
B
R

IC
S

R
S

-97-11
Č
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Timed Modal Specification

— Theory and Tools∗

Kārlis Čerāns†, Jens Chr. Godskesen‡and Kim G. Larsen§

Abstract

In this paper we present the theory of Timed Modal Specifications (TMS) together with its imple-
mentation, the tool Epsilon. TMS and Epsilon are timed extensions of respectively Modal Specifi-
cations [Lar90, LT88] and the Tav system [GLZ89, BLS92].

The theory of TMS is an extension of real–timed process calculi with the specific aim of allowing
loose or partial specifications. Looseness of specifications allows implementation details to be left
out, thus allowing several and varying implementations. We achieve looseness of specifications by
introducing two modalities to transitions of specifications: a may and a must modality. This allows
us to define a notion of refinement, generalizing in a natural way the classical notion of bisimulation.
Intuitively, the more must–transitions and the fewer may–transitions a specification has, the finer it
is. Also, we introduce notions of refinements abstracting from time and/or internal computation.

TMS specifications may be combined with respect to the constructs of the real–time calculus
[Wan90]. “Time–sensitive” notions of refinements that are preserved by these constructs are defined
1, thus enabling compositional verification.

Epsilon provides automatic tools for verifying refinements. We apply Epsilon to a compositional
verification of a train crossing example.

1 Introduction

In this paper we present the theory of Timed Modal Specifications (TMS) together with its implemen-
tation, the tool Epsilon. TMS and Epsilon are timed extensions of respectively Modal Specifications
[Lar90, BL90, LT88, HL89] and the Tav system [GLZ89, BLS92].

During the last few years various process calculi have been extended to include real–time in order to
handle quantitative aspects of real–time systems, for instance that some critical event must not or should
happen within a certain time period. We mention the calculi defined in [Wan90] and the ones defined in
[NSY91] and [BB89]. Common to these real–time calculi is that time is represented by some dense time
domain, e.g. the non–negative reals.

∗This work has been supported by the Danish National Science Research Council project DART and the ESPRIT Basic
Research Action 7166, CONCUR2. For the first author part of this work was performed while on a post–doc leave at
Chalmers University of Technology, Göteborg, Sweden.
†Adress: Inst. of Math. and Comp. Sc., University of Latvia., Rainis blvd. 29, LV–1459 Riga, Latvia. E–mail:

karlis@mii.lu.lv.
‡Address: Tele Danmark Research, Lyngsø Allé 2, DK–2970 Hørsholm, Denmark. E–mail: jcg@tdr.dk
§Address: Dep. of Math. and Comp. Sc., Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark. E–mail:

kgl@iesd.auc.dk.
1To be precise, when abstracting from internal composition refinement is not preserved by choice for the usual reasons.
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As argued in [Lar90] process calculi are often too concrete in the sense that when a system has been
specified the set of possible implementations are restricted to one and only one equivalence class of
processes (e.g. the class of bisimulation [Mil89, Par81] equivalent processes). Moreover, as correctness is
given by the equivalence, the set of possible implementations remains constant under refinement. Hence,
stepwise development methodologies are not well supported in classical process calculi. As an example,
using the notation from [Wan90], a disposable medium Ma,b

d with some delay d between input and output
can be specified by

Ma,b
d

def
= a.ε(d).b

meaning that after input a the output b is first enabled after d time units. But, as a specification this
may be too precise and perhaps all that needs to be required of the medium is that it enables its output
at some point in the time interval [e, f ] after a message has been received. Hence, using a suggestive
notation, a more loose specification like

Ma,b
e,f

def
= a.ε[e, f ].b

is needed. Intuitively, we want Ma,b
e,f to mean that after input a the output b may be enabled in the

interval [e, f) but is first guaranteed to be enabled after f time units. It is however impossible to give a
loose specification, like Ma,b

e,f , using process calculi.

The theory of TMS is an extension of real–timed process calculi with the specific aim of allowing loose
or partial specifications. Looseness here means that a specification S can have various implementations
because implementation details may be left out in S. For instance, as in the example above, we can
be liberal as to how long a medium may delay before it can deliver. The looseness of specifications is
achieved by introducing two modalities to transitions: a may and a must modality, denoted by indices
3 and 2 respectively on actions. Using modalities the loosely specified media above can be specified by

Sa,be,f
def
= a2.(ε(e).b3 + ε(f).b2)

that is, Sa,be,f specifies disposable media that must input a. After e time units from reception, but not

before, b may be enabled but only after f time units the enabling of b is required. Obviously we expect
Ma,b
d to implement Sa,be,f whenever d ∈ [e, f ].

Generalizing in a natural way the notion of bisimulation we introduce a refinement ordering � between
timed modal specifications. As indicated above, a timed modal specification may specify a whole range
of implementations or processes. Thus conceptually one may view a modal specification S as the set of
processes satisfying S, and the refinement ordering attempts to capture the corresponding set inclusion
between specifications. Intuitively, we expect a modal specification S to be a refinement of specification
T when all transition allowed by S are also allowed by T , and, conversely, all transitions required by T
are also required by S. As an example, we expect Sa,be,f � Sa,bg,h, whenever g ≤ e and f ≤ h.
In practical applications it is often advantageous to abstract from certain aspects when analyzing a system.
In particular, internal computation will normally be considered unobservable, and in a first analysis
of a large combined system explicit timing information may be irrelevant. In the paper we therefore
introduce notions of refinements abstracting from time and internal computation, and, of course, our tool
Epsilon supports automatic verification based on the refinements presented. For total specifications,
i.e. specifications with no looseness in the sense that all events are labelled with 2–modalities, our
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refinements collapses into standard process calculi (bisimulation) equivalences. We therefore consider
TMS a conservative extension of timed process calculi,

The automatic refinement checking for TMS can be performed through adopting the techniques for
checking bisimulation equivalences between networks of timed regular processes, developed in [Č92b] for
timed (time–sensitive) and [LW90] for time–abstracted cases (an alternative approach for deciding time–
abstracted equivalences can be found in [ACH+92]). We have implemented these technique in the tool
Epsilon so indeed automatic refinement checking between TMS specifications is feasible. For untimed
specifications the algorithms of Epsilon coincide with those of the Tav [GLZ89, BLS92] system2.

We intend TMS and Epsilon to be useful during the process of design and implementation. In par-
ticular, we want to support system development through stepwise refinement. In a stepwise refinement
development of a system the initial specification is rather abstract permitting a wide range of imple-
mentations. An idealized development now consists in a series of small and successive refinements, each
restricting the set of permitted implementations, until eventually an implementation can be extracted
directly. Each refinement can be relatively small, consisting typically in the replacement of a single com-
ponent of the current specification with more concrete ones. To illustrate the first step of an idealized
stepwise refinement development, suppose we have an initial specification of disposable media, say

Sa,be,f

required to deliver in the interval from e to f after it receives its input. A possible refinement step could
be to replace Sa,be,f by the composed specifications

(Ma,c
d | Sc,be−d,f−d)\c (1)

That is, the initial specification has been refined to a more concrete specification demanding the imple-
mentation to consists of a medium with a fixed delay d (d ≤ e) together with some medium delivering
between e − d to f − d time units after it received. The two components communicate via the internal
channel c.3 The refined specification may be considered more concrete because structural information has
been added to the specification. Obviously, we expect (1) to be a correct refinement of Sa,be,f since the total
delay is still within the interval from e to f . Using the verification tool Epsilon we can automatically
prove the correctness of this refinement step; more precisely, we can prove

(Ma,c
d | Sc,be−d,f−d)\c � Sa,be,f

where � indicates a refinement abstracting from internal events.

In general we would like the correctness of a refinement step to be immediately implied by the correctness
of the refinement of the replaced component by the one replacing it as this obviously will greatly simplify
the task of verification. That is, we want to support compositional verification and hence the refinements
to be preserved by composition as much as possible. As an example, we want to be able to infer that the
combined medium

(Ma,c
d |M c,b

f−d)\c

is a correct implementation of Sa,be,f directly from (1) and the obvious fact that M c,b
f−d � Sc,be−d,f−d. Clearly,

this inference is possible provided the refinement � is preserved by parallel composition and restriction.

2
Tav is a system for deciding various equivalences between CCS processes [Mil89].

3As usual we take S\c to mean S but restricted from c.
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TMS and the various notions of refinements also makes our correctness proofs far more general than
correctness proofs within standard (timed) process calculi. That is, a single correctness proof in TMS
may capture a whole (possibly) infinite family of correctness proofs in process calculi. For instance, in the
example above the correctness proof of (1) establishes in a single refinement the fact that (Ma,c

d | M)\c
is a correct implementation of Sa,be,f whenever M is chosen from the infinite set {M c,b

g | g ∈ [e− d, f − d]}.
Temporal logics with explicit time provides an alternative framework for expressing loose specifications of
real–time systems. In fact there have been quite substantial work on model–checking with respect to such
logics [ACD90], and automatic tools for carrying out the model–checking has been or are under imple-
mentation (e.g. [NSY92]). However, no results as to the composition of (timed) logical specifications has
been offered so far, and compositional verification and stepwise refinement are therefore not supported.
Rather the tools and techniques developed within the (timed) logical framework always compare a (final)
implementation with the (initial) specification. In contrast, the theory of TMS and the Epsilon tool are
intended to be used throughout the entire development process.

The remainder of this paper is organized as follows. The next section contains a brief outline of Modal
Specifications. Section 3 gives the definition of TMS and provides an operational semantics for composi-
tion with respect to the constructs of TCCS. Various notions of abstracting refinements are introduced
in Section 4. The theory underlying TMS and the tools of Epsilon are applied in Section 5 in the verifi-
cation of a (classical) train crossing example. In Section 6 we propose a new refinement abstracting from
internal events. The last section offers a compact outline of the actual refinement checking algorithms as
carried out by Epsilon.

2 Modal Specifications

Modal Specifications (or Modal Transition Systems) were introduced in [LT88] in order to allow loose or
partial specifications to be expressed in a process algebraic framework. Semantically, Modal Specifications
are given an operational interpretation imposing restrictions on the transitions of possible implementa-
tions by telling which transitions are necessary and which are admissible. The transition systems for
Modal Specifications therefore have two transition relations: −→2 describing the required transitions
and −→3 describing the allowed transitions.

Definition 2.1 A modal transition system is a structure M = (S,A,−→2,−→3), where S is a set of
specifications, A is set of actions and −→2, −→3⊆ S ×A× S, satisfying the condition −→2⊆−→3.

The condition −→2⊆−→3 simply says that anything required is also allowed, thus ensuring consistency
of any Modal Specification. Clearly, the more a specification allows and the less it requires the looser the
specification is. This idea is formalized in the following notion of refinement

4



Definition 2.2 A refinement R is a binary relation on S such that whenever SRT and a ∈ A then the
following holds:

1. Whenever S
a−→3 S

′, then T
a−→3 T

′ for some T ′ with S′RT ′,

2. Whenever T
a−→2 T

′, then S
a−→2 S

′ for some S′ with S′RT ′.

We say that S refines T whenever (S, T ) is contained in some refinement R. In this case we write S � T .

The behaviour of processes themselves is assumed to be given in terms of a standard labelled transition
system, which may be seen as a special case of Modal Specifications with all transitions being required (i.e.
−→2=−→3). In this case the new notion of refinement coincides with the classical notion of bisimulation.

3 Timed Modal Specifications

The language we use to describe timed processes is the real–time calculus TCCS of Wang [Wan90]. This
calculus is essentially Milner’s CCS [Mil89] extended with a delay construct ε(d).P , which informally
means ”wait for d units of time and then behave like the process P”, where d ∈ R+ is a positive real.

The semantics of TCCS applies the ”two–phase functioning principle” outlined in [NSY91]. That is,
the behaviour of a real–time system is divided into two phases: one phase in which the components of
the system agrees to let time pass, and a second phase in which the system computes by performing
(instantaneous) actions. In the operational semantics of TCCS this is reflected by having transitions
labelled by either action names or delays being positive reals.

Similar to the Modal Specification extensions of classical Process Algebra (e.g. CCS), and for the very
same reasons,4 we offer in the following a Modal Specification extension of the real–time calculus TCCS.

3.1 Informal Semantics

First consider the TCCS process term a.P . As a specification this term is quite specific, in that it requires
an implementation at any moment to be able to perform the action a and implement P thereafter. This
interpretation is formalized by the following required transitions for a.P

a.P
a−→2 P a.P

ε(d)−→2 a.P for all d > 0

In the following we shall adopt the notation a2.P for a.P .

To obtain looseness5 we introduce a new may prefix construct a3.P . As a specification this term will at
any moment allow (without requiring) an implementation to have an a–transition as long as the result
of such a transition implements P . Formally this is reflected in the following transitions

a3.P
a−→3 P a3.P

ε(d)−→2 a3.P for all d > 0

4I.e. to obtain looseness in specifications.
5and analogous with the Modal Specification extension of CCS.
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Informally, it should be rather clear that a3.P is a fairly loose specification covering a range of different
implementations. In particular, a3.P will contain as typical implementations the processes a.P , for
obvious reasons; nil, which never enables any actions and therefore trivially satisfies P after any possible
a–transition, and, for any d, ε(d).a.P , which possess no actions before having delayed d units after which
any a–transition clearly will lead to a derivative implementing P . To formally verify that (say) ε(d).a.P
is indeed an implementation (i.e. refines) a3.P , simply note that the relation

R = {(ε(d).a.P, a3.P ) | d > 0} ∪ Id

is a refinement.

In order to support compositional verification we want the ability to combine Timed Modal Specifications
with respect to the process constructs of TCCS, in particular with respect to that of parallel composition.
Here we recall that the real–time calculus TCCS applies the maximal progress assumption: i.e. if a process
is in a state in which it can perform internal (τ) computations then time is not allowed to pass. As an
example consider the following combined Timed Modal Specification

(a3.S | a3.T )\a (2)

Implementations of (2) should essentially be of the form (P |Q)\a, where P implements a3.S and Q

implements a3.T . From the discussion above we already know three typical implementations of a may–
prefixed term. Hence, typical implementations6 of (2) will be of the form

(ε(d).a.P ′ | ε(d′).a.Q′)\a (3)

where P ′ and Q′ implements S and T , respectively. Now, the operational semantics to be given to
the combined Timed Modal Specification (2) should capture precisely these desired implementations.
Choosing d = d′ = 0 in (3), we obtain a desired implementation which — due to the maximal progress
assumption — can perform nothing but a τ–transition (in particular it cannot delay). Thus, it is clear
that (a3.S | a3.T )\a should (at least) allow τ–transitions, whereas delay–transitions can not be required.
In general, however, implementations of the form (3) are not immediately able to perform a τ–transition;
rather a delay of max{d, d′} time units must elapse. Hence, (a3.S | a3.T )\a cannot insist on an immediate
τ–transition, and should on the other hand allow implementations to delay. In summary, (a3.S | a3.T )\a
is given the following transitions

(a3.S | a3.T )\a τ−→3 (S |T )\a

(a3.S | a3.T )\a ε(d)−→3 (a3.S | a3.T )\a

Now it is reasonable to expect that (a3.S | a3.T )\a should be equivalent to the specification τ3.((S |T )\a).
This means that the semantics of specifications of the form τ3.S should be given by the following two
axioms

τ3.S
τ−→3 S τ3.S

ε(d)−→3 τ3.S

6besides nil.
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−
a3.S

a−→3 S

−
a2.S

a−→m S

S
a−→m S′

X
a−→m S′

[X
def
= S] ∈ E S

a−→m S′

ε(0).S
a−→m S′

S
a−→m S′

S\A a−→m S′\A
a, a 6∈ A S

a−→m S′

S + T
a−→m S′

T
a−→m T ′

S + T
a−→m T ′

S
a−→m S′

S |T a−→m S′ |T
T

a−→m T ′

S |T a−→m S |T ′
S

α−→m S′ T
α−→m T ′

S |T τ−→m S′ |T ′

Table 1: Action Rules for TMS (m ∈ {2,3}).

3.2 Formal Syntax and Semantics

After the introductory discussion, we are now ready to formally present the syntax and semantics for
TMS. As in CCS, we assume a set Λ = ∆∪ ∆̄ with ¯̄α = α for all α ∈ Λ, ranged over by α, β representing
external actions, and a distinct symbol τ representing internal actions. We use Act to denote the set
Λ ∪ {τ} ranged over by a, b representing both internal and external actions. Further, assume a set of
process variables ranged over by X.

We adopt a two–phase syntax to describe networks of regular TMS. First, regular TMS expressions are
generated by the following grammar

E ::= nil |ε(d).E | a3.E | a2.E | E +E | X

where X ranges over a finite set of variables Var and d ranges over R+ (the positive reals). We shall
assume that process variables are defined by a recursive equation system

E = {X def
= EX |X ∈ Var}

where all variables in EX are guarded in the sense that each variable occurrence is within the scope of
an action or delay prefix. Networks of regular TMS’ are composite expressions of the form

(S1 | . . . |Sn)\A

where Si are regular TMS and | and \A denote CCS parallel composition and restriction respectively.
We will use S and T to range over (networks of regular) Timed Modal Specifications.

We now offer a modal transition semantics for TMS. This semantics is a conservative extension of the
semantics for TCCS developed in [Wan90]. We present the transition rules in two groups: rules for
actions in Table 1 and rules for delays in Table 2.7 It should be rather clear from Table 1 and 2 that
we indeed have defined a modal transition system, i.e. −→2⊆−→3. As such, it can readily be seen that
−→2–transitions may be derived for a combined specification (S + T or S |T ) only if −→2–transitions
can be inferred for the contributing components. That is, in the derivation of transitions for a combined
specification, the transitions contributed by the components should agree with respect to modality.

The side condition for the delay rule of parallel composition is to guarantee that (parallel composed)
specifications satisfy the following two maximal progress assumptions

7In Table 2, we use d to stand for a non-zero real; this implies that an ε(0)–transition can never be inferred by the

inference rules. However, we shall apply the convention that S
ε(0)−→m S for all S.
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−
nil

ε(d)−→m nil

−
αn.S

ε(d)−→m αn.S

−
τ3.S

ε(d)−→3 τ3.S

−
ε(c+ d).S

ε(d)−→m ε(c).S

S
ε(d)−→m S′

ε(c).S
ε(c+d)−→m S′

S
ε(d)−→m S′

S\A ε(d)−→m S′\A

S
ε(d)−→m S′ T

ε(d)−→m T ′

S + T
ε(d)−→m S′ + T ′

S
ε(d)−→m S′

X
ε(d)−→m S′

[X
def
= S] ∈ E

S
ε(d)−→m S′ T

ε(d)−→m T ′

S |T ε(d)−→m S′ |T ′
Sortmc(d, S) ∩ Sortmc(d, T ) = ∅

Table 2: Delay Rules for TMS (m,n ∈ {2,3} and 2c = 3, 3c = 2).

• a timed specification will not allow delays if it requires an internal action τ .

• a timed specification will not require delays if it allows an internal action τ .

For timed processes (i.e. timed specifications with all transitions being required) these two assumptions
coincide and reduce exactly to the notion of maximal progress for processes. The two conditions above
are formalized by means of two functions Sort2 and Sort3 defined (inductively) in Table 3. Intuitively,
given a positive real d and a timed modal specification S, Sort2(d, S) (Sort3(d, S)) includes all external
actions that S requires (allows) an implementation to enable within d time units; hence the side condition
Sort2(d, S) ∩ Sort2(d, T ) = ∅ (Sort3(d, S) ∩ Sort3(d, T ) = ∅) means that implementations of S and T

will not necessarily (can not possibly) be able to communicate with each other within d time units.

Definition 3.1 Given a timed modal specification S, we define Sort2(0, S) = Sort3(0, S) = ∅ and
Sort2(c, S) and Sort3(c, S) for c 6= 0 to be the least sets satisfying the equations8 given in Table 3.

The following properties of timed specifications are obvious generalizations of central properties of timed
processes in [Wan90]

Proposition 3.2

1. (Maximal progress) If S
τ−→m S′ for some S′, then S

ε(d)−→mc S
′′ for no d and S′′.

2. (Time determinism) Whenever S
ε(d)−→m S′ and S

ε(d)−→m S′′ then S′ = S′′.

3. (Persistence) If S
ε(d)−→m S′ and S

α−→m T for some S′ and T , then S′
α−→m T ′ for some T ′.

4. (Time continuity) For all c, d and S′′, S
ε(c+d)−→m S′′ iff S

ε(c)−→m S′
ε(d)−→m S′′ for some S′.

5. (Transition liveness) Either S
τ−→m S′ for some S′ or S

ε(d)−→mc S
′′ for some S′′ and d > 0.

8In Table 3, c−· d is defined to be c− d if c > d, 0 otherwise.
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Sortm(d, nil) = ∅

Sort2(d, α2.S) = {α}

Sort2(d, α3.S) = ∅

Sortm(d, τn.S) = ∅

Sort3(d, αm.S) = {α}

Sortm(d, ε(c).S) = Sortm(d−· c, S)

Sortm(d, S + T ) = Sortm(d, S) ∪ Sortm(d, T )

Sortm(d, S |T ) = Sortm(d, S) ∪ Sortm(d, T )

Sortm(d, S\A) = Sortm(d, S) \ (A ∪A)

Sortm(d,X) = Sortm(d, S), [X
def
= S] ∈ E

Table 3: Definition of Sort2 and Sort3 (m,n ∈ {2,3}).

4 Abstracting Refinements

As already mentioned, TMS together with the two modal transition relations −→2 and −→3 defined in
Table 1 and 2 constitutes a modal transition system. As such, we may readily apply the general notion
of refinement from Definition 2.2 to TMS.

However, this refinement will often be too strong in practical applications. In particular, a refinement
based directly on −→2 and −→3 will be completely sensitive to internal computation. In contrast,
practical applications often need to abstract away from internal computation of systems. Also, when
reasoning about large combined real–time systems, explicit timing information may in a first analysis
be unimportant, in which case a time–abstracting refinement will suffice. Though such a refinement
yields no information about the timing behaviour of the overall system, it will demand proper interaction
between the timing properties of the components of the system.

Abstracting refinements with the above properties will be obtained through the definition of similarly
abstracting versions of the modal transition relations −→2 and −→3. The abstracting transition relations
will in all cases be generated by an abstraction function Φ on labels.9 Now, recall that the modal
transitions for TMS are labeled by elements of the following set

L = Act ∪ Delay

where
Delay = {ε(d) | d > 0}

An abstraction function Φ maps sequences of (concrete) labels into a single (abstract) label. More

9This is strongly inspired by the notion of observation criterion in AUTO [SV89].

9



precisely, an abstraction function Φ is a partial function of the following type

Φ : L∗ ↪→ L∪ {ε}

The partiality of Φ indicates that not all sequences of (concrete) labels makes sense as abstract actions.
Also, Φ(s) = ε signifies that s is unobservable when viewed through the abstraction given by Φ.

Given an abstraction function we can now define abstracting transition relations.

Definition 4.1 Let Φ be an abstraction function. Then the abstracting transitions relations −→Φ
2

and

−→Φ
3

are defined as (m ranges over 2 and 3)

• S σ−→Φ
m S

′ whenever S
µ1−→m · · ·

µn−→m S′ with Φ(µ1 . . . µn) ' σ for some µ1, . . . , µn, σ. 10

Now it is easy to verify that TMS equipped with any abstracting transition relations −→Φ
2

and −→Φ
3

does indeed constitute a modal transition system in the sense of Definition 2.1. Hence, we may apply
the notion of refinement from Definition 2.2

Notation 4.2 If S refines T with respect to the Φ–abstracting transition relations −→Φ
2

and −→Φ
3
, we

say that S refines T with respect to the abstraction function Φ.

We now present the abstraction functions which will induce the desired τ– and time–abstracting refine-
ments.

Definition 4.3 The τ–abstracting function Φτ is defined as follows

Φτ(τ
k) = ε ; k ≥ 0

Φτ(τ
k0ε(d1)τ

k1 . . . ε(dn)τ
kn) = ε(d1 + . . .+ dn) ; kj ≥ 0

Φτ(τ
kατ j) = α ; k, j ≥ 0

Whenever S refines T with respect to Φτ we say that S weakly refines T . We write S � T in this case.

In the following we shall use also a more standard process algebraic notation S
µ

=⇒m S′ for S
µ−→Φτ
m S′

for any admissible label µ ∈ {ε} ∪ Λ ∪ Delay.
Following the proofs for timed equivalence in [Wan90] it can be shown ([God94]) that the non–abstracting
refinement � is preserved by all constructs of TMS. For the weak refinement � a certain very natural
syntactic conditions on specifications can be defined (see Section 6.1) which ensure also it to be preserved
by all TMS constructs except summation (as usual for τ -abstracted process algebraic constructs). We
study the (general lack of) compositionality of � in more detail in Section 6, where we also propose a
new τ–abstracting refinement that is preserved by parallel composition.

The two following functions abstract from time (and internal computation)

Definition 4.4 The time–abstracting function Φε is defined as follows

Φε(s) = ε ; s ∈ Delay∗
Φε(s1as2) = a ; s1, s2 ∈ Delay∗

Whenever S refines T with respect to Φε we say that S is a time–abstracted refinement of T . We write

S
•
� T in this case.

10For expressions e1 and e2, e1 ' e2 holds if both expressions are defined and have the same value.
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Definition 4.5 The τ– and time–abstracting function Φτε is defined as follows

Φτε(s) = ε ; s ∈ (Delay ∪ {τ})∗
Φτε(s1αs2) = α ; s1, s2 ∈ (Delay ∪ {τ})∗

Whenever S refines T with respect to Φτε we say that S is a weak time–abstracted refinement of T . We

write S
•
� T in this case.

The two time–abstracting refinements are not preserved by the constructs of TMS (in particularly not
parallel composition). However, the full abstractness result for time abstracted equivalences proved in

[LW90] extends to
•
�. That is, the largest pre–order contained in

•
� which is also preserved by parallel

composition will be �. The proof can be found in [God94].

Z
ZZ}

�
��>

@
@@I

�
���

�

�
•
�

•
�

Figure 1: Ordering refinements.

In Figure 1 we illustrate the relationship between the four refinements introduced. The arrows between,

� and
•
� say, represents the set inclusion �⊆ •�. The proof of these inclusions, that they are strict and

also the only inclusions among the four refinements are straightforward. Also, it is easy to prove that the
refinements, when restricted to timed processes, coincide with the corresponding equivalences studied at
length in [LW90].

Example 4.6 Recall the combined media specification (1) from the introduction

(Ma,c
d | Sc,be−d,f−d)\c

where 11

Ma,b
x

def
= a2.ε(x).b2.

Sa,bx,y
def
= a2.(ε(x).b3.+ ε(y).b2.)

Then the following abstracting refinements may be deduced

(Ma,c
d | Sc,be−d,f−d)\c � Sa,be,f

(Ma,c
d | Sc,be−d,f−d)\c

•
� Sa,b0,0

i.e. the combined media weakly refines a media with delay between e and f and is a weak time–abstracted
refinement of a medium which enables its output immediately after reception of its input.

11We omit trailing nil’s; i.e. am abbreviates am.nil.
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Figure 2: The Train Crossing.

The verification tool Epsilon supports automatic verification for all four types of refinements we have
considered so far. In fact, all instances of the weak and time–abstracted refinements in the above example
can be automatically checked using Epsilon. To be precise, the tool Epsilon supports automatic
refinement checking for a slightly restricted class of TMS, namely, for those specifications which are
initially integral timed (also called simply integral timed and abbreviated IT) according to the following
definition.

Definition 4.7 S is initially integral timed iff every delay prefix ε(d) occurring in S has the delay d ∈N .

Actually, the algorithms would apply also for specifications with delays being positive rationals, as we may
simply multiply all delays with some rational q in order to end up with a comparison of initially integral
processes. It should also be noted that an IT TMS specification still can perform delays of arbitrary
real length12, as well as all instances of TMS specifications naturally appearing in the considered Train
Crossing example (see Section 5) are initially integral timed.

In the next section of this paper, we shall demonstrate the tools of Epsilon on a somewhat larger and
more complex example.

5 The Train Crossing

In this section we demonstrate the applicability of the TMS theory and the tool Epsilon to a small
example of a train crossing. Similar examples can be found elsewhere in the literature, e.g. [AD91].

The Train Crossing (see Figure 2) is a small idealized example of a real world train crossing. It consists
of four components: the crossing (Cr), a train (T), the gate (G) and the controller (Ct). When a train
approaches the crossing it sends a signal to the controller. Having received the signal, after some delay
the controller starts closing the gate. Then, after some more delay the controller starts opening the gate.
The train is assumed to have moved through the crossing while the gate was closed.

The external events of our model system will be down and up meant to occur when the gate is becoming
closed or open, as well as inside and outside representing the moments of the train actually entering
and leaving the crossing.

The TMS specification of the crossing is given in Figure 3 by TrainCrossing(X,A,B,C,U,V). It consists
of four parallel components, namely the crossing, the gate, a train and the controller. We have made

12For instance, ε(1).a2.nil
ε(0.34)−→ ε(0.66).a2.nil.
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Crossing :=: in(enter);inside!Crossing With Train

Crossing With Train :=: in(exit);outside!Crossing

Gate(X) :=: in(close);ε[0,X].tau;down!Gate Closed(X)

Gate Closed(X) :=: in(open);ε[0,X].tau;up!Gate(X))

Train(A,B,C) :=: out(app)?Train To Enter(A,B,C)

Train To Enter(A,B,C) :=: ε[A,B].out(enter);Train In(A,B,C)

Train In(A,B,C) :=: ε[0,C].out(exit);Train(A,B,C)

Controller(U,V) :=: in(app);Contr Close(U,V)

Contr Close(U,V) :=: ε[0,U].out(close);Contr Open(U,V)

Contr Open(U,V) :=: ε(V);out(open);Controller(U,V)

TrainCrossing(X,A,B,C,U,V) :=:

(Crossing/Gate(X)/Train(A,B,C)/Controller(U,V))\[enter,exit,close,open,app]

Figure 3: Specification of the train crossing in Epsilon.

the specification explicitly dependent on a number of time parameters to illustrate the effect of their
modification on the properties of the specified system.

In the specification we have introduced some (possibly generally useful) derived language constructs,
namely,

• ε[d, e].a.S is a shorthand for ε(d).a3.S + ε(e).a2.S (it means that the transition with the action a,
leading to S may be enabled after d time units, but it must be enabled after e time units (usually
d < e)), and

• a!S abbreviates T
def
= a2.S + τ2.T (it is a kind of “time-lock” operation: the τ2–loop around T

ensures that the time is not allowed to pass due to the maximal progress assumption, so the only
behaviour what such a specification allows is doing the a immedilately. This is the way, how
immediate (urgent) actions are modelled in TMS.).

In Epsilon :=: is used for declarations binding the left hand side identifier to the right hand side, ;
denotes the must modality and ? the may modality. in(a) and out(a) are used to represent an action
and its corresponding co–action and restriction from actions is defined by \L where L is a list of actions.

The first of the four components, the Crossing is simply keeping track of whether there is a train in it, or
not, and at any time when a train either enters or leaves, it gives an immediate signal inside or outside
to the external observer.

The Gate is either open or closed. It is receiving signals open and close from the controller. After
receiving a signal, say close, it takes for the gate some time in the range of [0, X] to actually become
closed. When the gate becomes closed (open), a corresponding external output signal (down or up) is
signalled immedilately.

13



Spec1 :=: down?inside?outside?up?Spec1

Spec2(D) :=: Spec2a(D)/Admit Urgency

Spec2a(D) :=: down?ε(D);inside?outside?up?Spec2a(D)

Spec3(M,N) :=: DownUp(M,N)/Uni([inside,outside])

Spec4(M,N) :=: DownUp(M,N)/InOut/Admit Urgency

DownUp(M,N) :=: down?ε[M,N].up;DownUp(M,N)

InOut :=: inside?outside?InOut

Admit Urgency :=: tau?Admit Urgency

Spec5(P) :=: Down(P)/Uni([inside,outside,up])

Down(P) :=: down?P;Down(P)

Figure 4: Specifications.

The Train initially may send a signal to the controller about its approaching13. The train is then supposed
to enter the crossing within the interval from A to B. Further on, it will necessarily leave the crossing no
later than C time units after it entered.

In the initial state the Controller waits for the approaching of a train. If a train approaches he starts
closing the gate no later than U time units after the approaching was signalled. Then he waits for V time
units before opening the gate.

Figure 4 contains a few properties (specifications) against which the considered train crossing model can
be analyzed.

First, a natural safety property for the train crossing to satisfy would be the occurrence of its external
events in the order, as prescribed by Spec1. We express this fact in the theory by the weak time abstracted
refinement between TrainCrossing(X,A,B,C,U,V) and Spec1. Using Epsilon it can be found out that,
for instance,

TrainCrossing(1,3,4,1,1,6)
•
� Spec1

Actually, TrainCrossing(X,A,B,C,U,V) will be a weak time abstracted refinement of Spec1 whenever U
+ X < A and B + C < V (and for any particular values of the time parameters the fact of the refinement
can be established by Epsilon; in fact, alongside with a symbolic description of the contents of the
refinement, see Section 7). It is to be observed also that, though the specification Spec1 is not explicitly
mentioning time quantities at all, the correctness of the train crossing model against this specification
is crucially dependent on the time quantities put in the description of various components of the model
(intuitively, the internal timing properties of the model are precluding some order of the external events
by requiring that some component is going always to produce its output faster than the other).

However, not all important properties of real time systems can be described solely in terms of the ordering
of the system external event occurrences. In the case of the train crossing it might be very important to

13Note, that we do not require a train to approach the crossing. If no train will approach the crossing the whole system
is inactive. In the theory this is reflected by nil � TrainCrossing(X,A,B,C,U,V) for any values of X, A, B, C, U and V.
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require that always there will be a certain delay of, say, D time units between the gate becoming closed
and the following moment when the train enters the crossing14. We express this fact in the TMS theory
by TrainCrossing(X,A,B,C,U,V) being a weak timed refinement of Spec2(D), and we may find out
(either reasoning theoretically, or just by applying Epsilon) that

TrainCrossing(1,3,4,1,1,6) � Spec2(1), but TrainCrossing(1,3,4,1,1,6) 6� Spec2(2).

And indeed, there can be implementations of TrainCrossing(1,3,4,1,1,6) which do let less that 2
time units between the events down and inside15.

Similarly, we could ask about the relationship between the time moments of the closing and the opening
of the gate. For that purpose we define Spec3(M,N). Intuitively, Spec3(M,N) specifies that the opening
of the gate is guaranteed to occur in the interval from M to N after it was lowered. Here we use another
specification shorthand, namely, the very loose specification

Uni(L)
def
=

∏
a∈L∪{τ}

a3.Uni(L)

where Π denotes an n–ary parallel composition and L ⊆ Act. Uni(L) is a “universal specification” in
the sense that S � Uni(L) for any timed modal specification S with sort contained in L 16.

Whenever M ≤ 5 and N ≥ 7 it turns out, applying Epsilon, that

TrainCrossing(1,3,4,1,1,6)� Spec3(M,N) (4)

Hence, due to the strongest of these specifications, Spec3(5,7), the gate must be opened no later
than 7 time units after it was closed. Moreover, it is impossible to tigthen the interval between the
opening and the lowering of the gate, e.g. Spec3(5,6) is shown by Epsilon not be weak refined by
TrainCrossing(1,3,4,1,1,6).

Actually, for the values of M and N mentioned above, we can prove that TrainCrossing(1,3,4,1,1,6)

is a weak refinement of the even stronger property Spec4(M,N), that is, compared to Spec3(M,N) we
furthermore require a specific ordering of the external events inside and outside.

Under the assumption that a proof of

TrainCrossing(1,3,4,1,1,6)� Spec4(M,N)

had already been given, a direct proof of (4) would not be needed. As � is preserved by parallel
composition, we can obtain the result in an alternative manner exploiting the compositionality. We
prove that

14In case if there is very little time between these two events, think of a car which has entered the crossing just before the
gate was closed, and has broken there. If there were enough time, it would be at least possible for people to leave the car,
even better, if the car could be taken out mechanically, or the train could be stopped.

15A note is to be added about the specification component Admit Urgency. When we are given a specification like a3.S
(or a2, for that matter), it does not admit the implementation a!S, nor does it admit ε(d).a!S + a2.S for any d ≥ 0. This
is because the specification is requiring (unlimited) delay ability from all its implementations (see the TMS delay semantics
description in Table 2). The component Admit Urgency, when added to the specification, contributes by discarding the delay
ability requirement by the specification both in its initial and in any of its (operational) derivative states (Admit Urgency

only allows delays, without requiring them). As our example does contain immediate (urgent) actions (in fact, we have
made all our external actions urgent), it can refine only specifications which does admit them. It is clear, however, that as
a specification component the Admit Urgency is harmless since allowing the implementations to have immediate actions is
the only effect which it has.

16Thus Uni(L) is the weakest specification with sort L. It does also admit urgent actions, in fact Admit Urgency = Uni(∅).
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FastContr :=: in(app);out(close);6;out(open);FastContr

SlowContr :=: in(app);1;out(close);6;out(open);SlowContr

Figure 5: Implementations.

InOut/Admit Urgency � Uni([inside,outside])

(which obviously holds) to immediately conclude Spec4(M,N) � Spec3(M,N). The rest of the proof is
due to the transitivity of �.

Another interesting property is the frequency of the lowering of the gate. More precisely, we want to
determine the values of P for which TrainCrossing(1,3,4,1,1,6) is a weak refinement of Spec5(P).
Intuitively, Spec5(P) specifies that the frequency between two consecutive closing of the gate must be at
least P time units. At a first glance one would expect the frequency to be at least 6 time units because
the controller must wait exactly 6 time units between initializing the lowering and opening of the gate.
However, using Epsilon we can find that

TrainCrossing(1,3,4,1,1,6) 6� Spec5(6)

The reason for this is that it may take up to one time unit for the gate to close and later there is a
possibility to open and afterwards close again immediately without performing any delay.

Instead, whenever P ≤ 5, we have

TrainCrossing(1,3,4,1,1,6) � Spec5(P) (5)

We can either prove (5) directly in Epsilon or alternatively, for any P ≤ 5, we could prove instead that

Spec3(P,7) � Spec5(P) (6)

and then take advantage of the transitivity of �. Due to compositionality, (6) holds since

DownUp(P,7) � Down(P)/Uni([up])

for any P ≤ 5.

Implementations of the loosely specified train crossing of Figure 3 may now be found simply by substitut-
ing each of the four components with some timed process (strongly or weakly) refining the component.
Due to the partiality (looseness) of the specification of the components17 each component will have sev-
eral inequivalent implementations. For instance, as implementation of the controller one could choose
one of the processes in Figure 5. Clearly FastContr and SlowContr are inequivalent and obviously both
FastContr and SlowContr refines Controller(1,6).

Finally, let us emphasize the generality of correctness proofs carried out within the framework of TMS.
Indeed, no matter which implementation of the Train Crossing we will decide upon, it will be ensured, as
a consequence of the compositionality of verification in TMS, that any of those is guaranteed to satisfy
all the properties above refined by TrainCrossing(1,3,4,1,1,6).

17Except for the Crossing of course.

16



6 Achieving Congruicity

In this section we examine the general lack of compositionality of the weak refinement � in more detail,
and show two possible ways of coping with this deficiency. The first possibility is obtained through a
syntactic restriction and the second possibility consists of a redefinition of weak refinement. It should
be noted although that for most practical examples we belive that the weak refinement is preserved by
parallel composition.

To see that � can in general not be preserved by parallel composition, consider the following example:

Let C be defined by

C
def
= τ2.C + τ3.(b2 + τ3.(a2 + ε(1).c2))

Then nil � (C | ε(1).a2)\a since

{(nil, (C | ε(1).a2)\a)}
∪{(nil, ((a2 + ε(1).c2) | ε(d).a2)\a) | d < 1}
∪{(nil, ((a2 + ε(e).c2) | ε(d).a2)\a) | d < e < 1}
∪{(nil, ((a2 + ε(d).c2) | a2)\a) | d < 1}
∪{(nil, (nil |nil)\a)}

constitutes a refinement wrt. Φτ . Now, let S
def
= nil | b2 and let T

def
= ((C | ε(1).a2)\a) | b2. 18 Then one

may prove that S 6� T . Intuitively, S 6� T because S allows a delay, say half a time unit, and this delay
can only be matched by T in such a way that T cannot allow b or such that T after yet another half time
unit requires c.

6.1 Syntactic Conditions

Following we present a syntactic condition under which the weak refinement � is preserved by parallel
composition. It shall be noted, however, that the condition is far from being also necessary. Finding
further even less restrictive conditions has not been included in the scope of this paper, as we believe
that the work on those can benefit from the further case studies using TMS.

We first define the set of actions Sortm as follows:

Definition 6.1 Define for any regular S the set Sortm ⊆ Λ as the least set satisfying the equations in
Table 4.

18Strictly speaking T is not a network according to the definition of networks in Section 3.2. However, it is immediate
that T can easily be transformed to the TMS network ((C | ε(1).a2) | b2)\a.
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Sortm(nil) = ∅
Sortm(ε(d).S) = Sortm(S)

Sortm(am.S) = {a} ∪ Sortm(S)

Sortm(τm.S) = Sortm(S)

Sortm(µmc .S) = Sortm(S)

Sortm(S + T ) = Sortm(S) ∪ Sortm(d, T )

Sortm(C) = Sortm(SC), C
def
= SC

Table 4: Definition of Sortm(S).

Then the restriction we impose on a network S = (S1 | . . . | Sn)\A is that S must not contain τ3 and for
all Si

α ∈ Sort3(Si) implies

∀j 6= i. α 6∈ Sort3(Sj) ∪ Sort2(Sj)

The restriction on networks implies that any network satisfying the restriction cannot allow without also
requiring an internal transition.

It can be proven that for networks satisfying the syntactic restriction � preserves parallel composition.

6.2 Trajectory Step Refinement

In this section we define an alternative τ -abstracted refinement relation for TMS, which proves to be
semantically “better behaved” than � (though not as elegantly definable).

First, given two TMS T and T ′, and d ∈ R>0 let us call any sequence (〈T0, d0〉, . . . , 〈Tn, dn〉) such that

• T ε
=⇒3 T0, d0 = 0, Tn = T ′, dn = d and

• Ti
ε(δi)−→3

ε
=⇒3 Ti+1, with δi = di+1 − di for all i = 0, 1, . . . , n− 1

a step sequence for 〈T, d, T ′〉 (or simply a 〈T, d, T ′〉 - step sequence). Further, let S(d) for a TMS S and

d ≥ 0 denote the TMS S′ for which S
ε(d)−→3 S

′, if such S′ exists (due to the time determinacy property
(see Proposition 3.2) such S′, if it exists, is unique).

Definition 6.2 A binary relation R ⊆ S × S is a trajectory step refinement if 〈S, T 〉 ∈ R implies

• S a−→3 S
′ implies ∃T ′. T a

=⇒3 T
′ and 〈S′, T ′〉 ∈ R,

• T a−→2 T
′ implies ∃S′. S a

=⇒2 S
′ and 〈S′, T ′〉 ∈ R,

• S ε(d)−→3 S′ implies the existence of a 〈T, d, T ′〉 - step sequence (〈T0, d0〉, . . . , 〈Tn, dn〉) such that
〈S(di), Ti〉 ∈ R for all i = 0, 1, . . . , n.
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• T ε(d)−→2 T
′ implies ∃S′. S ε(d)

=⇒2 S
′ and 〈S′, T ′〉 ∈ R.

We denote by�T the largest trajectory step refinement. It is not difficult to establish that�T is a preorder
(i.e., �T is reflexive and transitive) and that �T⊆�. Moreover, �T is preserved by parallel composition
(as well as all other TMS constructors except summation), the proof can be found in [God94].

Furthermore, one can prove rather easily that for TCCS processes (which are the implementations of the
TMS specifications) the relation �T coincides with the TCCS weak bisimulation19 (as does also �).

So, TMS with the refinement relations � and �T can be viewed as a conservative extension of Timed CCS
with strong and weak bisimulation, being at the same time fully suitable for use in stepwise development
process of real time systems.

Observe, though, that the definition of �T does not follow the general abstracting refinement definition
pattern used in Section 4.

As all other refinemnet relations considered in this paper, also �T is decidable for (initially) integral
timed TMS specifications. We outline the deciding algorithm in Section 7.5.

7 Algorithms for Refinement Checking

This section provides an outline of the algorithms for checking automatically whether two given (initially)
integral timed modal specifications satisfy a given modal refinement relation (i.e. one of the relations �,

�,
•
�,

•
� and �T ). These algorithms are the basis for the verification tool Epsilon, in which �, �,

•
�

and
•
� have been implemented.

Since the definitions of the considered refinement relations depend essentially on exploiting infinite tran-
sition systems defining semantics of TMS (in fact, these transition systems are in a certain sense even
“continuous”, what is due to the density of the underlying time domain — non–negative reals), it is not
possible to use them directly in the deciding algorithm. Instead, the algorithm uses a symbolic repre-
sentation of TMS transition systems, based mainly on the region graph technique due to [AD90] and
the following work in [Č92b] and [LW90] extending the region graph technique to work also for deciding
timed and time abstracted bisimulation equivalences between timed processes.

The algorithms described in this section are theoretically rather direct generalizations of those described
in [Č92b] and [LW90] for deciding corresponding (timed or time-abstracted) bisimulation equivalences,
especially in the case of “timed” refinements (the strong and weak ones). The presentation of the
refinement deciding algorithms in this section differs from the previous theoretical work mainly in

• being more concrete, with more detailed explanation of the used data structures, closely tied up
with the basic design decisions implemented in the verification tool Epsilon;

• making use of explicitly compositional process algebraic style syntax of TMSs (this should be
contrasted with the automata based model of Parallel Timer Processes for which the bisimulation
equivalence problem was shown decidable in [Č92b]);

• providing uniform treatment in deciding time abstracted and time sensitive refinements.

19The proof relies on maximal progress and time determinism properties, which hold for TCCS (they hold also for TMS
specifications).
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Also a slightly novel point is the symbolic deciding procedure for trajectory step refinement in Section 7.5,
what has not been considered before.

Yet for motivating the “correctness” of various parts of the developed algorithms we from time to time
in the following refer to the basic theoretical papers [AD90], [Č92b] and [LW90].

7.1 Principal Schema of the Algorithms

Given two initially integral timed modal specifications S and T to be checked under some refinement

relation ref (i.e. �,
•
�, �,

•
� of �T ), the algorithm for deciding whether S is refined by T (i.e. if S refT )

can be thought as deciding some appropriate property over a certain finite symbolic transition system20

TS,T = 〈XS,T ,L•,−→, X0〉, where

• XS,T is a set of symbolic states (each symbolic state X ∈ XS,T is a representation of a certain
(usually infinite) set of pairs 〈S′, T ′〉 where S′ is a state of S and T ′ is state of T );

• L• is a set of symbolic labels (constructed from the actions a ∈ Act and some special actions used
for representing delays);

• −→⊆ XS,T ×L• ×XS,T is a symbolic transition relation; and

• X0 ∈ XS,T is the initial state.

The property to be checked over TS,T in each case is expressed as the existence of a state set X ⊆ XS,T
which is both containing X0 and satisfying a certain closeness property, such as, for instance, “for every

X ∈ X whenever X
a−→ X ′ for a ∈ L•, then X ′

a′−→ X ′′ for some X ′′ ∈ X”.

More precisely, for every refinement relation ref a certain monotone functional Fref on the powerset of
XS,T is defined (Fref is mapping subsets of XS,T to subsets of XS,T ), and the question to be answered
about TS,T (in order to decide, if S refT ) is formulated as

“Does there exist a set X ⊆ XS,T such that X0 ∈ X and X ⊆ Fref(X )?”

Equivalently, one can say that the algorithm is examining, whether X0 is contained in the greatest fixpoint
of Fref.

Having a monotone functional F over the finite symbolic transition system TS,T there are a variety of
ways how to check, if a certain state X0 of the system is contained in the greatest fixpoint of F . The tool
Epsilon is based on the (efficient) local checking technique due to [Lar92], thus in constructing a state
set X such that X ∈ F(X ) we take initially X to contain only X0 and add elements as needed in order to
obtain a set closed under the functional F . Though the local checking technique cannot be implemented
without a limited amount of “backtracking” (since it is not possible to guess a priori which state should
be included into X , if there are alternatives), the “storage” of already examined unsuccessful alternatives,
as advocated in [Lar92], allows to avoid unnecessary recomputations. This gives for the considered local
checking technique a polynomial worst-case time complexity (in size of the symbolic transition system).
However, the main advantage of this technique is that it needs to explore only the reachable part of
the symbolic system, which in “good” cases is considerably smaller than the system in whole. For more
details of the method we refer to [Lar92].

20In fact, the transition systems TS,T designed for solving S refT are different for different refinement relations.
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7.2 Main Symbolic Structures

In this section we define the main symbolic structures used in the refinement deciding algorithms, relevant
for both deciding time abstracted and time sensitive refinements. After that the refinement deciding
algorithms themselves (together with a few additional necessary constructs) are considered in Section 7.3
and Section 7.4 for time abstracted and time sensitive (� and �) refinements, respectively. The algorithm
for deciding the trajectory step refinement �T is given in Section 7.5.

7.2.1 Representation of Regular TMS

We define the set of modal action prefixes Actm = {a3, a2|a ∈ Act} and let a• possibly with some upper
indices range over Actm.

We say that a RTMS (= regular TMS) S1 is in Normal Expression Form (“NEF”, for short), if it is
defined by an equation system

S1
def
= ε(d11).a11

• .S11 + . . .+ ε(d1k1).a1k1
• .S1k1

,
. . . . . . . . .

Sr
def
= ε(dr1).ar1• .Sr1 + . . .+ ε(drkr).arkr• .Srkr ,

where for every i ≤ r and j ≤ ki we have dij ∈ N (possibly dij = 0), aij• ∈ Actm and Sij = Su for some
u ≤ r (i.e. every Sij appears as a left hand side of one of the expressions above).

In the following description of the refinement relation deciding algorithms we assume that every RTMS
contained as a component in the given specifications S or T is given in a NEF. This assumption may be
made without any loss of generality as any RTMS may be turned into NEF by rather straightforward
equivalence preserving transformations.

For T being a RTMS, defined by the NEF equation

T
def
= ε(d1).a1

•.T1 + . . .+ ε(dk).ak•.Tk

and d ≥ 0 being a non–negative real number we define a d-shift of T to be21

T (d) = ε(d1−· d).a1
•.T1 + . . .+ ε(dk−· d).ak• .Tk.

Observe that, if T
ε(d)−→m T ′ for some T ′, then T ′ = T (d) 22.

Let us further on denote the set of all initially integral timed regular TMS (RTMS) by I. Moreover,
whenever a RTMS T can be obtained from some IT RTMS T0 ∈ I just by some time-shift T = T

(d)
0 ,

where d ∈ R+0, we call it well timed (and sometimes abbreviate this as w.t.). So,

T = ε(2.63).a2.T1 + ε(4.63).b3.T2 + c2.T3

is well timed (take, for instance,

21For x, y being nonnegative reals, x−· y = max{x− y, 0}.
22However, the shift operation is defined purely syntactically, and it does assert nothing about the actual delay possibility

T
ε(d)−→m T ′ for some T ′. This delay can be impossible due to the maximal progress requirements, for instance, when

T = ε(0).τ2.S + ε(1).a•.S
′.
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T0 = ε(3).a2.T1 + ε(5).b3.T2 + c2.T3 and d = 0.37),

while S = ε(2.63).a2.T1 +ε(2.08).b3.T2 obviously is not. Clearly, any operational derivative of an initially
integral timed regular TMS will be well timed.

We define for any well timed RTMS T its integral part T0 = int(T ) ∈ I and fractional part d = fr(T ) ∈
[0, 1[ by T = T

(d)
0 (since we require T0 ∈ I and d ∈ [0, 1[, such a decomposition of any w.t. T into its

integral and fractional parts is unique).

We shall find it convenient to have the notions of integral and fractional parts of RTMS also generalized
to tuples (or, vectors) of RTMS. So, for U = 〈U1, . . . , Un〉 being a tuple (= a vector) of RTMSs, we define

int(U ) = 〈int(U1), . . . , int(Un)〉 and fr(U) = 〈fr(U1), . . . , fr(Un)〉.

We call a RTMS T delay sensitive iff T (d) differs from T for some d > 0. Equivalently, T is delay
sensitive, iff its NEF main (top level) defining equation contains at least one non-zero delay prefix23. It
is not difficult to show that a w.t. RTMS is delay sensitive if and only if its integral part is.

For S ∈ I being defined in NEF over the variable set V ar we define the set of RTMSs possibly reachable
from S to be re(S) = {V (d)|V ∈ V ar, d ∈ R+0}. Observe that for any RTMS S the set of IT RTMS
S0 ∈ re(S) ∩ I is finite.

Finally, for a composite TMS S = (V1| . . . |Vk) \ L we let 24.

re(S) = {(U1| . . . |Uk) \ L | Ui ∈ re(Vi), ∀i} .

A TMS (U1| . . . |Uk) \ L is called well timed iff all its components Ui are.

7.2.2 Symbolic Characterization of RTMS Tuples

In this section we introduce some basic ingredients of the “region graph” construction (see e.g. [AD90])
serving as the main part of the symbolic representations of TMS specifications under analysis both in
the time abstracted and time sensitive cases.

First, for any n-tuple of non-negative real numbers x = 〈x1, x2, . . . , xn〉 ∈ Rn
+0 let us define its symbolic

value c(x) to be the ordering ≤• of the n+ 1–element set Mn = {1, 2, . . . , n} ∪ {∗} such that

• for i, j ∈ {1, 2, . . . , n} i ≤• j iff xi ≤ xj, and

• for i ∈ {1, 2, . . . , n} i ≤• ∗ iff xi = 0, as well as

• ∗ ≤• i for all i ∈Mn.

We define =• to be ≤• ∩ ≤−1
• , and i <• j whenever i ≤• j and not i =• j.

It is easy to see that the set of all symbolic values c(x) for x ∈ Rn
+0 precisely coincides with the set of all

orderings ≤′• of Mn which are well formed in a sense they are

• total (meaning i ≤′• j or j ≤′• i for all i, j ∈Mn),

23So, τ2.T1 + ε(2.15).a2.T2 is delay sensitive (though the actual “semantical” delays of it are forbidden due to its first
summand). On the contrary, a2.T1 + b3.T2 is not delay sensitive, since it does not change by delaying.

24Observe that for a composite S the set re(S) most likely is an over-estimation of the set of TMSs reachable from S.
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• transitive, and

• having ∗ ≤′• i for all i ∈Mn.

We represent any well formed ordering ≤• (and, so, any symbolic value c(x)) as a list [s1, s2, . . . , su],
where {s1, s2, . . . , su} is a partitioning of Mn into non-empty sets such that

• i =• j iff i and j belong to the same subset sr of Mn, and

• for l < r ≤ u whenever i ∈ sl and j ∈ sr, then i <• j (i, j ∈Mn)
25.

Further, let U = 〈U1, U2, . . . , Un〉 be an n-tuple of w.t. RTMS. We define the symbolic characterization
of U to be σ(U) = 〈int(U ), c(fr(U))〉 (observe that in the vector fr(U) every element is a nonnegative
real, moreover it lies within the interval [0, 1[).

For a fixed n ∈ N we let Ω(n) denote the set of all pairs σ = 〈V , c〉 where V is an n-tuple of IT RTMS
and c is a well formed ordering of Mn. Again, one can easily show that Ω(n) precisely coincides with the
set of all symbolic characterizations σ(U ) for U being an n-tuple of w.t. RTMS.

We call an element σ = 〈V , c〉 ∈ Ω(n) boundary iff for some i ∈ Mn \ {∗} simultaneously i =• ∗ and Vi
is delay sensitive26 27. A symbolic value σ ∈ Ω(n) which is not boundary is called interior.

Up to now we have defined a “static” symbolic characterization of arbitrary n-tuple U of RTMS. The
next point is to introduce “transitions” between symbolic values in Ω(n), which we claim “represent” the
actual delay transitions performed synchronously by all components of U (see Lemma 7.1 below). To
begin with, let next(T ) for an integral timed RTMS T ∈ I denote T (1) (clearly, always next(T ) ∈ I).

Let σ = 〈V , c〉 with c = [s1, s2, . . . , su]. We define succ(σ) = 〈V ′, c′〉:

• for σ being boundary

– V
′
= V (i.e. no changes are occurring in the integral part vector), and

– c′ = [sA1 , s
B
1 , s2, . . . , su], where sA1 and sB1 is the partitioning of s1 where i ∈ sB1 whenever Vi is

delay sensitive, and i ∈ sA1 otherwise (∗ always stays in sA1 );

• for interior σ,

– if u > 1, then c′ = [s1 ∪ su, s2, . . . , su−1]. As to V ′, let V ′i = next(Vi), if i ∈ su, and V ′i = Vi
otherwise;

– if u = 1, then succ(σ) = σ (this corresponds to the case when all components of V have
already exhausted all their delay prefixes).

Observe that for this definition of succ we will have succ(σ) well formed (= being a symbolic characteriza-

tion of some U ) whenever σ is. Moreover, one can show the following result. We let U
(d)

= 〈U (d)
1 , . . . , U (d)

n 〉.
25For instance, if x = 〈5.1, 4.2, 0.7, 0, 4.2, 5.1〉, then c(x) = [{∗, 4}, {3}, {2, 5}, {1, 6}].
26Here and further on we use an obvious convention that V = 〈V1, . . . , Vn〉, V

′
= 〈V ′1 , . . . , V ′n〉, etc. for an appropriate n.

27The intuition of a boundary symbolic value σ = σ(U) is that no matter how small shift (delay) will be performed
simultaneously by all Ujs, the resulting tuple of RTMSs will have another corresponding symbolic value - due to the
component Ui which has integral initial delay prefixes (indicated by fr(Ui) = 0) and at least one of them not zero (indicated
by the delay sensitiveness of Ui).
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Lemma 7.1 If σ = σ(U), then succ(σ) = σ(U
(d)

) for some d > 0. Reverse, for every d ≥ 0 we have

σ(U
(d)

) = succm(σ(U )) for some m ≥ 0.

Proof sketch: For a RTMS vector U such that σ(U ) = 〈V , c〉 we define δ(U ) = 1 − fr(Ui), where i is

one of indices in the last component of the list c. One can show that succ(σ(U )) = σ(U
(δ)

), where

• δ = δ(U ) whenever σ(U ) is interior, and

• δ ∈]0, δ(U )[, if σ(U) is boundary.

This observation together with time determinacy and time continuity properties of RTMSs, taking into

account also that for any d ∈ R+0 the symbolic value set {σ(U
(d′)

)|0 ≤ d′ ≤ d} is finite, leads to the
proof of the lemma in both directions.2

We illustrate the introduced constructions on a simple example. Let

U = 〈ε(3.53).a2.S1, ε(0.04).b2.S2, ε(1.53).c2.S3, ε(3.00).d2.S4, ε(0).e2.S5〉.

Then σ(U ) = 〈V , c〉, where c = [{∗, 4, 5}, {1, 3}, {2}] 28 and V is the vector of integral timed RTMS

V = 〈ε(4).a2.S1, ε(1).b2.S2, ε(2).c2.S3, ε(3).d2.S4, ε(0).e2.S5〉

Observe that V4 = ε(3).d2.S4 is delay sensitive, whereas V5 = ε(0).e2.S5 is not. Since 4 =• ∗, we conclude

that σ is boundary. So, succ(σ(U )) = 〈V ′, c′〉 for V ′ = V and c′ = [{∗, 5}, {4}, {1, 3} < {2}]. Synchronous

delay of any length d ∈]0, 0.04[ of all components of U would lead to a RTMS vector U
′
whose symbolic

characterization σ(U
′
) = succ(σ(U )). As can easily be seen, σ(U

′
) is interior.

7.3 Time Abstracted Refinements

In this section we show some details of the algorithms for deciding the time abstracted refinement relations
•
� and

•
� between initially integral timed specifications.

Let S′ = (U1| . . . |Uk) \ L be an arbitrary well timed TMS29. We define the symbolic representation of
S′ to be the triple 〈〈S′〉〉 = 〈V , c, L〉 where 〈V , c〉 = σ(U) is the symbolic characterization of the RTMS
vector U = 〈U1, . . . , Uk〉.
For a given IT TMS S we define the set of its symbolic states to be XS = {〈〈S0〉〉 | S0 ∈ re(S)}. It can be
easily seen that XS is finite for every S.

One can observe that two TMSs S1 and S2 which have the same symbolic representation (i.e. 〈〈S1〉〉 =
〈〈S2〉〉) have also identical “time abstracted” behaviours (whenever S1 may/must be able to do a real action
becoming S′1, this can be simulated by the same real action of S2 becoming S′2 such that 〈〈S′2〉〉 = 〈〈S′1〉〉,
also if S1

ε(d)−→m S′1, then S2
ε(d′)−→m S′2 for some d′, S′2, again having 〈〈S′2〉〉 = 〈〈S′1〉〉). One can find this result

proven for a similar case of timed processes (in place of TMSs) in [LW90].

28Indeed, the corresponding fractional part vector is 〈0.47, 0.96, 0.47, 0, 0〉. One needs to get slightly used to the fact that
the RTMS itself has smaller waiting time than its integral part. This decision was taken to ensure that a RTMS is delay
sensitive if and only if its integral part is.

29Recall that well timedness means consisting of RTMSs each of which can be obtained from IT RTMS by some delay.
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We exploit this observation of (abstracted) behaviour coincidence of symbolically equally represented
TMSs by reflecting these “equal” behaviours on the level of symbolic representations, what will lead
directly to the needed refinement deciding algorithms.

More precisely, we define for a ∈ Act and m ∈ {3,2} the transitions
a−→m and

WT−→m between the
symbolic states of IT TMS in the following (abstract) way

S′
a−→m S′′

〈〈S′〉〉 a−→m 〈〈S′′〉〉
,
〈〈S′′〉〉 = succm〈〈S′〉〉
〈〈S′〉〉 WT−→m 〈〈S′′〉〉

,

where succm is a natural generalization of succ from RTMS vector symbolic characterizations to symbolic
states of TMSs, taking into account also maximal progress requirements. More precisely,

• succm(〈V , c, L〉) = 〈V ′, c′, L〉 for 〈V ′, c′〉 = succ(〈V , c〉), if (V1| . . . |Vk) \ L can not do a τmc

transition30,

• succm(〈V , c, L〉) is undefined otherwise.

The real (non-delay) transitions between symbolic states are computed as follows (it is not difficult to
see that these computations correspond to the more abstract definition given above):

• whenever a ∈ Act, then 〈V , c, L〉 a−→m 〈V
′
, c′, L〉 provided a 6∈ L and for some i

– Vi
a−→m V ′i (in the definition of Vi an appropriate summand must be contained);

– V ′j = Vj for all j 6= i (all other components remain unchanged);

– c′ is obtained from c by moving the index i from its equivalence class to the class containing
∗ (followed by cleaning the list from empty elements - subsets of Mn).

• In addition, 〈V , c, L〉 τ−→m 〈V
′
, c′, L〉 whenever for some i 6= j and some α ∈ Λ

– Vi
α−→m V ′i and Vj

ᾱ−→m V ′j ;

– V ′s = Vs for all s such that s 6= i and s 6= j;

– c′ is obtained from c by moving the indices i and j from their equivalence classes to the class
containing ∗ (followed by cleaning the list from empty elements).

Let A
WT∗−→m B mean A(

WT−→m)∗B (i.e. the symbolic state B can be reached from A by zero or more succm

operations. We also introduce “time abstracted” transitions of symbolic states by defining A
a−→W

m B to

stand for A
WT∗−→m

a−→m
WT∗−→m B.

Observing Lemma 7.1 and “equivalence” of TMSs corresponding to one symbolic state, it is not difficult

to justify the correctness of the following deciding procedures for
•
� and

•
�.

For initially integral timed TMS S and T to check, if S
•
� T , we define first XS,T = XS × XT . For any

X ⊆ XS,T we let F
•
�(X ) to consist of all those pairs 〈A,B〉 for which

• whenever A
a−→3 A

′ then B
a−→W

3
B′ for some B′ with 〈A′, B′〉 ∈ X ,

30
2
c = 3, 3c = 2.

25



• whenever B
a−→2 B

′ then A
a−→W

2
A′ for some A′ with 〈A′, B′〉 ∈ X ,

• whenever A
WT−→3 A

′ then B
WT∗−→3 B

′ for some B′ with 〈A′, B′〉 ∈ X ,

• whenever B
WT−→2 B

′ then A
WT∗−→2 A

′ for some A′ with 〈A′, B′〉 ∈ X .

We have S
•
� T if and only if for some X both 〈〈〈S〉〉, 〈〈T 〉〉〉 ∈ X and X ⊆ F

•
�(X ) (i.e. 〈〈〈S〉〉, 〈〈T 〉〉〉 is

contained in the greatest fixpoint of F
•
�).

In the weak case we distinguish observable actions (denoted by α) and the internal computations τ and

let
ε

=⇒m stand for (
τ−→m ∪ WT−→m)∗. It can be easily shown (similarly, as in the strong case) that S

•
� T

if and only if 〈〈〈S〉〉, 〈〈T 〉〉〉 ∈ X ⊆ XS × XT for some X satisfying for every 〈A,B〉 ∈ X the following
conditions

• whenever A
τ−→3 A

′ or A
WT−→3 A

′ then B
ε

=⇒3 B
′ for some B′ with 〈A′, B′〉 ∈ X ,

• whenever A
α−→3 A

′ then B
ε

=⇒3

α−→3

ε
=⇒3 B

′ for some B′ with 〈A′, B′〉 ∈ X ,

• whenever B
τ−→2 B

′ or B
WT−→2 B

′ then A
ε

=⇒2 A
′ for some A′ with 〈A′, B′〉 ∈ X ,

• whenever B
α−→2 B

′ then A
ε

=⇒2

α−→2

ε
=⇒2 A

′ for some A′ with 〈A′, B′〉 ∈ X .

7.4 Timed Refinements

To decide (strong or weak) time–sensitive refinements between two initially integral timed specifications
S and T it is not in general possible to build finite partitionings of the state sets of S and T in which each
element contains only “equivalent” states as we saw for the time–abstracted refinements (observe that
any two TMSs31 which have a slightest difference in their initial delay prefixes usually are semantically
different).

However, following the ideas of [Č92b], one can attribute a symbolic characterization (similar in its nature
to the symbolic state considered before in the time abstracted case) to every pair of well timed TMSs, so
achieving the property that, whenever 〈〈S′, T ′〉〉 = 〈〈S′′, T ′′〉〉, then either both S′ � T ′ and S′′ � T ′′, or
none of these refinements hold32. We follow this line in the following technical description of algorithms
deciding timed refinement relations.

For S0 = (U1| . . . |Uk) \ L and T0 = (Uk+1| . . . |Un) \ M being well timed TMS we define a symbolic
representation (a symbolic state) 〈〈S0, T0〉〉 of the pair 〈S0, T0〉 to be a 5-tuple 〈V , c, L,M, k〉, where
〈V , c〉 = σ(U) for U = 〈U1, . . . , Uk, Uk+1, . . . , Un〉 being a concatenation of component vectors 〈U1, . . . , Uk〉
and 〈Uk+1, . . . , Un〉 for both TMSs S0 and T0

33.

For S and T being IT TMSs we define the symbolic state set XS,T for characterizing their “joint behaviour”
to be {〈〈S0, T0〉〉|S0 ∈ re(S), T0 ∈ re(T )}. One can show that XS,T is finite for any S, T .

Similarly, as in time abstracted case, we define symbolic transitions between symbolic states. Here,
however, we must distinguish between transitions which are done by “left” (i.e. “belonging” to S0)

31One can consider also timed processes without modalities to observe the same effect.
32In other words, S′ � T ′ implies S′′ � T ′′. The same property is true also for �, i.e. whenever 〈〈S′, T ′〉〉 = 〈〈S′′, T ′′〉〉,

then S′ � T ′ implies S′′ � T ′′.
33The number k is carried into the symbolic state to separate the components of the joint vector into those which “belong”

to S0 and which to T0.
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components from those done by “ right” components (i.e. “belonging” to T0). We do that by introducing
an additional index 1 or 2 to the transition relation.

Assuming m ∈ {3,2}, a ∈ Act, we have first:

S
a−→m S′

〈〈S, T 〉〉 a−→m,1 〈〈S′, T 〉〉
T

a−→m T ′

〈〈S, T 〉〉 a−→m,2 〈〈S, T ′〉〉
.

We say that 〈〈R1, R2〉〉 WT−→m,i (without specifying the target of the transition) provided Ri
ε(d)−→m for

some d > 0 (due to the maximal progress and transition liveness properties the necessary and sufficient
condition for such delays is the absence of Ri

τ−→mc transition possibility).

For X = 〈V , c, L,M, k〉 such that X
WT−→m,1 and X

WT−→m,2 we define its “m-delay successor” to be

succm(X) = 〈V ′, c′, L,M, k〉, where 〈V ′, c′〉 = succ(〈V , c〉) (see Section 7.2.2 for definition of time succes-
sor succ for a symbolic characterization of a vector of RTMS)34.

Given 5-tuple representations of the symbolic states, the computation of the transition relations
a−→m,i

between them in accordance with the given abstract definition is rather straightforward, so we show only
an example:

• For a ∈ Act, if a 6= τ , then 〈V , c, L,M, k〉 a−→m,1 〈V
′
, c′, L′,M ′, k′〉 iff

– L′ = L, M ′ = M and k′ = k, as well as a 6∈ L;

– Vi
a−→m V ′i for some i ≤ k; V ′j = Vj for all j 6= i;

– c′ is obtained from c by moving i to the equivalence class containing ∗ (followed by cleaning
the list from empty elements).

In the case of symbolic time transitions we perform the check if X
WT−→m,i by checking the negation of

X
τ−→mc,i.

The following algorithm of deciding (strong) timed refinement between IT TMS can be proven correct
following very closely the arguments from [Č92b].

Given X ⊆ XS,T we define F/S,T (X ) to consist of those and only those X ∈ XS,T for which

• X a−→3,1 X1 implies X1
a−→3,2 X2 for X2 ∈ X ,

• X a−→2,2 X1 implies X1
a−→2,1 X2 for X2 ∈ X ,

• whenever X
WT−→3,1 then succ3(X) ∈ X ,

• whenever X
WT−→2,2 then succ2(X) ∈ X .

We conclude that S � T iff 〈〈S, T 〉〉 is contained in the greatest fixpoint of F/S,T .

In order to decide the weak refinement we let X
τ

=⇒m,i X
′ mean X(

τ−→m,i)
∗X ′ and X

α
=⇒m,i X

′ mean
X

τ
=⇒m,i

α−→m,i
τ

=⇒m,i X
′. Let also a symbolic state X = 〈V , c, L,M, k〉 be called boundary or interior

in accordance with the pair 〈V , c〉.
Let us recall that the definition of the weak (τ -abstracted) refinement in Section 4 in case of S � T allows

to match a delay transition S
ε(d)−→3 S

′ in general by a chain of transitions

34Observe that for X = 〈〈S0, T0〉〉 succm(X), if defined, will be 〈〈S′0, T ′0〉〉, where S′0 and T ′0 are obtained by synchronous
delaying of S0 and T0 for some time amount d > 0.
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T (
τ−→3)∗

ε(d1)−→3 (
τ−→3)∗ · · · ε(dk)−→3 (

τ−→3)∗T ′

so that d1 + . . .+ dk = d and S′ � T ′ ( T
ε(d)−→2 T

′ is to be matched by a similar appropriate chain from
S). It turns out that in the deciding procedure below we need to consider symbolic transitions following

the same general pattern, at least for matching the
ε(d)−→3 transitions35.

To describe the search for timed matching transitions on the symbolic level, first, if succ3(X) is defined,

we let X
0−→ X ′ and X

1−→ X ′′, where

• X ′ = succ3(X) and X ′′ = succ3(succ3(X)) for X being boundary, and

• X ′ = X and X ′′ = succ3(X) for interior X.

One can say that
0−→ is “waiting to become interior” and

1−→ is “waiting to become boundary”. Se-
mantically, if δ = δ(S, T ) is the difference between 1 and the largest delay fractional part in S, T , then

〈〈S, T 〉〉 0−→ 〈〈S′, T ′〉〉 and 〈〈S, T 〉〉 1−→ 〈〈S′′, T ′′〉〉, where

• S δ−→3 S
′′ and T

δ−→3 T
′′, as well as

• S δ′−→3 S
′ and T

δ′−→3 T
′ with δ′ chosen to be any number within ]0, δ[.

Intuitively
1−→ can be also explained as a symbolic move corresponding to the simultaneous waiting of

TMSs until the first new timer fractional part becomes 0 (for what two succ3 moves are necessary, if the
pair of initial TMSs belonged to a boundary region).

Further, let
0∗

=⇒= (
τ

=⇒3,2 ∪ 0−→)∗. Observe that this relation comprises interleaving of “right” symbolic
τ3-moves (we need to introduce this construction for only one direction) and elementary delay transitions.

One can show, for instance, that 〈〈S0, T0〉〉 0∗
=⇒ X implies that for some d ∈ [0, δ(S0, T0)[

36 both S0
ε(d)−→3 S

′

and T0
ε(d)
=⇒3 T

′ so that X = 〈〈S′, T ′〉〉 (observe the same d in both transition chains).

Following the ideas of [Č92b] and [Č92a] one can prove that S � T if and only if there exists X ⊆ XS,T
such that both 〈〈S, T 〉〉 ∈ X and for every X ∈ X :

• whenever X
a−→3,1 X1 then X1

a
=⇒3,2 X2 for X2 ∈ X ,

• whenever X
a−→2,2 X1 then X1

a
=⇒2,1 X2 for X2 ∈ X ,

• whenever X
WT−→2,2 then X

τ
=⇒2,1 X1 for some X1 such that succ2(X1)

τ
=⇒2,1 X2 for X2 ∈ X ,

• whenever X
WT−→3,1 then both

35Remarkably, the −→2 transition system of TMS satisfies the classical maximal progress property ([Wan90]), saying that

for no TMS S it would be the case that both S
τ−→2 S′ and S

ε(d)−→2 S′′ for any d, S′, S′′. This implies that, if S
ε(d)−→2

for some d > 0, then for sufficiently small d′s we have S
ε(d′)
=⇒2 S

′ if and only if S
ε(d′)−→2 S

′ (i.e. during some initial period
the delay of S can not be interrupted by any internal transitions). One can show that this initial period is at least as long
as the difference between 1 and the largest S component fractional part. Using this observation the “matching region”
construction in the 2-timed cases can be taken to be substantially simpler (see the deciding procedure below). For −→3

transition system the classical maximal progress property is not satisfied, for instance, on τ3.S for any S.
36In fact, d can be taken 0, if there were no

0−→ transitions actually occurring within this
0∗

=⇒, otherwise d can be taken to
be any value from ]0, δ(S0, T0)[. It can be noted that the following transitions could be possible (actually, only in somewhat
degenerate cases) also for larger values of d.
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– X
0∗

=⇒ 0−→ τ
=⇒3,2 X1 for some X1 ∈ X 37 and

– X
0∗

=⇒ 1−→ τ
=⇒3,2 X2 for X2 ∈ X 38.

The most complicated X
WT−→3,1 case in the above definition for a pair of TMSs 〈S0, T0〉 ∈ X ∈ X

makes immediate guarantees that whenever S0
ε(d)−→3 S′ for some d ≤ δ(S0, T0), then T0

ε(d)
=⇒3 T ′ with

X ′ = 〈〈S′, T ′〉〉 ∈ X 39. The necessary extension to the case of arbitrary d ∈ R+0 is then done by
induction over time moments when fractional parts of specification components become 0 40 (precisely as

in the another timed case ofX
WT−→2,2). For more details of the correctness proof we refer to [Č92b, Č92a].

7.5 Trajectory Step Refinement

For the procedure deciding, if S �T T , we keep the notation introduced to describe symbolic deciding

of �. What is changing here, is just the symbolic clause for matching the
ε(d)−→3 moves of S, precisely to

reflect the requirement taken from the definition of S �T T that all regions corresponding to the points

in the step sequence of T
ε(d)
=⇒3 T

′ should be “matching”.

So, it can be proven that S �T T if and only if there exists X ⊆ XS,T such that both 〈〈S, T 〉〉 ∈ X and
for every X ∈ X :

37Observe that this case reduces to triviality, if X is interior and X
WT−→3,2, by letting X1 = X.

38In fact this is a slight simplification. Actually one needs to make sure (for the given algorithm to work properly) that

during the
0∗

=⇒ transitions the last component of “fractional part list” of X is not lost. This is implemented by adding into
this last class an extra dummy element (so X becomes some X+) to be removed later (when X+ has become X+

2 , we keep
just X2). In theory this construction corresponds to an extra clock, and is elaborated for a very similar situation in [Č92a].

39Recall that δ(S0, T0) is the distance from the largest fractional part of components of either S0 or T0 to 1.
40It can be shown that there can not be more than a finite amount of those within any finite time interval.
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• whenever X
a−→3,1 X1 then X1

a
=⇒3,2 X2 for X2 ∈ X ,

• whenever X
a−→2,2 X1 then X1

a
=⇒2,1 X2 for X2 ∈ X ,

• whenever X
WT−→2,2 then X

τ
=⇒2,1 X1 for some X1 such that succ2(X1)

τ
=⇒2,1 X2 for X2 ∈ X ,

• whenever X
WT−→3,1 then both

– X
τ

=⇒3,2 X0
0−→ τ

=⇒3,2 X1 so that Xi ∈ X for i = 0, 1, and

– X
τ

=⇒3,2 X
′
0

0−→ τ
=⇒3,2 X

′
1 . . .

0−→ τ
=⇒3,2 X

′
m

1−→ τ
=⇒3,2 X

′
m+1 so that X ′i ∈ X for all i =

0, 1, . . . ,m+ 1, m ≥ 0 41.

We shall not be concerned here with discussions on the efficiency of checking �T , however, let us make the

obvious observation that both parts of the matching requirement in the last clause (whenX
WT−→3,1) could

usually be easily fulfilled by a single region sequence, namely X
τ

=⇒3,2 X
′
0

0−→ τ
=⇒3,2 X

′
1 . . .

0−→ τ
=⇒3,2

X ′m
1−→ τ

=⇒3,2 X
′
m+1, where m ≥ 1.

8 Conclusions

In this paper we have presented the theory of TMS together with the automatic refinement checking tool
Epsilon. The theory TMS is an extension of real–time process calculi with the specific aim of allowing
loose or partial specifications. Looseness of specifications was achieved by introducing two modalities to
transitions of specifications: a may and a must modality. As a natural consequence of having two kinds
of transitions we generalized in a direct way various notions of process equivalences (strong equivalence,
τ–abstracted equivalence, time–abstracted equivalence and τ– and time–abstracted equivalence) and
introduced corresponding refinement orderings between specifications.

We showed how the notion of refinement allows for generality in the theory, that is, a single correctness
proof in TMS may capture a whole (possibly) infinite family of correctness proofs in process calculi. Fur-
ther, it turned out that the theory is compositional to a large extent; in particular the non time–abstracted
refinements are preserved (at least) by parallel composition. Together, generality and compositionality
makes TMS a useful formalism for stepwise refinement development. In a stepwise refinement develop-
ment of a system the initial specification is rather abstract and permits a wide range of implementations.
In each refinement step the set of possible implementation is reduced while still maintaining correctness
with respect to the initial specification. Eventually an implementation is reached.

We consider (and this may be stated in a formal manner) TMS to be a theory in between timed process
algebras and timed logics. TMS possesses both the compositional strength of algebras and is like logics a
theory for expressing loose specifications of real–time systems. However, in contrast to (real–time) logics
where compositional verification so far has not been offered, TMS supports compositional verification.

TMS and its automatic refinement checking tool has been successfully applied to a not completely trivial
example of a train crossing. In particular we outlined how compositionality can be taken advantage of
during refinement checking.

Epsilon, however is a prototype tool and we have ideas of how to improve the time and space performance
of the tool. One possible idea is to investigate combinations of the kernel of Epsilon (that is, the

41Here we should also be concerned with keeping the last component of X fractional part list, precisely as in similar
situation when deciding �.
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local model checking technique of [Lar92]) with the state space partitioning algorithms that has proven
successful for verification of real–timed systems (e.g. the temporal logic model checking partitioning
algorithm presented in [ACH+92]). Other performance improving ideas include utilizing algebraic laws
while performing the correctness checking.

The idea of introducing looseness by allowing two modalities on transitions is completely orthogonal to
process algebra. Hence, another topic of research interest is that of introducing looseness to other kinds
of real–time theories, for instance timed graphs [Dil89].
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[HL89] H. Hüttel and K.G. Larsen. The use of static constructs in a modal process logic. In Proceedings
of Logic at Botik’89, volume 363 of Lecture Notes in Computer Science. Springer-Verlag, 1989.

[Lar90] K.G. Larsen. Modal specifications. In Proceedings of Workshop on Automatic Verification Meth-
ods for Finite State Systems, volume 407 of Lecture Notes in Computer Science, 1990.

[Lar92] K.G. Larsen. Efficient local correctness checking. In Proceedings of CAV’92, volume 663 of
Lecture Notes in Computer Science. Springer-Verlag, 1992.

[LT88] K.G. Larsen and B. Thomsen. A modal process logic. In Proceedings LICS’88, 1988.

31



[LW90] K.G. Larsen and Y. Wang. Time abstracted bisimulation: Implicit specifications and decidability.
In Proceedings of MFPS’93, Lecture Notes in Computer Science. Springer-Verlag, 1990.

[Mil89] Robin Milner. Communication and Concurrency. Series in Computer Science. Prentice–Hall
International, 1989.

[NSY91] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems. In Real–
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science. Springer-Verlag,
1991.

[NSY92] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real–time specifications into extended au-
tomata. IEEE TSE Special Issue on Real–Time Systems, September 1992.

[Par81] D. Park. Concurrency and automata on infinite sequences. In 5th GI Conference, volume 104 of
Lecture Notes in Computer Science, 1981.

[SV89] R. De Simone and D. Vergamini. Aboard AUTO. Technical Report 111, INRIA, Sofia–Antipolis,
1989.
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