blog n + log log n + log c′ − 2 log c′/ log lognc to satisfy the condition of
Proposition 3.2 with t = c logn log log n. We get Prob[E2|E1] ≥ 1

2
. Then

applying 3.1 we get d > c′1−2/ log logn/2 = c1−o(1), so in particular d > 1 if c
is large enough. Thus, we have Prob[E1] ≤ 2Prob[E2] < 2d− log d−log log d =
c−(1−o(1)) log c. 2

Let us now prove the propositions above.
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Proof of Proposition 3.1: Note first that an alternative way to describe
E2 is

h2(A \ h1(S)) 6= B.

We will prove that Proposition 3.1 holds for any specific h1, and thus it also
holds for a randomly chosen h1. So fix h1 and consider the distribution in
which h2 is chosen uniformly amongst all full rank linear transformation from
A to B.

We use part b) of Theorem 7 for the set A \ h1(S) ⊂ A. Its density is
clearly 1 − α for α = |h1(S)|/|A| ≤ |S|/|A| = 1/d. Thus the theorem gives
Prob[E2] ≤ α`−logn−log logn+log log(1/α) ≤ d− log d−log log d as claimed. 2
Proof of Proposition 3.2: Fix h for which E1 holds, and fix any full rank
h2. We will show that the probability of event E2 is at least 1/2 even when
these two are fixed and thus the conditional probability is also at least 1/2.

Now since E1 holds there is a subset S ′ ⊆ S of cardinality at least t

mapped by h to a single element α ∈ Zlogn
2 . Fix this α and define D′

def
=

h−1(α) and A′
def
= h−1

2 (α). Consider the distribution of h1 satisfying h =
h1 ◦ h2. When we restrict h1 to D′, we get that the distribution implied
by such h1 is a uniform choice of an affine or linear map from D′ into A′

(we show this in Proposition 3.4 below). For event E2 to hold it is enough
to have A′ ⊆ h1(S). We will show that h1(S

′) covers all the points in A′

with probability at least 1/2 and thus we get that event E2 happens with
probability 1/2. Since h2 is onto we have |A′| = 2`/n. On the other hand,
D′ ∩ S has cardinality at least t = dc1/2(2

`/n) log(2`/n)e. By part a) of
Theorem 7, the probability that a set of cardinality t mapped by a random
linear transformation will cover a range of cardinality 2`/n is at least 1/2.
(Note that Theorem 7a) clearly applies to a random affine transformation
too.) 2

At this point, we have proven Corollary 3.3. This limits the probability
of large buckets with linear hashing. It is straightforward to deduce Theorem
5 from that corollary:
Proof of Theorem 5: Lnn logn is the expectation of the distribution of the
largest bucket size. Corollary 3.3 limits the probability of the tail of this
distribution, thus yielding the desired bound on the expectation:

E[maxS-bucket size] =

∞∫
0

Prob[maxS-bucket > t]dt <

18



log n log log n(c0 +

∞∫
c0

c− log c/2dc) = O(logn log logn),

if the o(1) term of Corollary 3.3 is below 1/2 for c > c0. 2
In order for the paper to be self-contained we include a proof of the simple

statement about random linear transformations used above.

Proposition 3.4 Let D, A and B be vector spaces over Z2. Let h : D→ B

be an arbitrary linear map, and let h2 : A → B be an arbitrary onto linear

map. Let α be any point in B and denote D′
def
= h−1(α) and A′

def
= h−1

2 (α).
Then, choosing a uniform linear map h1 : D → A such that h = h1 ◦ h2 and
restricting the domain to D′ we get a uniformly chosen linear map from D′

to A′ if α = 0 or uniformly chosen affine map from D′ to A′ otherwise.

Proof: Consider D0
def
= h−1(0) and A0

def
= h−1

2 (0). Let us choose a com-
plement space D1 to D0 in D, i.e. D0 ∩D1 = {0} and D0 + D1 = D. Let
us call x the unique vector in D′ ∩ D1. We have D′ = D0 + x. A linear
transformation h1 : D→ A is determined by its two restrictions h′ : D0 → A
and h′′ : D1 → A. Clearly the uniform random choice of h1 corresponds to
uniform and independent choices for h′ and h′′. The restriction h = h1 ◦ h2

means that h′(D0) ⊆ A0 and h′′ ◦ h2 is the restriction of h to D1. Thus,
after the restriction the random choices of h′ and h′′ are still independent.
Note now that if α = 0 then the restriction of h1 in question is exactly
h′ : D′ → A′. If α 6= 0 then use h1(u + x) = h′(u) + h′′(x) for u ∈ D0 to
note that the restriction in question is again h′, this time translated by the
random value h′′(x) ∈ A′. 2

4 Remarks and open questions

We have discussed the case of a very small field (size 2) and a very large field
(size n). What happens with intermediate sized fields? Some immediate
rough generalizations of our bounds are the following: If we hash an adver-
sarily chosen subset of Fm of size n = |F |k to F k by a randomly chosen linear
map, the expected size of the largest bucket is at most O((logn log log n)log |F |)
and at least Ω(|F |1/3). Tighter bounds should be possible.

Another question is which fine-grained property other well known hash
families have. Examples of the families we have in mind include: Arithmetic
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over Zp [CW79, FKS84] (with ha,b(x) = (ax+b mod p) mod n), integer multi-
plication [DHKP93, AHNR95] (with ha(x) = (ax mod 2k) div 2k−l), Boolean
convolution [MNT93] (with ha(x) = a ◦ x projected to some subspace).

An example of a natural non-linear scheme for which the assertion of
Theorem 6 fails is the scheme that maps integers between 1 and p, for some
large prime p, to integers between 0 and n − 1 for n = dp/me, by mapping
x ∈ Zp to the integer part of the fraction (ax + b)( mod p)/m, where a, b
are two randomly chosen elements of Zp. For this scheme, there are primes
p and choices of an n and a subset S of cardinality Ω(n log n log log log n) of
Zp, which is not mapped by the above mapping onto [0, n − 1] under any
choice of a and b.

To see this, let p be a prime satisfying p ≡ 3 (mod 4) and consider the
set

S = {j2 mod p | j ∈ Zp \ {0}},
of all quadratic residues modulo p. Note that for every nonzero element
a ∈ Zp, the set aS ( mod p) is either the set of all quadratic residues or
the set of all quadratic non-residues modulo p. The main result of Graham
and Ringrose [GR90] asserts that for infinitely many primes p, the smallest
quadratic nonresidue modulo p is at least Ω(log p log log log p) (this result
holds for primes p ≡ 3 ( mod 4) as well, as follows from the remark at the
end of [GR90]). Since for such primes p, −1 is a quadratic nonresidue, it
follows that for the above S and for any choice of a, b ∈ Zp, the set aS +
b (computed in Zp) avoids intervals of length at least Ω(log p log log log p).
Choosing m = c log p log log log p for an appropriate (small) constant c, and
defining n = dp/me, it follows that |S| = (p− 1)/2 = Ω(n log n log log log n)
is not mapped onto [0, n− 1] under any choice of a and b.

A final question is whether there exists a classH of size only 2O(log log |U |+logn)

and with Lnn(H) = O(logn/ log log n). Note that linear maps over Z2,
even combined with collapsing the universe, use O(log log |U | + (logn)2)
random bits while the simple scheme using higher degree polynomials uses
O(log log |U |+ (logn)2/ log logn).
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