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Abstract

Plotkin, in his seminal article Call-by-name, call-by-value and the
λ-calculus, formalized evaluation strategies and simulations using op-
erational semantics and continuations. In particular, he showed how
call-by-name evaluation could be simulated under call-by-value eval-
uation and vice versa. Since Algol 60, however, call-by-name is both
implemented and simulated with thunks rather than with continua-
tions. We recast this folk theorem in Plotkin’s setting, and show that
thunks, even though they are simpler than continuations, are sufficient
for establishing all the correctness properties of Plotkin’s call-by-name
simulation.

Furthermore, we establish a new relationship between Plotkin’s two
continuation-based simulations Cn and Cv, by deriving Cn as the com-
position of our thunk-based simulation T and of C+

v — an extension of
Cv handling thunks. Almost all of the correctness properties of Cn fol-
low from the properties of T and C+

v . This simplifies reasoning about
call-by-name continuation-passing style.

We also give several applications involving factoring continuation-
based transformations using thunks.
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1 Introduction and Background

1.1 Motivation

Plotkin, in his seminal article Call-by-name, call-by-value and the λ-calculus
[23], formalizes both call-by-name and call-by-value procedure calling mech-
anisms for λ-calculi. Call-by-name evaluation is described with a stan-
dardization theorem for the λβ-calculus. Call-by-value evaluation is de-
scribed with a standardization theorem for a new calculus (the λβv-calculus).
Plotkin then shows that call-by-name can be simulated by call-by-value and
vice versa. The simulations also give interpretations of each calculus in
terms of the other.

Both of Plotkin’s simulations rely on continuations — a technique used
earlier to model the meaning of jumps in the denotational-semantics ap-
proach to programming languages [33] and to express relationships between
memory-management techniques [12], among other things [27]. Since Algol
60, however, programming wisdom has it that thunks1 can be used to obtain
a simpler simulation of call-by-name by call-by-value.2

Our aim is to clarify the properties of thunks with respect to Plotkin’s
classic study of evaluation strategies and continuation-passing styles [23].
We begin by defining a thunk-introducing transformation T and prove that
thunks are sufficient for establishing all the technical properties Plotkin con-
sidered for his continuation-based call-by-name simulation Cn.3

Given this, one may question what rôle continuations actually play in
Cn since they are unnecessary for achieving a simulation. We show that the
continuation-passing structure of Cn can actually be obtained by extending

1The term “thunk” was coined to describe the compiled representation of delayed
expressions in implementations of Algol 60 [17]. The terminology has been carried over
and applied to various methods of delaying the evaluation of expressions [25].

2Plotkin acknowledges that thunks provide some simulation properties but states that
“...these ‘protecting by a λ’ techniques do not seem to be extendable to a complete simu-
lation and it is fortunate that the technique of continuations is available.” [23, p. 147]. By
“protecting by a λ”, Plotkin refers to a representation of thunks as λ-abstractions with
a dummy parameter. When we discussed our investigation of thunks with him, Plotkin
told us that he had also found recently the “protecting by a λ” technique to be sufficient
for a complete simulation [24].

3Plotkin actually gives a slightly different simulation Pn [23, p. 153]. We note in Section
1.5.1 that Plotkin’s Translation theorem for Pn does not hold. A slight modification to
Pn gives the translation Cn which does satisfy the Translation theorem. Therefore, in the
present work, we will take Cn along with Plotkin’s original call-by-value continuation-based
simulation Cv as the canonical continuation-based simulations.

5



Plotkin’s call-by-value continuation-based simulation Cv to process the ab-
stract representation of thunks and composing this extended transformation
C+

v with T , i.e.,4

λβv ` Cn〈[e]〉 = (C+
v ◦ T )〈[e]〉.

This establishes a previously unrecognized connection between Cn and Cv

and gives insight into the structural similarities between call-by-name and
call-by-value continuation-passing style.

We show that almost all of the technical properties that Plotkin estab-
lished for Cn follow from the properties of C+

v and T . So as a byproduct,
when reasoning about Cn and Cv, it is often sufficient to reason about C+

v and
the simpler simulation T . We give several applications involving deriving
optimized continuation-based simulations for call-by-name and call-by-need
languages.

1.2 An example

Consider the program (λx1.(λx2.x1)Ω) b where Ω represents some term
whose evaluation diverges under any evaluation strategy and where b repre-
sents some basic constant. Call-by-name evaluation dictates that arguments
be passed unevaluated to functions. Thus, call-by-name evaluation of the
example program proceeds as follows:

(λx1.(λx2.x1)Ω) b 7−→n (λx2.b) Ω (1)

7−→n b

Call-by-value evaluation dictates that arguments be simplified to values
(i.e., constants or abstractions) before being passed to functions. Thus,
call-by-value evaluation of the example program proceeds as follows:

(λx1.(λx2.x1)Ω) b 7−→v (λx2.b) Ω

7−→v (λx2.b) Ω′

7−→v (λx2.b) Ω′′

7−→v ...

Since the term Ω never reduces to a value, λx2.b cannot be applied — and
the evaluation does not terminate.

4In fact, Cn and C+
v ◦ T only differ by “administrative reductions” [23, p. 149] (i.e., re-

ductions introduced by the transformations that implement continuation-passing). Thus,
for optimizing transformations Cn.opt and C+

v.opt that produce CPS terms without admin-

istrative reductions [8], the output of Cn.opt is identical to the output of C+
v.opt ◦ T .
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The difference between call-by-name and call-by-value evaluation lies in
how arguments are treated. To simulate call-by-name with call-by-value
evaluation, one needs a mechanism for turning arbitrary arguments into
values. This can be accomplished using a suspension constructor delay .
delay e turns the expression e into a value and thus suspends its evaluation.
The suspension destructor force triggers the evaluation of an expression
suspended by delay . Accordingly, suspensions have the following evaluation
property.

force (delay e) 7−→v e

Introducing delay and force in the example program via a thunking trans-
formation T provides a simulation of call-by-name under call-by-value eval-
uation.

(λx1.(λx2.force x1) (delay Ω)) (delay b)

7−→v (λx2.force (delay b)) (delay Ω) (2)

7−→v force (delay b)

7−→v b

Applying Plotkin’s call-by-name continuation-passing transformation Cn to
the example program also gives a simulation of call-by-name under call-by-
value evaluation [23].

(λk.(λk.k (λx1.λk.(λk.k (λx2.λk.x1 k)) (λy1.y1 Cn〈[Ω]〉 k)))
(λy2.y2 (λk.k b) k))

(λy3.y3)

(3)

The resulting program is said to be in continuation-passing style (CPS). A
tedious but straightforward rewriting shows that the call-by-value evaluation
of the CPS program above yields b— the result of the original program when
evaluated under call-by-name. Even after optimizing the CPS program by
performing “administrative reductions” (i.e., reductions of abstractions that
implement continuation-passing and do not appear in the original program
such as the λk.... and λyi.... of line (3)) [23, p. 149],

(λx1.λk.(λx2.λk.x1 k) Cn〈[Ω]〉 k) (λk.k b) (λy3.y3) (4)

the evaluation is still more involved than for the thunked program.5

5The original term at line (1) requires 2 evaluation steps. The thunked version at
line (2) requires 3 steps. The unoptimized CPS version at line (3) requires 11 steps.
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1.3 Overview

The remainder of this section gives necessary background material cover-
ing the syntax and semantics of λ-terms and Plotkin’s continuation-passing
simulations. Section 2 presents the thunk-based simulation T and associ-
ated correctness results. Section 3 presents the factoring of Cn via thunks
and gives several applications. Section 4 recasts the results of the previous
sections in a typed setting. Section 5 gives a discussion of related work.
Section 6 concludes.

1.4 Syntax and semantics of λ-terms

This section briefly reviews the syntax, equational theories, and operational
semantics associated with λ-terms. The notation used is essentially Baren-
dregt’s [3]. The presentation of calculi in Section 1.4.3 follows Sabry and
Felleisen [31] and the presentation of operational semantics in Section 1.4.4
is adapted from Plotkin [23].

1.4.1 The language Λ

Figure 1 presents the syntax of the language Λ. The language is a pure
untyped functional language including constants, identifiers, λ-abstractions
(functions), and applications. To simplify substitution, we follow Baren-
dregt’s variable convention6 and work with the quotient of Λ under α-
equivalence [3]. We write e1 ≡ e2 when e1 and e2 are α-equivalent.

The notation FV(e) denotes the set of free variables in e and e1[x := e2]
denotes the result of the capture-free substitution of all free occurences of x
in e1 by e2. A context C is a term with a “hole” [·]. The operation of filling
the context C with a term e yields the term C [e], possibly capturing some
free variables of e in the process. Contexts[l] denotes the set of contexts from
some language l. Closed terms — terms with no free variables — are called
programs. Programs[l] denotes the set of programs from some language l.

The optimized CPS version at line (4) requires 6 steps. As Sabry and Felleisen note
[31, p. 302], this last program can be optimized further by unfolding source reductions,
eliminating administrative reductions exposed by the unfolding, and then expanding back
the source reductions. However, an optimized version of Cn capturing these additional
steps would be significantly more complicated than T (making it much harder to reason
about its correctness). Moreover, the resulting CPS program would still require more
evaluation steps in general than the corresponding program in the image of T .

6In terms occurring in definitions and proofs etc., all bound variables are chosen to be
different from free variables [3, p. 26].
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e ∈ Λ

e ::= b | x | λx.e | e0 e1

Figure 1: Abstract syntax of the language Λ

1.4.2 Values

Certain terms of Λ are designated as values. Values roughly correspond to
terms that may be results of the operational semantics presented below. The
sets Valuesn[Λ] and Valuesv[Λ] below represent the set of values from the
language Λ under call-by-name and call-by-value evaluation respectively.

v ∈ Valuesn[Λ]

v ::= b | λx.e
v ∈ Valuesv[Λ]

v ::= b | x | λx.e
...where e ∈ Λ

Note that identifiers are included in Valuesv[Λ] since only values will be
substituted for identifiers under call-by-value evaluation. We use v as a
meta-variable for values and where no ambiguity results we will ignore the
distinction between call-by-name and call-by-value values.

1.4.3 Calculi

λ-calculi are formal theories of equations between λ-terms. We consider
calculi generated by one or more of the following principal axiom schemata
(also called notions of reduction) along with the logical axioms and inference
rules presented below.

Notions of reduction

(λx.e1) e2 −→β e1[x := e2] (β)
(λx.e) v −→βv e[x := v] v ∈ Valuesv[Λ] (βv)
λx.e x −→η e x 6∈ FV(e) (η)
λx.v x −→ηv v v ∈ Valuesv[Λ] ∧ x 6∈ FV(v) (ηv)

Logical axioms and inference rules

e1 −→ e2 ⇒ C [e1] = C [e2] ∀ contexts C (Compatibility)
e = e (Reflexivity)

e1 = e2, e2 = e3 ⇒ e1 = e3 (Transitivity)
e1 = e2 ⇒ e2 = e1 (Symmetry)

9



Call-by-name:

(λx.e0) e1 7−→n e0[x := e1]
e0 7−→n e′0

e0 e1 7−→n e′0 e1

Call-by-value:

(λx.e) v 7−→v e[x := v]
e0 7−→v e′0

e0 e1 7−→v e′0 e1

e1 7−→v e′1
(λx.e0) e1 7−→v (λx.e0) e

′
1

Figure 2: Single-step evaluation rules

The underlying notions of reduction completely identify a theory. For
example, β generates the theory λβ and βv generates the theory λβv. In
general, we write λA to refer to the theory generated by a set of axioms A.
When a theory λA proves an equation e1 = e2, we write λA ` e1 = e2.
If the proof does not involve the inference rule (Symmetry), we write λA `
e1 −→−→ e2, and if the proof only involves the rule (Compatibility) we write
λA ` e1 −→ e2. Reductions in calculational style proofs are denoted by
subscripting reduction symbols (e.g., −→β, −→−→ηv). If a property holds for
both λβ and λβv, we say the property holds for λβi.

1.4.4 Operational semantics

Figure 2 presents single-step evaluation rules which define the call-by-name
and call-by-value operational semantics of Λ programs.7 The (partial) evalu-
ation functions evaln and evalv are defined in terms of the reflexive, transitive
closure (denoted 7−→∗) of the single-step evaluation rules.

evaln(e) = v iff e 7−→∗n v

evalv(e) = v iff e 7−→∗v v

7The rules of Figure 2 are a simplified version of Plotkin’s [23, pp. 146 and 136]. To
simplify the presentation, we do not consider evaluation rules defined over open terms or
functional constants (i.e., δ-rules).
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We write e 7−→i e′ when both e 7−→n e′ and e 7−→v e′ (similarly for
evali). Given meta-language expressions E1 and E2 where one or both may
be undefined, we write E1 ' E2 when E1 and E2 are both undefined, or else
both are defined and denote α-equivalent terms. Similarly, for any notion
of reduction r, we write E1 'r E2 when E1 and E2 are both undefined, or
else are both defined and denote r-equivalent terms.

An evaluation eval(e) may be undefined for two reasons:

1. e heads an infinite evaluation sequence, i.e., e 7−→ e1 7−→ e2 7−→ ...,

2. e heads an evaluation sequence which ends in a stuck term — a non-
value which cannot be further evaluated (e.g., the application of a
basic constant to some argument).

The following definition gives programs that are stuck under call-by-name
and call-by-value evaluation.

s ∈ Stuckn[Λ]

s ::= b e | s e
s ∈ Stuckv[Λ]

s ::= b e | s e | (λx.e) s ...where e ∈ Λ

A simple induction over the structure of e ∈ Programs[Λ] shows that either
e ∈ Valuesn[Λ], or e ∈ Stuckn[Λ], or e 7−→n e′. A similar property holds for
call-by-value.

1.4.5 Operational equivalence

Plotkin’s definitions of call-by-name and call-by-value operational equiva-
lence are as follows [23, pp. 147 and 144].

Definition 1 (CBN operational equivalence) For all e1, e2 ∈ Λ, e1 ≈n

e2 iff for any context C ∈ Contexts[Λ] such that C [e1] and C [e2] are pro-
grams, evaln(C [e1]) and evaln(C [e2]) are either both undefined, or else both
defined and one is a given basic constant b iff the other is.

Definition 2 (CBV operational equivalence) For all e1, e2 ∈ Λ, e1 ≈v

e2 iff for any context C ∈ Contexts[Λ] such that C [e1] and C [e2] are pro-
grams, evalv(C [e1]) and evalv(C [e2]) are either both undefined, or else both
defined and one is a given basic constant b iff the other is.

The calculi of Section 1.4.3 can be used to reason about operational
behavior. To establish the operational equivalence two terms, it is sufficient
to show that the terms are convertible in an appropriate calculus.

11



Theorem 1 (Soundness of calculi for Λ) For all e1, e2 ∈ Λ,

λβ ` e1 = e2 ⇒ e1 ≈n e2

λβv ` e1 = e2 ⇒ e1 ≈v e2

Proof: See [23, pp. 147 and 144]

Note that η is unsound for both call-by-name and call-by-value since it
does not preserve termination properties.8 Termination properties can be
preserved by requiring the contractum of an η-redex to be a value. For
example, ηv preserves call-by-value termination properties. However, even
these restricted forms are unsound in an untyped setting due to “improper”
uses of basic constants. For example,

λx.b x −→ηv b

but λx.b x 6≈v b (take C = [·]). Thus, extending the setting considered
by Plotkin (i.e., untyped terms with basic constants) to include an elegant
theory of η-like reduction seems problematic.9 However, in specific settings
where constraints on the structure of terms disallow such problematic cases,
limited forms of η reduction can be applied soundly.10

1.5 Continuation-based simulations

This section presents Plotkin’s continuation-based simulations of call-by-
name in call-by-value and vice versa [23]. As characterized by Meyer and
Wand [18], “CPS terms are tail-recursive: no argument is an application.
Therefore there is at most one redex which is not inside the scope of an
abstraction, and thus call-by-value evaluation coincides with outermost or
call-by-name evaluation.”

1.5.1 Call-by-name continuation-passing style

Figure 3 gives Plotkin’s call-by-name CPS transformation Pn where the k’s
and the y’s are fresh variables (i.e., variables not appearing free in the argu-
ment of Pn). The transformation is defined using two translation functions:

8For example, λx.Ωx −→η Ω but evali(λx.Ωx) is defined whereas evali(Ω) is
undefined.

9Sabry and Felleisen similarly discuss problems with η and ηv reduction [30, p. 5] [31,
p. 322].

10This is the case with the languages of terms in the image of CPS transformations
presented in the following section.
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Pn〈[·]〉 : Λ→Λ

Pn〈[v]〉 = λk.kPn〈v〉
Pn〈[x]〉 = x

Pn〈[e0 e1]〉 = λk.Pn〈[e0]〉 (λy0.y0Pn〈[e1]〉 k)

Pn〈·〉 : Valuesn[Λ]→Λ

Pn〈b〉 = b

Pn〈λx.e〉 = λx.Pn〈[e]〉

Figure 3: Plotkin’s call-by-name CPS transformation

Pn〈[·]〉 is the general translation function for terms of Λ; Pn〈·〉 is the trans-
lation function for call-by-name values. The following theorem given by
Plotkin [23, p. 153] captures correctness properties of the transformation.

Theorem 2 (Plotkin 1975) For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(Pn〈[e]〉 I ) ' evaln(Pn〈[e]〉 I )

2. Simulation: Pn〈evaln(e)〉 ' evalv(Pn〈[e]〉 I )

3. Translation:

λβ ` e1 = e2 iff λβv ` Pn〈[e1]〉 = Pn〈[e2]〉
iff λβ ` Pn〈[e1]〉 = Pn〈[e2]〉
iff λβv ` Pn〈[e1]〉 I = Pn〈[e2]〉 I
iff λβ ` Pn〈[e1]〉 I = Pn〈[e2]〉 I

The Indifference property states that, given the identity function
I = λy.y as the initial continuation, the result of evaluating a CPS term
using call-by-value evaluation is the same as the result of using call-by-name
evaluation. In other words, terms in the image of the transformation are
evaluation-order independent. This follows because all function arguments
are values in the image of the transformation (and this condition is preserved
under βi reductions).
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The Simulation property states that, given the identity function as an
initial continuation, evaluating a CPS term using call-by-value evaluation
simulates the evaluation of the original term using call-by-name evaluation.

The Translation property purports that β-equivalence classes are pre-
served and reflected by Pn. However, the property does not hold because11

λβ ` e1 = e2 6⇒ λβi ` Pn〈[e1]〉 = Pn〈[e2]〉.

In some cases, ηv is needed to establish the equivalence of the CPS-images
of two β-convertible terms. For example, λx.(λz.z)x −→β λx.x but

Pn〈[λx.(λz.z) x]〉 = λk.k (λx.λk.(λk.k (λz.z)) (λy.y x k))
−→βv λk.k (λx.λk.(λy.y x k) (λz.z))
−→βv λk.k (λx.λk.(λz.z) x k)
−→βv λk.k (λx.λk.x k)
−→ηv λk.k (λx.x) ...ηv is needed for this step

= Pn〈[λx.x]〉.

In practice, ηv reductions such as those required in the example above
are unproblematic if they are embedded in proper CPS contexts. When
λk.k (λx.λk.x k) is embedded in a CPS context, x will always bind to a term
of the form λk.e during evaluation. However, if the term is not embedded
in a CPS context (e.g., [·] (λy.y b)), the ηv reduction is unsound.

The simplest solution for recovering the Translation property is to
change the translation of identifiers from Pn〈[x]〉 = x to λk.x k. Let Cn

be the modified translation which is identical to Pn except that

Cn〈[x]〉 = λk.x k

For the example above, the new translation gives

λβi ` Cn〈[λx.(λz.z) x]〉 = Cn〈[λx.x]〉.

The following theorem gives the correctness properties for Cn.

Theorem 3 For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(Cn〈[e]〉 I ) ' evaln(Cn〈[e]〉 I )

2. Simulation: Cn〈evaln(e)〉 'βi evalv(Cn〈[e]〉 I )

11The proof given in [23, p. 158] breaks down where it is stated “It is straightforward
to show that λβ ` e1 = e2 implies λβv ` Pn〈[e1]〉 = Pn〈[e2]〉 ...”.
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3. Translation:

λβ ` e1 = e2 iff λβv ` Cn〈[e1]〉 = Cn〈[e2]〉
iff λβ ` Cn〈[e1]〉 = Cn〈[e2]〉
iff λβv ` Cn〈[e1]〉 I = Cn〈[e2]〉 I
iff λβ ` Cn〈[e1]〉 I = Cn〈[e2]〉 I

The Indifference and Translation properties for Cn are identical to
those of Pn. However, the Simulation property for Cn holds up to βi-
equivalence12 while Simulation for Pn holds up to α-equivalence.13

We show in Section 3.3.1 that proofs of Indifference, Simulation, and
most of the Translation can be derived from the correctness properties of
C+

v and T (as discussed in Section 1). All that remains of Translation is
the ⇐ direction of the first bi-implication; this follows in a straightforward
manner from Plotkin’s original proof for Pn (see Appendix A.1.3).

1.5.2 Call-by-value continuation-passing style

Figure 4 gives Plotkin’s call-by-value CPS transformation. The following
theorem captures correctness properties of the translation.

Theorem 4 (Plotkin 1975) For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evaln(Cv〈[e]〉 I ) ' evalv(Cv〈[e]〉 I )

2. Simulation: Cv〈evalv(e)〉 ' evaln(Cv〈[e]〉 I )

3. Translation:

If λβv ` e1 = e2 then λβv ` Cv〈[e1]〉 = Cv〈[e2]〉
Also λβv ` Cv〈[e1]〉 = Cv〈[e2]〉 iff λβ ` Cv〈[e1]〉 = Cv〈[e2]〉

12For example, Cn〈evaln((λz.λy.z) b)〉 = λy.λk.k b whereas evalv(Cn〈[(λz.λy.z) b]〉 I ) =
λy.λk.(λk.k b) k.

13This is because Pn commutes with substitution up to α-equivalence, i.e., Cn〈[e0[x :=
e1]]〉 ≡ Cn〈[e0]〉[x := Cn〈[e1]〉] whereas Cn commutes with substitution only up to βi-
equivalence, i.e., Cn〈[e0[x := e1]]〉 =βi Cn〈[e0]〉[x := Cn〈[e1]〉]. This renders the usual colon
translation technique [23, p. 154] insufficient for proving Simulation for Cn. Evaluation
steps involving substitution lead to terms which lie outside the image of the colon trans-
lation associated with Cn. A similar situation occurs with the thunk-based simulation T
introduced in Section 2 (see Section 2.3.2, Footnote 17).
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Cv〈[·]〉 : Λ→Λ

Cv〈[v]〉 = λk.k Cv〈v〉
Cv〈[e0 e1]〉 = λk.Cv〈[e0]〉 (λy0.Cv〈[e1]〉 (λy1.y0 y1 k))

Cv〈·〉 : Valuesv[Λ]→Λ

Cv〈b〉 = b

Cv〈x〉 = x

Cv〈λx.e〉 = λx.Cv〈[e]〉

Figure 4: Plotkin’s call-by-value CPS transformation

The intuition behind the Indifference and Simulation properties is
the same as for Cn. The Translation property states that βv-convertible
terms are also convertible in the image of Cv. In contrast to the theory λβ
appearing in the Translation property for Cn (Theorem 3), the theory λβv

is incomplete in the sense that it cannot establish the convertibility of some
pairs of terms in the image of the CPS transformation [31].14

Finally, note that neither Cn nor Cv (nor Pn) are fully abstract (i.e., they
do not preserve operational equivalence) [23, pp. 154 and 148]. Specifically,
e1 ≈n e2 does not imply Cn〈[e1]〉 ≈v Cn〈[e2]〉 (and similarly for Cv).

15

14Plotkin gives the following example of the incompleteness [23, p. 153]. Let e1 ≡
((λx.xx) (λx.xx)) y and e2 ≡ (λx.x y) ((λx.xx) (λx.xx)). Then λβv ` Cv〈[e1]〉 = Cv〈[e2]〉
and λβ ` Cv〈[e1]〉 = Cv〈[e2]〉 but λβv 6` e1 = e2. Sabry and Felleisen [31] give an equa-
tional theory λA (where A is a set of axioms including βvηv) and show it complete in the
sense that λA ` e1 = e2 iff λβη ` F〈[e1]〉 = F〈[e2]〉. F is Fischer’s call-by-value CPS
transformation [12] where continuations are the first arguments to functions (instead of
the second arguments as in Plotkin’s Cv). Note that their results cannot be immediately
carried over to this setting since the reduction properties of terms generated by the trans-
formation F are sufficiently different from the reduction properties of terms generated by
Plotkin’s transformation Cv (see [31, p. 314]).

15For examples of why full abstraction fails, see [23, pp. 154 and 149] and [30, p. 30].
For a detailed presentation of fully abstract translations in a typed setting, see the work
of Riecke [28, 29].
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T : Λ→Λτ

T 〈[b]〉 = b

T 〈[x]〉 = force x

T 〈[λx.e]〉 = λx.T 〈[e]〉
T 〈[e0 e1]〉 = T 〈[e0]〉 (delay T 〈[e1]〉)

Figure 5: Thunk introduction

2 Thunks

2.1 Thunk introduction

To establish the simulation properties of thunks, we extend the language Λ
to the language Λτ that includes suspension operators.

e ∈ Λτ

e ::= ... | delay e | force e

The operator delay suspends the computation of an expression — thereby
coercing an expression to a value. Therefore, delay e is added to the value
sets in Λτ .

v ∈ Valuesn[Λτ ]

v ::= ... | delay e

v ∈ Valuesv[Λτ ]

v ::= ... | delay e
...where e ∈ Λτ

Figure 5 presents the definition of the thunk-based simulation T .

2.2 Reduction of thunked terms

2.2.1 τ-reduction

The operator force triggers the evaluation of a suspension created by delay .
This is formalized by the following notion of reduction.

Definition 3 (τ-reduction) force (delay e) −→τ e

The notion of reduction τ generates the theory λτ as outlined in Sec-
tion 1.4.3. Combining reductions β and τ generates the theory λβτ . Simi-
larly, βv and τ give λβvτ .
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It is easy to show that τ is Church-Rosser. The Church-Rosser property
for βτ and βvτ follows by the Hindley-Rosen Lemma [3, pp. 53 – 65] since
β [3, p. 62] and βv [23, p. 135] are also Church-Rosser, and it can be shown
that −→−→τ commutes with −→−→β and −→−→βv .

The evaluation rules for Λτ are obtained by adding the following rules
to both the call-by-name and call-by-value evaluation rules of Figure 2.

e 7−→ e′

force e 7−→ force e′
force (delay e) 7−→ e

2.2.2 A language closed under reductions

To determine the correctness properties of thunks, we consider the set of
terms T ⊂ Λτ which are reachable from the image of T via β and τ

reductions.

T
def
= {t ∈ Λτ | ∃e ∈ Λ . λβτ ` T 〈[e]〉 −→−→ t}

The set of terms T can be described with the following grammar.

t ∈ T 〈[Λ]〉∗

t ::= b | force x | force (delay t) | λx.t | t0 (delay t1)

Appendix A.2.2 shows that the language T 〈[Λ]〉∗ = T . Note that every
β-redex in T 〈[Λ]〉∗ is also a βv-redex (since all function arguments are sus-
pensions).

2.3 A thunk-based simulation

We want to show that thunks are sufficient for establishing a call-by-name
simulation satisfying all of the correctness properties of the continuation-
passing simulation Cn. Specifically, we prove the following theorem which
recasts the correctness theorem for Cn (Theorem 3) in terms of T .16

Theorem 5 For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(T 〈[e]〉) ' evaln(T 〈[e]〉)

2. Simulation: T 〈[evaln(e)]〉 'τ evalv(T 〈[e]〉)
16The last two assertions of the Translation component of Theorem 3 do not ap-

pear here since the identity function as the initial continuation only plays a role in CPS
evaluation.

18



e0
τ∼ T 〈[e0]〉 e1

τ∼ tj1 e2
τ∼ tj2

.....7−→βv 7−→βv 7−→βv7−→∗τ 7−→∗τt11 t12T 〈[e0]〉 ti11 ti22

e0 e1 e2 .....7−→n 7−→n 7−→n

Figure 6: Evaluation of thunked terms

3. Translation: λβ ` e1 = e2 iff λβvτ ` T 〈[e1]〉 = T 〈[e2]〉 iff λβτ `
T 〈[e1]〉 = T 〈[e2]〉

2.3.1 Indifference

The Indifference property for T is immediate since all function arguments
are values (specifically suspensions) in the language T 〈[Λ]〉∗.

2.3.2 Simulation

In general, the steps involved in T 〈[evaln(e)]〉 and evalv(T 〈[e]〉) can be pic-
tured as in Figure 6 (in the figure, 7−→τ and 7−→βv denote 7−→v steps which
correspond to τ and βv reduction, respectively).17 Initially, T 〈[e0]〉 7−→βv

t11

where t11 is related to e1 by the following inductively defined relation
τ∼.

τ∼.1 b
τ∼ b

τ∼.2 x
τ∼ force x

τ∼.3 e
τ∼ t

λx.e
τ∼ λx.t

τ∼.4 e0
τ∼ t0 e1

τ∼ t1
e0 e1

τ∼ t0 (delay t1)

τ∼.5 e
τ∼ t

e
τ∼ force (delay t)

17 Note that Simulation for T holds up to τ -equivalence because T commutes with
substitution up to τ -equivalence. Taking e = (λx.λy.x) b illustrates that T 〈[evaln(e)]〉
may be in τ -normal form where evalv(T 〈[e]〉) may contain τ -redexes inside the body of a
resulting abstraction.
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T −1 : T 〈[Λ]〉∗→Λ

T −1〈[b]〉 = b

T −1〈[force x]〉 = x

T −1〈[force (delay t)]〉 = T −1〈[t]〉
T −1〈[λx.t]〉 = λx.T −1〈[t]〉

T −1〈[t0 (delay t1)]〉 = T −1〈[e0]〉 T −1〈[e1]〉

Figure 7: Thunk elimination

Simple inductions show that e
τ∼ T 〈[e]〉, and that e

τ∼ t implies T 〈[e]〉 is
τ -equivalent to t.

Now for the remaining steps in Figure 6, the following property states
that each 7−→n step on a Λ term implies corresponding 7−→v steps on ap-
propriately related thunked terms.

Property 1 For all e0, e1 ∈ Programs[Λ] and t0 ∈ Programs[T 〈[Λ]〉∗] such
that e0

τ∼ t0,

e0 7−→n e1 ⇒ ∃t1 ∈ T 〈[Λ]〉∗ . t0 7−→+
v t1 ∧ e1

τ∼ t1

It is also the case that every terminating evaluation sequence over Λ
terms corresponds to a terminating evaluation sequence over thunked terms
(and vice-versa). These properties are sufficient for establishing the Simu-
lation property for T (see Appendix A.2.3).

2.3.3 Translation

To prove the Translation for T , we establish an equational correspondence
between the language Λ under theory λβ and language T 〈[Λ]〉∗ under theory
λβiτ (i.e., λβvτ as well as λβτ). Basically, equational correspondence holds
when a one-to-one correspondence exists between equivalence classes of the
two theories.

The thunk introduction T of Figure 5 establishes a mapping from Λ to
T 〈[Λ]〉∗. For the reverse direction, the thunk elimination T −1 of Figure 7
establishes a mapping from T 〈[Λ]〉∗ back to Λ.
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The relationship between equational theories for source terms and thun-
ked terms is as follows.

Theorem 6 (Equational Correspondence) For all e, e1, e2 ∈ Λ and
t, t1, t2 ∈ T 〈[Λ]〉∗,

1. λβ ` e = (T −1 ◦ T )〈[e]〉

2. λβiτ ` t = (T ◦ T −1)〈[t]〉

3. λβ ` e1 = e2 iff λβiτ ` T 〈[e1]〉 = T 〈[e2]〉

4. λβiτ ` t1 = t2 iff λβ ` T −1〈[t1]〉 = T −1〈[t2]〉

Note that component 3 of Theorem 6 corresponds to the thunk Translation
property (component 3 of Theorem 5).

The proof of Theorem 6 follows the outline of a proof with similar struc-
ture given by Sabry and Felleisen [31]. First, we characterize the interaction
of T and T −1 (components 1 and 2 of Theorem 6). Then, we examine the
relation between reductions in the theories λβ and λβiτ (components 3 and
4 of Theorem 6).

The following property states that T −1 ◦ T is the identity function over
Λ.

Property 2 For all e ∈ Λ, e = (T −1 ◦ T )〈[e]〉.

This follows from the fact that T −1 simply removes all suspension opera-
tors. However, removing suspension operators has the effect of collapsing
τ -redexes. This leads to a slightly weaker condition for the opposite direc-
tion.

Property 3 For all t ∈ T 〈[Λ]〉∗, λτ ` t = (T ◦ T −1)〈[t]〉.

In other words, T ◦ T −1 is not the identity function, but maintains τ -
equivalence. For example,

(T ◦ T −1)〈[(λx.force (delay b)) (delay b)]〉 = T 〈[(λx.b) b]〉
= (λx.b) (delay b).

Components 1 and 2 of Theorem 6 follow immediately from Properties 2
and 3.

For components 3 and 4 of Theorem 6, it is sufficient to establish the
following two properties. The first property shows that any reduction in Λ
corresponds to one or more reductions in T 〈[Λ]〉∗.
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Property 4 For all e1, e2 ∈ Λ,

λβ ` e1 −→ e2 ⇒ λβiτ ` T 〈[e1]〉 −→−→ T 〈[e2]〉.

For example, the β-reduction

λβ ` e1 ≡ (λx.x b) (λy.y) −→ (λy.y) b ≡ e2

corresponds to the βi-reduction

λβiτ ` T 〈[e1]〉 ≡ (λx.(force x) (delay b)) (delay (λy.force y))
−→ (force (delay (λy.force y))) (delay b)

However, an additional τ -reduction (and in general multiple τ -reductions)
is needed to reach T 〈[e2]〉, i.e.,

λβiτ ` (force (delay (λy.force y))) (delay b)
−→ (λy.force y) (delay b) ≡ T 〈[e2]〉

.

For the other direction, the following property states that any reduction
in T 〈[Λ]〉∗ corresponds to zero or one reductions in Λ.

Property 5 For all t1, t2 ∈ T 〈[Λ]〉∗,

λβiτ ` t1 −→ t2 ⇒ λβ ` T −1〈[t1]〉 −→−→ T −1〈[t2]〉.

Specifically, a τ -reduction in T 〈[Λ]〉∗ implies no reductions in Λ. This is
because T −1 collapses τ -redexes. For example,

λβiτ ` t1 ≡ force (delay b) −→ b ≡ t2,

but T −1〈[t1]〉 = b = T −1〈[t2]〉, so no reductions occur.
A βi-reduction in T 〈[Λ]〉∗ implies one β-reduction in Λ. For example, the

βi-reduction

λβiτ ` t1 ≡ (λx.(force x) (delay b)) (delay (λy.force y))
−→ (force (delay λy.force y)) (delay b) ≡ t2

corresponds to the β-reduction

λβ ` T −1〈[t1]〉 ≡ (λx.x b) (λy.y) −→ (λy.y) b ≡ T −1〈[t2]〉.

Given these properties, components 3 and 4 of Theorem 6 can be proved
in a straightforward manner by appealing to Church-Rosser and compati-
bility properties of β and βiτ reduction (see Appendix A.2.4).
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2.4 Thunks implemented in Λ

Representing thunks via abstract suspension operators delay and force sim-
plifies the technical presentation and enables the connection between Cn

and Cv presented in the next section. Elsewhere [15], we show that the
delay/force representation of thunks and associated properties (i.e., reduc-
tion properties and translation into CPS) are not arbitrary, but are deter-
mined by the relationship between strictness and continuation monads [19].

However, thunks can be implemented directly in Λ using what Plotkin
described as the “protecting by a λ” technique [23, p. 147]. Specifically,
an expression is delayed by wrapping it in an abstraction with a dummy
parameter. A suspension is forced by applying it to a dummy argument.
The following transformation encodes Λτ terms using this technique (we
only show the transformation on suspension operators).

L : Λτ→Λ

...

L〈[delay e]〉 = λz.L〈[e]〉 ...where z 6∈ FV(e)

L〈[force e]〉 = e b

This implementation of delay and force preserves the two basic properties
of suspensions:

1. L〈[delay e]〉 = λz.L〈[e]〉 is a value; and

2. τ -reduction is faithfully implemented in both the call-by-name and
call-by-value calculi, i.e.,

L〈[force (delay e)]〉 = (λz.L〈[e]〉) b −→βi L〈[e]〉.

Now, by composing L with T we obtain the thunk-introducing transfor-
mation TL of Figure 8 that implements thunks directly in Λ. The following
theorem recasts the correctness theorem for Cn (Theorem 3) in terms of TL.

Theorem 7 For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(TL〈[e]〉) ' evaln(TL〈[e]〉)

2. Simulation: TL〈[evaln(e)]〉 'βi evalv(TL〈[e]〉)

3. Translation: λβ ` e1 = e2 iff λβv ` TL〈[e1]〉 = TL〈[e2]〉 iff λβ `
TL〈[e1]〉 = TL〈[e2]〉
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TL : Λ→Λ

TL〈[b]〉 = b

TL〈[x]〉 = x b ...for some arbitrary basic constant b

TL〈[λx.e]〉 = λx.TL〈[e]〉
TL〈[e0 e1]〉 = TL〈[e0]〉 (λz.TL〈[e1]〉) ...where z 6∈ FV(e1)

Figure 8: Thunk introduction implemented in Λ

Proof: The proofs for TL may be carried out directly using the same tech-
niques as for T . It is simpler, however, to take advantage of the fact that
TL = L ◦ T and reason indirectly. Specifically, one can show that for
all t ∈ Programs[T 〈[Λ]〉∗], L〈[evalv(t)]〉 ' evali(L〈[t]〉). Additionally, L and
its inverse L−1 establish an equational correspondence between T 〈[Λ]〉∗ and
TL〈[Λ]〉∗ (terms in the image of TL closed under βi reduction). Now compos-
ing these results for L with Theorem 5 for T establishes each component of
the current theorem (see Appendix A.3).

3 Connecting the Thunk-based and the Continuation-based
Simulations

We now extend Plotkin’s Cv to a call-by-value CPS transformation C+
v that

handles suspension operators delay and force . Clearly C+
v should preserve

call-by-value meaning, but in the case of thunked terms, call-by-value evalu-
ation gives call-by-name meaning. Therefore, one would expect the result of
C+

v ◦ T to be continuation-passing terms that encode call-by-name meaning.
In fact, we show that for all e ∈ Λ, (C+

v ◦ T )〈[e]〉 is identical to Cn〈[e]〉 modulo
administrative reductions. As a byproduct, Cn can be factored as C+

v ◦ T
as captured by the following diagram.
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Λ

Cn

''
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

T
// T 〈[Λ]〉∗

C+
v

��

CPS terms

We give several applications of this factorization.

3.1 CPS transformation of thunk constructs

We begin by extending Cv to transform delay and force — thereby obtaining
the transformation C+

v . The definitions follow directly from the two basic
properties of thunks: delay e is a value; and force (delay e) −→τ e.

First, since delay e ∈ Valuesv[Λτ ], C+
v 〈[delay e]〉 = λk.k (C+

v 〈delay e〉).
Notice that in the definition of Cv (see Figure 4) all expressions Cv〈[e]〉 require
a continuation for evaluation. Therefore, an expression is delayed by simply
not passing it a continuation, i.e., C+

v 〈delay e〉 = C+
v 〈[e]〉. As required,

C+
v 〈[e]〉 is a value. This effectively implements delay by “protecting by a λ”.

However, the “protecting λ” is not associated with a dummy parameter but
with the continuation parameter in C+

v 〈delay e〉 = C+
v 〈[e]〉.

Since the suspension of an expression is achieved by depriving it of
a continuation, a suspension is naturally forced by supplying it with a
continuation.18 This leads to the following definition.

C+
v 〈[force e]〉 = λk.C+

v 〈[e]〉 (λv.v k)

The following property shows that C+
v faithfully implements τ -reduction.

Property 6 For all e ∈ Λτ , λβi ` C+
v 〈[force (delay e)]〉 = C+

v 〈[e]〉

Proof:

C+
v 〈[force (delay e)]〉 = λk.(λk.k (C+

v 〈[e]〉)) (λv.v k)
−→βi λk.(λv.v k) C+

v 〈[e]〉
−→βi λk.C+

v 〈[e]〉 k
−→βi C+

v 〈[e]〉
18These encodings of thunks with continuations are well-known to functional program-

mers. For example, they can be found in Dupont’s PhD thesis [11].
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C+
v 〈[·]〉 : Λτ→Λ

...

C+
v 〈[force e]〉 = λk.C+

v 〈[e]〉 (λy.y k)

C+
v 〈·〉 : Valuesv[Λτ ]→Λ

...

C+
v 〈delay e〉 = C+

v 〈[e]〉

Figure 9: Call-by-value CPS transformation (extended to thunks)

The last step holds since a straightforward case analysis shows that C+
v 〈[e]〉

always has the form λk.e′ for some e′ ∈ Λ.

The clauses of Figure 9 extend the definition of Cv in Figure 4. The prop-
erties of Cv as stated in Theorem 4 can be extended to the transformation
C+

v .19

Theorem 8 For all t ∈ Programs[T 〈[Λ]〉∗] and t1, t2 ∈ T 〈[Λ]〉∗,

1. Indifference: evaln(C+
v 〈[t]〉 I ) ' evalv(C+

v 〈[t]〉 I )

2. Simulation: C+
v 〈evalv(t)〉 ' evaln(C+

v 〈[t]〉 I )

3. Translation:

If λβvτ ` t1 = t2 then λβv ` C+
v 〈[t1]〉 = C+

v 〈[t2]〉
Also λβv ` C+

v 〈[t1]〉 = C+
v 〈[t2]〉 iff λβ ` C+

v 〈[t1]〉 = C+
v 〈[t2]〉

19One might expect Theorem 8 to hold for the more general Λτ instead of sim-
ply T 〈[Λ]〉∗. However, Simulation fails for Λτ because some stuck Λτ programs
do not stick when translated to CPS. For example, evalv(force (λx.x)) sticks but
evaln(C+

v 〈[force (λx.x)]〉 (λy.y)) = λk.k (λy.y). This mismatch on sticking is due to “im-
proper” uses of delay and force . The proof of Theorem 8 goes through since the syntax
of T 〈[Λ]〉∗ only allows “proper” uses of delay and force . Furthermore, an analogue of The-
orem 8 does hold for a typed version of Λτ (see [10, 15]) since well-typedness eliminates
the possibility of stuck terms.
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Proof: For Indifference and Simulation it is only necessary to extend
Plotkin’s colon-translation proof technique and definition of stuck terms to
account for delay and force . The proofs then proceed along the same lines
as Plotkin’s original proofs for Cv [23, pp. 148–152] (see Appendix A.4).
Translation follows from the Translation component of Theorem 4 and
Property 6.

3.2 The connection between the thunk-based and continuation-
based simulations

We now show the connection between the continuation-based simulations
Cn and C+

v and the thunk-based simulation T . Cn can be factored into two
conceptually distinct steps:

• the suspension of argument evaluation (captured in T );

• the sequentialization of function application to give the usual tail-calls
of CPS terms (captured in C+

v ).

Theorem 9 For all e ∈ Λ,

λβi ` (C+
v ◦ T )〈[e]〉 = Cn〈[e]〉

Proof: by induction over the structure of e:

case e ≡ b:

(C+
v ◦ T )〈[b]〉 = C+

v 〈[b]〉
= λk.k b

= Cn〈[b]〉

case e ≡ x:

(C+
v ◦ T )〈[x]〉 = C+

v 〈[force x]〉
= λk.(λk.k x) (λy.y k)
−→βi λk.(λy.y k)x
−→βi λk.x k

= Cn〈[x]〉

case e ≡ λx.e′:

(C+
v ◦ T )〈[λx.e′]〉 = λk.k (λx.(C+

v ◦ T )〈[e′]〉)
=βi λk.k (λx.Cn〈[e′]〉) ...by the ind. hyp.
= Cn〈[λx.e′]〉
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Cn.opt〈[·]〉 : Λ→(Λ→Λ)→Λ

Cn.opt〈[v]〉 = λk.k@Cn.opt〈v〉
Cn.opt〈[x]〉 = λk.x@(λy.k@y)

Cn.opt〈[e0 e1]〉 = λk.Cn.opt〈[e0]〉@(λy0.y0@(λk.Cn.opt〈[e1]〉@(λy1.k@y1))
@(λy2.k@y2))

Cn.opt〈·〉 : Valuesn[Λ]→Λ

Cn.opt〈b〉 = b

Cn.opt〈λx.e〉 = λx.λk.Cn.opt〈[e]〉@(λy.k@y)

Figure 10: Optimizing call-by-name CPS transformation

case e ≡ e0 e1:

(C+
v ◦ T )〈[e0 e1]〉 = C+

v 〈[T 〈[e0]〉 (delay T 〈[e1]〉)]〉
=λk.(C+

v ◦ T )〈[e0]〉 (λy0.(λk.k (C+
v ◦ T )〈[e1]〉) (λy1.y0 y1 k))

−→βi λk.(C+
v ◦ T )〈[e0]〉 (λy0.(λy1.y0 y1 k) (C+

v ◦ T )〈[e1]〉)
−→βi λk.(C+

v ◦ T )〈[e0]〉 (λy0.y0 (C+
v ◦ T )〈[e1]〉 k)

=βi λk.Cn〈[e0]〉 (λy0.y0 Cn〈[e1]〉 k) ...by the ind. hyp.
= Cn〈[e0 e1]〉

Note that C+
v ◦ T and Cn only differ by administrative reductions. In

fact, if we consider versions of Cn and Cv which optimize by removing ad-
ministrative reductions, then the correspondence holds up to identity (i.e.,
up to α-equivalence).

Figures 10 and 11 present the optimizing transformations Cn.opt and Cv.opt

given by Danvy and Filinski [8, pp. 387 and 367].20 The transformations
are presented in a two-level language à la Nielson and Nielson [21]. Opera-
tionally, the overlined λ’s and @’s correspond to functional abstractions and

20The output of Cn.opt is βvηv equivalent to the output of Cn (similarly for Cv.opt and
Cv). A proof of Indifference and Simulation for Cv.opt is given in [8]. This proof extends
to C+

v.opt in a straightforward manner.
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Cv.opt〈[·]〉 : Λ→(Λ→Λ)→Λ

Cv.opt〈[v]〉 = λk.k@Cv.opt〈v〉
Cv.opt〈[e0 e1]〉 = λk.Cv.opt〈[e0]〉@(λy0.Cv.opt〈[e1]〉@(λy1.y0@y1@(λy2.k@y2)))

Cv.opt〈·〉 : Valuesv[Λ]→Λ

Cv.opt〈b〉 = b

Cv.opt〈x〉 = x

Cv.opt〈λx.e〉 = λx.λk.Cv.opt〈[e]〉@(λy.k@y)

Figure 11: Optimizing call-by-value CPS transformation

applications in the program implementing the translation, while the under-
lined λ’s and @’s represent abstract-syntax constructors. The figures can be
transliterated into functional programs.

The optimizing transformation C+
v.opt is obtained from Cv.opt by adding

the following definitions.

C+
v.opt〈[force e]〉 = λk.C+

v.opt〈[e]〉@(λy0.y0@(λy1.k@y1))

C+
v.opt〈delay e〉 = λk.C+

v.opt〈[e]〉@(λy.k@y)

Taking an operational view of these two-level specifications, the following
theorem states that, for all e ∈ Λ, the result of applying C+

v.opt to T 〈[e]〉 (with

an initial continuation λa.a) is α-equivalent to the result of applying Cn.opt

to e (with an initial continuation λa.a).

Theorem 10 For all e ∈ Λ,

(C+
v.opt ◦ T )〈[e]〉 = Cn.opt〈[e]〉

Proof: A simple structural induction similar to the one required in the
proof of Theorem 9. We show only the case for identifiers (the others are
similar). The overlined constructs are computed at translation time, and
thus simplifying overlined constructs using β-conversion yields equivalent
specifications.
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case e ≡ x:

(C+
v.opt ◦ T )〈[x]〉 = λk.(λk.k@x)@(λy.y@(λy.k@y))

= λk.(λy.y@(λy.k@y))@x
= λk.x@(λy.k@y)
= Cn.opt〈[x]〉

3.3 Applications

3.3.1 Deriving correctness properties of Cn

When working with CPS, one often needs to establish technical properties for
both a call-by-name and a call-by-value CPS transformation. This requires
two sets of proofs that both involve CPS. By appealing to the factoring
property, however, often only one set of proofs over call-by-value CPS terms
is necessary. The second set of proofs deals with thunked terms which have
a simpler structure. For instance, Indifference and Simulation for Cn

follow from Indifference and Simulation for C+
v and T and Theorem 9.21

For Indifference, let e, b ∈ Λ where b is a basic constant. Then

evalv(Cn〈[e]〉 (λy.y)) = b

⇔ evalv((C+
v ◦ T )〈[e]〉 (λy.y)) = b ...Theorem 9 and soundness of βv

⇔ evaln((C+
v ◦ T )〈[e]〉 (λy.y)) = b ...Theorem 8 (Indifference)

⇔ evaln(Cn〈[e]〉 (λy.y)) = b ...Theorem 9 and soundness of β

For Simulation, let e, b ∈ Λ where b is a basic constant. Then

evaln(e) = b

⇔ evalv(T 〈[e]〉) = b ...Theorem 5 (Simulation)
⇔ evaln((C+

v ◦ T )〈[e]〉 (λy.y)) = b ...Theorem 8 (Simulation)
⇔ evalv((C+

v ◦ T )〈[e]〉 (λy.y)) = b ...Theorem 8 (Indifference)
⇔ evalv(Cn〈[e]〉 (λy.y)) = b ...Theorem 9 and soundness of βv

For Translation, it is not possible to establish Theorem 3 (Translation
for Cn) in the manner above since Theorem 8 (Translation for C+

v ) is weaker
in comparison. However, the following weaker version can be derived (the

21Here we show only the results where evaluation is undefined or results in a basic
constant b. Appendix A.1.2 gives the derivation of Cn Simulation for arbitrary results.
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full version is proved in Appendix A.1.3). Let e1, e2 ∈ Λ. Then

λβ ` e1 = e2

⇔ λβvτ ` T 〈[e1]〉 = T 〈[e2]〉 ...Theorem 5 (Translation)
⇒ λβi ` (C+

v ◦ T )〈[e1]〉 = (C+
v ◦ T )〈[e2]〉 ...Theorem 8 (Translation)

⇔ λβi ` Cn〈[e1]〉 = Cn〈[e2]〉 ...Theorem 9
⇒ λβi ` Cn〈[e1]〉 I = Cn〈[e2]〉 I ...compatibility of =βi

3.3.2 Deriving a CPS transformation directed by strictness in-
formation

Strictness information indicates arguments that may be safely evaluated
eagerly (i.e., without being delayed) — in effect, reducing the number of
thunks needed in a program and the overhead associated with creating and
evaluating suspensions [5, 10, 22]. In recent work [10], we gave a transforma-
tion Ts that optimizes thunk introduction based on strictness information.22

We then used the factorization of Cn by C+
v and T to derive an optimized

CPS transformation Cs for strictness-analyzed call-by-name terms. This sit-
uation is summarized by the following diagram.

Λ

Cs
''
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Ts
+ strictness info

//
(thunked

& unthunked)

C+
v

��

CPS terms

The resulting transformation Cs yields both call-by-name-like and call-
by-value-like continuation-passing terms. Due to the factorization, the proof
of correctness for the optimized transformation follows as a corollary of the
correctness of the strictness analysis, and the correctness of T and C+

v .

3.3.3 Deriving a call-by-need CPS transformation

Okasaki, Lee, and Tarditi [22] have also applied the factorization to obtain
a “call-by-need CPS transformation” Cneed. The lazy evaluation strategy

22Amtoft [1] and Stecker and Wand [32] have proven the correctness of transformations
which optimize the introduction of thunks based on strictness information.
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characterizing call-by-need is captured by memoizing the thunks [5]. Cneed
is obtained by extending C+

v to transform memo-thunks to CPS terms with
store operations (which are used to implement the memoization) and com-
posing with the memo-thunk introduction as follows.

Λ

Cneed
''
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

T
// memo-thunks

C+
v

��

CPS terms
+ store operations

Okasaki et al. optimize Cneed by using strictness information along the
lines discussed above. They also use sharing information to detect where
memo-thunks can be replaced by ordinary thunks. In both cases, optimiza-
tions are achieved by working with simpler thunked terms as opposed to
working directly with CPS terms.

3.4 Assessment

Thunks can be used to factor a variety of call-by-name CPS transformations.
In addition to those discussed here, we have factored a variant of Reynolds’s
CPS transformation directed by strictness information [15, 26], as well as a
call-by-name analogue of Fischer’s call-by-value CPS transformation [12, 31].

Obtaining the desired call-by-name CPS transformation via C+
v and T

depends on the representation of thunks. For example, if one works with TL
instead of T , Cv ◦ TL still gives a valid CPS simulation of call-by-name by
call-by-value. However, the following derivations show that βi equivalence
with Cn is not obtained (i.e., λβi 6` Cn〈[e]〉 = (Cv ◦ TL)〈[e]〉).

(Cv ◦ TL)〈[x]〉 = Cv〈[x b]〉
= λk.(x b) k

(Cv ◦ TL)〈[e0 e1]〉 = Cv〈[TL〈[e0]〉 (λz.TL〈[e1]〉)]〉
= λk.(Cv ◦ TL)〈[e0]〉 (λy.(y (λz.(Cv ◦ TL)〈[e1]〉)) k)

The representation of thunks given by TL is too concrete in the sense that
the delaying and forcing of computation is achieved using specific instances
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Γ ` b : ι Γ ` x : Γ(x)

Γ, x :σ1 ` e : σ2

Γ ` λx.e : σ1→σ2

Γ ` e0 : σ1→σ2 Γ ` e1 : σ1

Γ ` e0 e1 : σ2

σ ∈ Types[Λτ ]
σ ::= ι | σ1→σ2

Γ ∈ Asm[Λτ ]
Γ ::= · | Γ, x :σ

Figure 12: Typing rules for Λ

of the more general abstraction and application constructs. When composed
with TL, Cv treats the specific instances of thunks in their full generality,
and the resulting CPS terms contain a level of inessential encoding of delay
and force .

4 Thunks in a Typed Setting

Plotkin’s continuation-passing transformations were originally stated in
terms of untyped λ-calculi. These transformations have been shown to pre-
serve well-typedness of terms [13, 14, 18, 20]. In this section, we introduce
typing rules for the suspension operators of Λτ and show that the thunk
transformation T also preserves well-typedness of terms. In addition, we
show how the relationship between C+

v ◦ T and Cn is reflected in transfor-
mations on types.

4.1 Thunk introduction for a typed language

Figure 12 presents type assignment rules for the language Λ [4]. Γ is a set
{x1 : σ1, ..., xn : σn} of type assumptions for identifiers. We assume that
the identifiers of Γ are pairwise distinct. Γ, x :σ abbreviates Γ ∪ {x : σ}.

Figure 13 presents type assignment rules for the language Λτ . A type
constructor ·̃ is added to type suspension constructs delay and force . σ̃

types a suspension (i.e., a thunk) that will yield a value of type σ when
forced.23

23Note that we use the same meta-variables (Γ for type assumptions, σ for types, and e
for terms) for both Λ and Λτ . Ambiguity is avoided by subscripting the typing judgement
symbol `τ for the language Λτ .
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Γ `τ b : ι Γ `τ x : Γ(x)

Γ, x :σ1 `τ e : σ2

Γ `τ λx.e : σ1→σ2

Γ `τ e0 : σ1→σ2 Γ `τ e1 : σ1

Γ `τ e0 e1 : σ2

Γ `τ e : σ

Γ `τ delay e : σ̃

Γ `τ e : σ̃

Γ `τ force e : σ

σ ∈ Types[Λτ ]
σ ::= ι | σ1→σ2 | σ̃

Γ ∈ Asm[Λτ ]
Γ ::= · | Γ, x :σ

Figure 13: Typing rules for Λτ

T 〈[·]〉 : Types[Λ]→Types[Λτ ]

T 〈[ι]〉 = ι

T 〈[σ1→σ2]〉 = T̃ 〈[σ1]〉→T 〈[σ2]〉

T 〈[·]〉 : Asm[Λ]→Asm[Λτ ]

T 〈[Γ, x :σ]〉 = T 〈[Γ]〉, x : T̃ 〈[σ]〉

Figure 14: Transformation on types for T

Figure 14 presents the type transformation for T . The definition of T
on function types and on type assumptions reflects the fact that all function
arguments are thunks in the image of T .

The following property states that T preserves well-typedness of terms.

Property 7 If Γ ` e : σ then T 〈[Γ]〉 `τ T 〈[e]〉 : T 〈[σ]〉.

Proof: by induction over the derivation of Γ ` e : σ.

4.2 CPS transformations for a typed language

Figures 15 and 16 present the type transformations for Cn and Cv (where
Ans is a distinguished type of final answers [18]). The definition of Cn on
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Cn〈[·]〉 : Types[Λ]→Types[Λ]

Cn〈[σ]〉 = (Cn〈σ〉→Ans)→Ans

Cn〈ι〉 = ι

Cn〈σ1→σ2〉 = Cn〈[σ1]〉→Cn〈[σ2]〉

Cn〈[·]〉 : Asm[Λ]→Asm[Λ]

Cn〈[Γ, x :σ]〉 = Cn〈[Γ]〉, x :Cn〈[σ]〉

Figure 15: Transformation on types for Cn

Cv〈[·]〉 : Types[Λ]→Types[Λ]

Cv〈[σ]〉 = (Cv〈σ〉→Ans)→Ans

Cv〈ι〉 = ι

Cv〈σ1→σ2〉 = Cv〈σ1〉→Cv〈[σ2]〉

Cv〈[·]〉 : Asm[Λ]→Asm[Λ]

Cv〈[Γ, x :σ]〉 = Cv〈[Γ]〉, x :Cv〈σ〉

Figure 16: Transformation on types for Cv

function types and on type assumptions reflects the fact that source func-
tions are translated to functions whose arguments are expressions needing
a continuation. The definition of Cv on function types and on type assump-
tions reflects the fact that source functions are translated to functions whose
arguments are values.

The following property states that Cn and Cv preserve well-typedness of
terms.

Property 8

• If Γ ` e : σ then Cn〈[Γ]〉 ` Cn〈[e]〉 : Cn〈[σ]〉.

• If Γ ` e : σ then Cv〈[Γ]〉 ` Cv〈[e]〉 : Cv〈[σ]〉.

Proof: by induction over the derivation of Γ ` e : σ (see [13, 14, 18, 20] for
further details).

35



4.3 Connecting the thunk-based and the continuation-based sim-
ulations

The following definition extends Cv to the types of Λτ .

C+
v 〈σ̃〉 = C+

v 〈[σ]〉

This reflects the fact that suspensions are translated to terms expecting a
continuation (see Figure 9). It is simple to show that the well-typedness
property for Cv (Property 8) extends to C+

v .
The factoring of Cn by T and C+

v (Theorem 9) is reflected in the trans-
formations on types as follows.

Property 9

1. C+
v 〈[T 〈[σ]〉]〉 = Cn〈[σ]〉 types

2. C+
v 〈T 〈[σ]〉〉 = Cn〈σ〉 value types

3. C+
v 〈[T 〈[Γ]〉]〉 = Cn〈[Γ]〉 type assumptions

Proof: The proof of components 1 and 2 proceeds by induction over the
structure of σ. The case of function types for values is as follows.

Cv〈T 〈[σ1→σ2]〉〉 = C+
v 〈T̃ 〈[σ1]〉→T 〈[σ2]〉〉

= C+
v 〈T̃ 〈[σ1]〉〉→C+

v 〈[T 〈[σ2]〉]〉
= C+

v 〈[T 〈[σ1]〉]〉→C+
v 〈[T 〈[σ2]〉]〉

= Cn〈[σ1]〉→Cn〈[σ2]〉 ...by ind. hyp.
= Cn〈σ1→σ2〉

4.4 Assessment

Cn and Cv are alike in that they both introduce continuation-passing
terms. This is reflected by the similarity in the definitions Cn〈[σ]〉 =
(Cn〈σ〉→Ans)→Ans and Cv〈[σ]〉 = (Cv〈σ〉→Ans)→Ans. Cn and Cv differ
in how arguments are treated. This is reflected by the difference in the defini-
tions Cn〈σ1→σ2〉 = Cn〈[σ1]〉→Cn〈[σ2]〉 and Cv〈σ1→σ2〉 = Cv〈σ1〉→Cv〈[σ2]〉.
The only effect of T is to change how arguments are treated. This is re-
flected by the fact that the only effect of T on types is the introduction of

suspension types for arguments, i.e., T 〈[σ1→σ2]〉 = T̃ 〈[σ1]〉→T 〈[σ2]〉. Thus,
the action by T is exactly what is needed to move from C+

v to Cn.
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5 Related Work

Ingerman [17], in his work on the implementation of Algol 60, gave a general
technique for generating machine code implementing procedure parameter
passing. The term thunk was coined to refer to the compiled representation
of a delayed expression as it gets pushed on the control stack [25]. Since
then, the term thunk has been applied to other higher-level representations
of delayed expressions and we have followed this practice.

Bloss, Hudak, and Young [5] study thunks as the basis of implementa-
tion of lazy evaluation. Optimizations associated with lazy evaluation (e.g.,
overwriting a forced expression with its resulting value) are encapsulated in
the thunk. They give several representations with differing effects on space
and time overhead.

Riecke [28] has used thunks to obtain fully-abstract translations between
versions of PCF with differing evaluation strategies. In effect, he establishes
a fully-abstract version of the Simulation property of Theorem 7.24 The
thunk translation required for full abstraction is much more complicated
than our transformation T and consequently it cannot be used to factor Cn.
In addition, since Riecke’s translation is based on typed-indexed retractions,
it does not seem possible to use it (and the corresponding results) in an
untyped setting as we require here.

Asperti and Curien give an interesting formulation of thunks in a cate-
gorical setting [2, 7]. Two combinators freeze and unfreeze, which are analo-
gous to our delay and force but have slightly different equational properties,
are used to implement lazy evaluation in the Categorical Abstract Machine.
In addition, freeze and unfreeze can be elegantly characterized using a co-
monad.

6 Conclusion

The technique of thunks has been widely applied in both theory and practice.
Our aim has been to clarify the properties of thunks with respect to Plotkin’s
classic study of evaluation strategies and continuation-passing styles [23].

We have shown that all of the correctness properties of the continuation-
based simulation Cn can be obtained via a simpler thunk-based transforma-

24The Indifference property is also immediate for Riecke since all function argu-
ments are values in the image of his translation (and this property is maintained under
reductions).
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tion T . As a consequence, simulating call-by-name operational behavior and
equational reasoning in a call-by-value setting are simpler than with Cn.

Furthermore, we have shown that the thunk transformation T estab-
lishes a previously unrecognized connection between the simulations Cn and
Cv — Cn can be obtained by composing C+

v with T . The benefit is that
almost all the technical properties of Cn follow from the formal properties of
C+

v and T . T can also be used to factor a call-by-name version of Fischer’s
call-by-value CPS transformation F as used by Sabry and Felleisen [31], and
also to factor a variant of Reynolds’s CPS transformation directed by strict-
ness information [15]. These factorings prove useful in several applications
dealing with the implementation of call-by-name and lazy languages [10, 22].

For simplicity, we have presented both the simulation and the factor-
ization results for thunks using simple Λ terms. However, the results scale
up to more realistic languages with e.g., primitive operators, products and
co-products, and recursive functions [15]. In a preliminary version of Sec-
tion 3.2 [9], we presented the factorization of Cn via C+

v and T , for the
untyped λ-calculus with n-ary functions (à la Scheme [6]).

This work is part of a broader investigation of the structure of
continuation-passing styles. Elsewhere [15, 16] we have shown how struc-
tural relationships between many different continuation-passing styles can
be exploited to simplify transformations, correctness proofs, and reasoning
about CPS programs. This investigation aims to clarify intuition and to aid
in understanding the often complicated structure of CPS programs.
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A Proofs

A.1 Correctness of Cn

A.1.1 Indifference

One may appeal to the factoring of Cn to prove Indifference for Cn up
to β-equivalence. The proof is similar to the proof of Simulation in the
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following section. To prove Indifference up to α-equivalence (as stated in
Theorem 3), consider the following grammar.25

u ∈ Λcps
u ::= w | uw

w ∈ Values[Λcps]
w ::= b | x | λx.u

An induction on the structure of e ∈ Λ shows that Cn〈[e]〉 ∈ Values[Λcps].
It then follows that Cn〈[e]〉 (λx.x) ∈ Λcps. Now Indifference for Cn follows
from the fact that for all u ∈ Programs[Λcps], u 7−→n u′ iff u 7−→v u′ (and
moreover u′ ∈ Programs[Λcps]).

A.1.2 Simulation

Simulation for Cn can be derived by appealing to the factoring of Cn. Let
e ∈ Λ. Then

Cn〈evaln(e)〉 'βi C+
v 〈T 〈[evaln(e)]〉〉

...factoring of Cn (Theorem 9)
'βi C+

v 〈evalv(T 〈[e]〉)〉
...T Simulation (Theorem 5)

and C+
v Translation (Theorem 8)

' evaln((C+
v ◦ T )〈[e]〉 (λx.x))

...C+
v Simulation (Theorem 8)

' evalv((C+
v ◦ T )〈[e]〉 (λx.x))

...C+
v Indifference (Theorem 8)

'βi evalv(Cn〈[e]〉 (λx.x))
...factoring of Cn (Theorem 9)

and soundness of βv (Theorem 1)

A.1.3 Translation

Section 3.3.1 shows that the following portion of Translation for Cn can be
derived from the correctness properties of C+

v and T . Let e1, e2 ∈ Λ.

If λβ ` e1 = e2 then λβv ` Cn〈[e1]〉 = Cn〈[e2]〉
Also λβv ` Cn〈[e1]〉 = Cn〈[e2]〉 iff λβ ` Cn〈[e1]〉 = Cn〈[e2]〉
iff λβv ` Cn〈[e1]〉 I = Cn〈[e2]〉 I iff λβ ` Cn〈[e1]〉 I = Cn〈[e2]〉 I

It only remains to show the converse of the first implication. For this, it is
sufficient to show λβ ` Cn〈[e1]〉 I = Cn〈[e2]〉 I implies λβ ` e1 = e2 which

25Suggested by Kristian Nielsen and Morten Heine Sørensen.
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follows immediately from Plotkin’s original proof for Pn. The relevant sec-
tion of the proof begins at the second paragraph under “Proof of Theorem 6”
[23, p. 158]. One only needs to show that for all e ∈ Λ, e

◦∼ Cn〈[e]〉 I (where
◦∼ is defined by Plotkin) and this follows by a straightforward induction over
the structure of e.

A.2 Correctness of T

A.2.1 Preliminaries

The definition of stuck terms is extended from Λ (see Section 1.4.4) to Λτ
as follows.

s ∈ Stuckn[Λτ ]

s ::= ... | (delay e0) e1 | force b | force λx.e | force s

...where e, e0, e1 ∈ Λτ

s ∈ Stuckv[Λτ ]

s ::= ... | (delay e0) e1 | force b | force λx.e | force s

...where e, e0, e1 ∈ Λτ

A simple induction over the structure of e ∈ Programs[Λτ ] shows that either
e ∈ Valuesn[Λτ ], or e ∈ Stuckn[Λτ ], or e 7−→n e′ (similarly for call-by-value).

The following properties shows how T and T −1 interact with substitu-
tion.

Property 10 For all e1, e2 ∈ Λ,

T 〈[e1]〉[x := delay T 〈[e2]〉] −→−→τ T 〈[e1[x := e2]]〉.

Proof: by induction over the structure of e1. The interesting case is...

case e1 ≡ x :
T 〈[x]〉[x := delay T 〈[e2]〉] = (force x)[x := delay T 〈[e2]〉]

≡ force (delay T 〈[e2]〉)
−→τ T 〈[e2]〉
≡ T 〈[x[x := e2]]〉

The rest of the cases follow trivially or by the induction hypothesis and
compatibility of reductions.
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Property 11 For all t1, t2 ∈ T 〈[Λ]〉∗,

T −1〈[t1]〉[x := T −1〈[t2]〉] ≡ T −1〈[t1[x := delay t2]]〉.

Proof: a simple induction over the structure of t1.

A.2.2 The language T 〈[Λ]〉∗

This section shows that the language T 〈[Λ]〉∗ (see Section 2.2.2) corresponds
to the set of terms T reachable from the image of T via βτ reduction.

T
def
= {t ∈ Λτ | ∃e ∈ Λ . λβτ ` T 〈[e]〉 −→−→ t}

First, we show that T 〈[Λ]〉∗ is closed under relevant substitutions (Prop-
erty 12) and under βτ reduction (Property 13).

Property 12 For all t1, t2 ∈ T 〈[Λ]〉∗, t1[x := delay t2] ∈ T 〈[Λ]〉∗.

Proof: by induction over the structure of t1. The interesting case is...

case t1 ≡ force x: (force x)[x := delay t2] = force (delay t2) ∈ T 〈[Λ]〉∗

The other cases are either trivial or follow from the induction hypothesis.

Property 13 For all t ∈ T 〈[Λ]〉∗, λβτ ` t −→ t′ implies t′ ∈ T 〈[Λ]〉∗.

Proof: by induction over the structure of t. It is sufficient to show the
following.

case t ≡ force (delay t′) −→τ t
′ ∈ T 〈[Λ]〉∗

case t ≡ (λx.t0) (delay t1) −→β t0[x := delay t1] ∈ T 〈[Λ]〉∗
...since T 〈[Λ]〉∗ is closed under substitution (Property 12)

To show that T 〈[Λ]〉∗ = T , it is shown that T ⊆ T 〈[Λ]〉∗ and T 〈[Λ]〉∗ ⊆ T .

Property 14 T ⊆ T 〈[Λ]〉∗.

Proof: Let t ∈ T . From the definition of T there exists an e ∈ Λ such that
λβτ ` T 〈[e]〉 −→−→ t in n steps. Now we show t ∈ T 〈[Λ]〉∗ by induction on
n.
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case n = 0 : a simple induction over the structure of e shows T 〈[e]〉 ∈ T 〈[Λ]〉∗.
case n = i+ 1 : then λβτ ` T 〈[e]〉 −→−→ t −→ u. By ind. hyp. t ∈ T 〈[Λ]〉∗

and therefore u ∈ T 〈[Λ]〉∗ since T 〈[Λ]〉∗ is closed under reduc-
tions (Property 13).

Property 15 T 〈[Λ]〉∗ ⊆ T .

Proof: It is required to show that t ∈ T 〈[Λ]〉∗ implies t ∈ T , i.e., there exists
an e ∈ Λ such that λβτ ` T 〈[e]〉 −→−→ t. The proof is by induction over the
structure of t. The interesting case is...

case t ≡ force (delay t0):
Since t0 ∈ T 〈[Λ]〉∗, by the induction hypothesis there exists an e0 ∈ Λ
such that λβτ ` T 〈[e0]〉 −→−→ t0. So take e ≡ (λx.x) e0.

The stuck terms of T 〈[Λ]〉∗ are defined as follows.

s ∈ Stuckn[T 〈[Λ]〉∗]
s ::= b (delay t) | s (delay t)

s ∈ Stuckv[T 〈[Λ]〉∗]
s ::= b (delay t) | s (delay t)

...where t ∈ T 〈[Λ]〉∗.
A simple induction over the structure of t ∈ Programs[T 〈[Λ]〉∗] shows

that either t ∈ Valuesn[Λτ ], or t ∈ Stuckn[T 〈[Λ]〉∗], or t 7−→n t′ (similarly for
call-by-value). Note that improper uses of delay and force (e.g., (delay e) b,
force λx.e) which were present in the stuck terms of Λτ (see Appendix A.2.1)
do not occur in T 〈[Λ]〉∗. Intuitively, since T 〈[Λ]〉∗ simulates call-by-name
evaluation, the stuck terms of T 〈[Λ]〉∗ parallel Stuckn[Λ] (see Section 1.4.4).

A.2.3 Simulation

The proof for T Simulation proceeds as outlined in Section 2.3.2. The
following property shows that all T 〈[Λ]〉∗ terms related by

τ∼ to a certain Λ
term are τ equivalent.

Property 16 For all e ∈ Λ and for all t ∈ T 〈[Λ]〉∗ such that e
τ∼ t,

λτ ` T 〈[e]〉 = t.

Proof: by induction over the derivation of e
τ∼ t.
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The following property shows how the relation
τ∼ interacts with substitution.

Property 17 For all e0, e1 ∈ Λ and t0, t1 ∈ T 〈[Λ]〉∗,

e0
τ∼ t0 ∧ e1

τ∼ t1 ⇒ e0[x := e1]
τ∼ t0[x := delay t1]

The following property expresses that evaluation of thunked terms may in-
volve moving past initial τ reductions.

Property 18 For all e ∈ Programs[Λ] and t ∈ Programs[T 〈[Λ]〉∗] such that
e

τ∼ t,

e ≡ b
τ∼ t ⇒ t 7−→∗v b

e ≡ λx.e0
τ∼ t ⇒ t 7−→∗v λx.t0 where e0

τ∼ t0
e ≡ e0 e1

τ∼ t ⇒ t 7−→∗v t0 (delay t1) where e0
τ∼ t0 and e1

τ∼ t1

Proof: by induction over the derivation of e
τ∼ t. We show only the cases

necessary for the second component (the others are similar).

case
τ∼.3 : λx.e0

τ∼ λx.t0 because e0
τ∼ t0: immediate

case
τ∼.5 : λx.e0

τ∼ force (delay t′) because λx.e0
τ∼ t′:

force (delay t′) 7−→v t′

7−→∗v λx.t0 where e0
τ∼ t0 ...by ind. hyp.

The following property (corresponding to Property 1 of Section 2.3.2) states
that each 7−→n step on a Λ program implies corresponding 7−→v steps on a
thunked program.

Property 19 (T — one step simulation)
For all e0, e1 ∈ Programs[Λ] and t0 ∈ Programs[T 〈[Λ]〉∗] such that e0

τ∼ t0,

e0 7−→n e1 ⇒ ∃t1 ∈ T 〈[Λ]〉∗ . t0 7−→+
v t1 ∧ e1

τ∼ t1

Proof: by induction over the derivation of e0 7−→n e1. The proof uses
Property 18 extensively.

case (λx.ea) eb 7−→n ea[x := eb]:

t0 7−→∗v t′a (delay tb) where λx.ea
τ∼ t′a and eb

τ∼ tb
7−→∗v (λx.ta) (delay tb) where ea

τ∼ ta
7−→v ta[x := delay tb]

and ea[x := eb]
τ∼ ta[x := delay tb] by Property 17.
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case ea eb 7−→n e′a eb because ea 7−→n e′a:

t0 7−→∗v ta (delay tb) where ea
τ∼ ta and eb

τ∼ tb
7−→+

v t′a (delay tb) where e′a
τ∼ t′a ...by ind. hyp.

and e′a eb
τ∼ t′a (delay tb) by rule

τ∼.5.

The following property states that if a Λ program is stuck under evaln, then
all T 〈[Λ]〉∗ programs related to it by

τ∼ will reach a stuck program under
evalv.

Property 20 (T — coincidence of stuck terms)
For all programs s ∈ Stuckn[Λ] and t ∈ Programs[T 〈[Λ]〉∗],

s
τ∼ t ⇒ ∃t′ ∈ T 〈[Λ]〉∗ . t 7−→∗v t′ ∧ t′ ∈ Stuckn[T 〈[Λ]〉∗] = Stuckv[T 〈[Λ]〉∗]

Proof: First, note that

Stuckn[T 〈[Λ]〉∗] = Stuckv[T 〈[Λ]〉∗]

(see Appendix A.2.1). The proof then proceeds by induction over the struc-
ture of s ∈ Stuckn[Λ] (see Section 1.4.4) appealing to Property 18 at each
step.

case s ≡ b e1:

t 7−→∗v tb (delay t1) where b
τ∼ tb and e1

τ∼ t1
7−→∗v b (delay t1)
∈ Stuckn[T 〈[Λ]〉∗]

case s ≡ s0 e1:

t 7−→∗v t0 (delay t1) where s0
τ∼ t0 and e1

τ∼ t1
7−→∗v ts (delay t1) where ts ∈ Stuckn[T 〈[Λ]〉∗] ...by ind. hyp.
∈ Stuckn[T 〈[Λ]〉∗]

Lemma 1 (T — simulation) For all e ∈ Programs[Λ],

T 〈[evaln(e)]〉 'τ evalv(T 〈[e]〉)

Proof:
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case evaln(e) is defined, i.e., e 7−→∗n v:

Since e
τ∼ T 〈[e]〉, an induction over the number of steps in e 7−→∗n v

(applying Property 19) gives T 〈[e]〉 7−→∗v t where v
τ∼ t. Now by Prop-

erty 18, one can see that for all closed values v ∈ Valuesn[Λ], t 7−→∗v w where
w ∈ Valuesv[Λτ ] and v

τ∼ w. Finally, λτ ` T 〈[v]〉 = w by Property 16.

case evaln(e) is undefined: we have two cases:

case e heads an infinite sequence e = e1 7−→n e2 7−→n ...:

Since e
τ∼ T 〈[e]〉, applying Property 19 repeatedly gives an infinite sequence

T 〈[e]〉 = t1 7−→+
v t2 7−→+

v ... and so evalv(T 〈[e]〉) is undefined as well.

case e 7−→∗n s ∈ Stuckn[Λ]:

Since e
τ∼ T 〈[e]〉, applying Property 19 repeatedly gives T 〈[e]〉 7−→∗v t where

s
τ∼ t. By Property 20, t 7−→∗v ts ∈ Stuckv[T 〈[Λ]〉∗] and so evalv(T 〈[e]〉) is

undefined as well.

A.2.4 Translation

This section establishes the equational correspondence (Theorem 6) between
the language Λ under theory λβ and language T 〈[Λ]〉∗ under theory λβiτ .
This is sufficient for establishing the Translation property for T (Theo-
rem 5).

Components 1 and 2 of Theorem 6 follow from Properties 2 and 3 of Sec-
tion 2.3.3. Both of these properties follow from simple structural inductions
and the proofs are omitted.

The following property (corresponding to Property 4 of Section 2.3.3)
states that each reduction on source terms corresponds to one or more re-
ductions on thunked terms.

Property 21 For all e1, e2 ∈ Λ,

λβ ` e1 −→ e2 ⇒ λβiτ ` T 〈[e1]〉 −→−→ T 〈[e2]〉

Proof: It is sufficient to show the following:

case λβ ` (λx.e1) e2 −→ e1[x := e2]:

T 〈[(λx.e1) e2]〉 = (λx.T 〈[e1]〉) (delay T 〈[e2]〉)
−→βi T 〈[e1]〉[x := delay T 〈[e2]〉]
−→−→τ T 〈[e1[x := e2]]〉 ...by Property 10
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The following property (corresponding to Property 5 of Section 2.3.3) shows
that each reduction on thunked terms corresponds to zero or one reduction
on source terms.

Property 22 For all t1, t2 ∈ T 〈[Λ]〉∗,

λβiτ ` t1 −→ t2 ⇒ λβ ` T −1〈[t1]〉 −→−→ T −1〈[t2]〉

Proof: It is sufficient to show the following:

case λβiτ ` force (delay t) −→ t:

T −1〈[force (delay t)]〉 = T −1〈[delay t]〉
= T −1〈[t]〉 ...by definition of T −1

case λβiτ ` (λx.t1) (delay t2) −→−→ t1[x := delay t2]:

T −1〈[(λx.t1) (delay t2)]〉 = (λx.T −1〈[t1]〉) T −1〈[t2]〉
−→β T −1〈[t1]〉[x := T −1〈[t2]〉]
≡ T −1〈[t1[x := delay t2]]〉

...by Property 11.

Components 3 and 4 of the equational correspondence (Theorem 6) are now
proved as follows:

(1) λβ ` e1 −→−→ e2 ⇒ λβiτ ` T 〈[e1]〉 −→−→ T 〈[e2]〉
...by ind. on # of reductions

and Prop. 21.
(2) λβ ` e1 = e2 ⇒ λβiτ ` T 〈[e1]〉 = T 〈[e2]〉

...by Church-Rosser and (1).
(3) λβiτ ` t1 −→−→ t2 ⇒ λβ ` T −1〈[t1]〉 −→−→ T −1〈[t2]〉

...by ind. on # of reductions
and Prop. 22.

(4) λβiτ ` t1 = t2 ⇒ λβ ` T −1〈[t1]〉 = T −1〈[t2]〉
...by Church-Rosser and (3).
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(5) λβiτ ` T 〈[e1]〉 = T 〈[t2]〉 ⇒ λβ ` (T −1 ◦ T )〈[e1]〉 = (T −1 ◦ T )〈[e2]〉
...by (4).

(6) ⇒ λβ ` e1 = e2

...by Prop. 2.
(7) λβ ` T −1〈[t1]〉 = T −1〈[t2]〉 ⇒ λβiτ ` (T ◦ T −1)〈[t1]〉 = (T ◦ T −1)〈[t2]〉

...by (2).
(8) ⇒ λβiτ ` t1 = t2

...by Prop. 3.

A.3 Correctness of TL
A.3.1 The language TL〈[Λ]〉∗

The language of terms TL〈[Λ]〉∗ in the image of TL closed under βi reduction
is as follows (z 6∈ FV(t) in the third clause and z 6∈ FV(t1) in the fifth
clause).

t ∈ Terms[TL〈[Λ]〉∗]
t ::= b | x b | (λz.t) b | λx.t | t0 (λz.t1)

The proofs of correctness for the grammar are similar to the proofs of cor-
rectness for T 〈[Λ]〉∗ given in Section A.2.2.

A.3.2 Indifference and Simulation

To prove Indifference and Simulation for TL, we take advantage of the
fact that TL = L ◦ T . The following three properties (which are straightfor-
ward to prove) are sufficient for establishing Indifference and Simulation
properties for L (see Lemma 2 below).

Property 23 (L — commutation with substitution)
For all e ∈ Λτ , L〈[e0[x := e1]]〉 ≡ L〈[e0]〉[x := L〈[e1]〉]

Property 24 (L — one step indifference and simulation)
For all e0, e1 ∈ Programs[Λτ ],

e0 7−→v e1 ⇒ L〈[e0]〉 7−→i L〈[e1]〉

Property 25 (L — coincidence of stuck terms)
For all s ∈ Stuckv[T 〈[Λ]〉∗], L〈[s]〉 ∈ Stuckn[Λ] ⊂ Stuckv[Λ].
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L−1 : Terms[TL〈[Λ]〉∗]→Terms[T 〈[Λ]〉∗]
L−1〈[b]〉 = b

L−1〈[x b]〉 = force x

L−1〈[(λz.t) b]〉 = force (delay L−1〈[t]〉)
L−1〈[λx.t]〉 = λx.L−1〈[t]〉

L−1〈[t0 (λz.t1)]〉 = L−1〈[t0]〉 (delay L−1〈[t1]〉)

Figure 17: Mapping Λ thunks to abstract Λτ thunks

Lemma 2 (L — Indifference and Simulation)
For all t ∈ Programs[TL〈[Λ]〉∗],

L〈[evalv(t)]〉 ' evali(L〈[t]〉)

Proof: The proof follows from Properties 23, 24, and 25 and has the same
structure as the proof for T Simulation (Lemma 1, Appendix A.2.3).

Now, Simulation for TL is proved as follows (the proof of Indifference is
similar).

TL〈[evaln(e)]〉 ' (L ◦ T )〈[evaln(e)]〉
'βi L〈[evalv(T 〈[e]〉)]〉

...T Simulation (Theorem 5) and Theorem 11
' evalv((L ◦ T )〈[e]〉)

...L Simulation (Lemma 2)
' evalv(TL〈[e]〉)

A.3.3 Translation

For Translation for TL, we again take advantage of the fact that TL =
L ◦ T and show that L and its inverse L−1 (given in Figure 17) establish
an equational correspondence between T 〈[Λ]〉∗ and TL〈[Λ]〉∗.

Theorem 11 (Equational Correspondence for TL)
For all e, e1, e2 ∈ Terms[T 〈[Λ]〉∗] and t, t1, t2 ∈ Terms[TL〈[Λ]〉∗],

48



1. λβiτ ` e = (L−1 ◦ L)〈[e]〉

2. λβi ` t = (L ◦ L−1)〈[t]〉

3. λβiτ ` e1 = e2 iff λβi ` L〈[e1]〉 = L〈[e2]〉

4. λβi ` t1 = t2 iff λβiτ ` L−1〈[t1]〉 = L−1〈[t2]〉

The proofs for the equational correspondence mirror those of the equational
correspondence for T (Theorem 6 — see Sections 2.3.3 and A.2.4) and are
easy to establish. Now, given the equational correspondences established
by T (Theorem 6) and L (Theorem 11), Translation for TL is proved as
follows.

λβ ` e1 = e2

⇔ λβiτ ` T 〈[e1]〉 = T 〈[e2]〉 ...Theorem 6 (Component 3)
⇔ λβi ` (L ◦ T )〈[e1]〉 = (L ◦ T )〈[e2]〉 ...Theorem 11 (Component 3)
⇔ λβi ` TL〈[e1]〉 = TL〈[e2]〉 ...definition of TL

A.4 Correctness of C+
v

A.4.1 Indifference and Simulation

Following Plotkin’s proofs for Cv [23, pp. 149–152], Indifference and Simu-
lation for C+

v on T 〈[Λ]〉∗ are proved simultaneously. The proofs only involve
minor extensions to Plotkin’s original proofs and we summarize only the
differences.26

First, we show that C+
v commutes with substitution.

Property 26 (C+
v — commutation with substitution)

For all e ∈ Λτ and v ∈ Valuesv[Λτ ],

C+
v 〈[e[x := v]]〉 ≡ C+

v 〈[e]〉[x := C+
v 〈v〉]

Proof: by induction of the structure of e. To extend Plotkin’s proof, we
need only consider the cases where e ≡ delay e′ and e ≡ force e′. These
follow immediately from the inductive hypothesis.

Next, we extend Plotkin’s colon translation for Cv [23, p. 150] to C+
v , i.e.,

to handle delay (which is included in the cases for values v) and force .

26Note that Properties 26, 27, and 28 are stronger than necessary since they are stated
for Λτ ⊃ T 〈[Λ]〉∗.

49



Definition 4 (C+
v — colon translation)

For all closed v, v0, v1 ∈ Valuesv[Λτ ], closed non-values e, e0, e1 ∈ Λτ , closed
e′1 ∈ Λτ , and for all closed κ ∈ Valuesn[Λ],

v : κ = κC+
v 〈v〉

e0 e
′
1 : κ = e0 : (λy0.C+

v 〈[e′1]〉 (λy1.y0 y1 κ))
v0 e1 : κ = e1 : (λy1.C+

v 〈v0〉 y1 κ)
v0 v1 : κ = C+

v 〈v0〉 C+
v 〈v1〉κ

force e : κ = e : (λy.y κ)
force v : κ = C+

v 〈v〉κ

Property 27 (C+
v — correctness of colon translation)

For all e ∈ Λτ and closed κ ∈ Valuesn[Λ],

C+
v 〈[e]〉κ 7−→+

i e : κ

Proof: We only show the cases for delay and force. The remaining cases
are identical to Plotkin’s proof for Cv [23, p. 150].

case e ≡ delay e0:

C+
v 〈[delay e0]〉κ = (λk.k C+

v 〈delay e0〉)κ
7−→i κC+

v 〈delay e0〉
= delay e0 : κ

case e ≡ force e0:

C+
v 〈[force e0]〉κ = (λk.C+

v 〈[e0]〉 (λy.y k))κ
7−→i C+

v 〈[e0]〉 (λy.y κ)
7−→+

i e0 : (λy.y κ)
...by ind. hyp. and call this term z

If e0 6∈ Valuesv[Λ], then
z = force e0 : κ

If e0 ∈ Valuesv[Λ], then
z = (λy.y κ) C+

v 〈e0〉
7−→i C+

v 〈e0〉κ
= force e0 : κ

The following property states that one 7−→v step in Λτ implies one or more
7−→i steps on CPS programs.
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Property 28 (C+
v — one step simulation)

For all e0, e1 ∈ Programs[Λτ ] and closed κ ∈ Valuesn[Λ],

e0 7−→v e1 ⇒ e0 : κ 7−→+
i e1 : κ

Proof: by induction over the derivation of e0 7−→v e1. We only show the
cases for delay and force . The remaining cases are identical to Plotkin’s
proofs for Cv [23, p. 151].

case force (delay e) 7−→v e:

force (delay e) : κ = C+
v 〈delay e〉κ

= C+
v 〈[e]〉κ

7−→+
i e : κ ...by Property 27

case force e 7−→v force e′ because e 7−→v e′:

force e : κ = e : (λy.y κ)
7−→+

i e′ : (λy.y κ) ...by ind. hyp. and call this term z

If e′ 6∈ Valuesv[Λτ ], then
z = force e′ : κ

If e′ ∈ Valuesv[Λτ ], then
z = (λy.y κ) C+

v 〈e′〉
7−→i C+

v 〈e′〉κ
= force e′ : κ

The following property states that if a T 〈[Λ]〉∗ program is stuck under evalv,
then its CPS image will reach a stuck program under evali.

27

Property 29 (C+
v — coincidence of stuck terms)

For all s ∈ Stuckv[T 〈[Λ]〉∗] and all closed κ ∈ Valuesn[Λ], s : κ ∈
Stuckn[Λ] ⊂ Stuckv[Λ].

Proof: First note that Stuckn[Λ] ⊂ Stuckv[Λ]. The proof then proceeds by
induction over the definition of s ∈ Stuckv[T 〈[Λ]〉∗] (see Appendix A.2.2).

case s ≡ b (delay t):

b (delay t) : κ = b C+
v 〈[t]〉κ and since b C+

v 〈[t]〉 ∈ Stuckn[Λ] then b C+
v 〈[t]〉κ ∈

Stuckn[Λ].

27Note that this doesn’t hold for Λτ (see footnote 19).
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case s ≡ s0 (delay t):

s0 (delay t) : κ = s0 : (λy0.C+
v 〈[delay t1]〉 (λy1.y0 t1 κ)) ∈ Stuckn[Λ] by ind.

hyp.

Given Properties 27, 28 and 29, the proof of Indifference and Simulation
for C+

v on T 〈[Λ]〉∗ (Theorem 8) follow exactly Plotkin’s proof for Cv [23, p.
152]. The proof is similar in structure to the proof of Simulation for T
(see Appendix A.2.3).
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