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First-Order Logic with Two Variables and
Unary Temporal Logit

Kousha Etessarhi Moshe Y. Vardi Thomas Wilké

Abstract

We investigate the power of first-order logic with only two variables over
w-words and finite words, a logic denoted B@?. We prove thaFO? can
express precisely the same properties as linear temporal logic with only the
unary temporal operators: “next”, “previously”, “sometime in the future”,
and “sometime in the past”, a logic we denote by un@ify- Moreover,
our translation fronFO? to unaryTL converts everyfO? formula to an
equivalent unaryFL formula that is at most exponentially larger, and whose
operator depth is at most twice the quantifier depth of the first-order formula.
We show that this translation is optimal.

While satisfiability for full linear temporal logic, as well as for
unary-I'L, is known to be PSPACE-complete, we prove that satisfiability
for FO? is NEXP-complete, in sharp contrast to the fact that satisfiability
for FO? has non-elementary computational complexity. Our NEXP time
upper bound folfO? satisfiability has the advantage of being in terms of
the quantifier depthof the input formula. It is obtained using a small model
property forFO? of independent interest, namely: a satisfidb@? formula
has a model whose “size” is at most exponential in the quantifier depth of the
formula. Using our translation froO? to unaryTL we derive this small
model property from a corresponding small model property for ufidty-
Our proof of the small model property for unaik is based on an analysis
of unaryTL types.
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1 Introduction

Over the past three decades a considerable amount of knowledge has accumu-
lated regarding the relationship between first-order and temporal logic over both
finite words anduv-words: the first-order expressible properties are exactly those
expressible in temporal logic [Kam68, GPSS80, GHR94]; three variables suf-
fice for expressing all the first-order expressible properties [Kam68, IK89]; while
satisfiability for first-order logic with three variables has non-elementary com-
putational complexity [Sto74], the satisfiability problem for temporal logic is
PSPACE-complete [SC85]; moreover, there are classes of first-order formulas
with three variables whose smallest equivalent temporal formulas require non-
elementarily larger size (a consequence derivable from [Sto74]). In computer sci-
ence the importance of this work stems from the practical relevance of temporal
logic, which is used extensively today to specify and verify properties of reactive
systems (see, e.g., [Pnu77] and [MP92]).

In this paper we provide a scaled down study of the relationship between first-
order and temporal logic. Looking at first-order logic with only two variables, we
show that the tight correspondence to temporal logic persists. We prove that first-
order logic with two variables, denoted BY)?, has precisely the same expressive
power as temporal logic with the usual future and past unary temporal operators:
“next”, “previously”, “sometime in the future”, and “sometime in the past”, but
without the binary operators “until” and “since”, a logic we denote by uriBly-

In other words,FO? coincides with the lowest level of the combined until/since
hierarchy (which is known to be infinite [EW96]).

By contrast to the quite difficult proofs available for the correspondence be-
tween full first-order logic and temporal logic (cf., e.g., [Kam68, GPSS80, GHR94]),
our proof thatFO? = unaryTL is an easily understood inductive translation. In
fact, our proof yields the following much stronger assertions:FQ@§ formulas
can be translated to equivalent undri.-formulas that are at most exponentially
larger and whose operator depth is at most twice the quantifier depth of the first-
order formula, and (2) the translation can be carried out in time polynomial in the
size of the output formula.

We show that our translation is essentially optimal by exhibiting a sequence of
FO? formulas that require exponentially larger unar-formulas. Thus, while
with just three variables there is already a non-elementary gap between the suc-
cinctness of first-order logic and full temporal logls)? remains more succinct
than unaryTL but not nearly as much: an exponential blowup is exactly what is
necessary in the worst-case.



The same result that shows that satisfiability for temporal logic is PSPACE-
complete ([SC85]) also shows that satisfiability remains PSPACE-complete for
unaryTL. We prove on the other hand that satisfiability #0* is NEXP-
complete. This again contrasts sharply with the non-elementary complexity of
satisfiability forFO®. Moreover, this is surprising given thBO? is exponentially
more succinct than unaryL, and that satisfiability for unaryd. is PSPACE-
complete, leading one to expect th&? satisfiability will be EXPSPACE-complete.
Indeed, as a consequence of our NEXP bound it followsRbétformulas that re-
quire “large” (exponentially bigger) unaryL expressions necessarily have mod-
els that are “very small” (subexponential) with respect to the size of their uhkry-
expression. Such “very small” models do not exist in general for uitdryas we
can easily express with ai’™) size unaryTL formula a “counter” whose small-
est model has siz&.

An interesting and related aspect of our NEXP upper bound is that the time
bound is only in terms of thguantifier depthof the FO? formula. This is be-
cause we prove our upper bound using an unusually strong small model property
for FO?, one which states that every satisfiabl@* formula has a model whose
“size” is at most exponential in the quantifier depth of the given formula, rather
than the size of the entire formula. For large but shallow formulas the gap between
these quantities can make a significant difference.

It should be noted here that in a recent resulad&l, Kolaitis, and Vardi
[GKV9I7] have shown that satisfiability for two-variable first-order formulas over
arbitrary relational structures is computable in NEXP time. Their results also rely
on a small model property. They prove that every satisfiable two-variable formula
over arbitrary structures has a finite model of size at most exponential in the size
of the formula, improving on a previous doubly-exponential bound obtained by
Mortimer [Mor74]. Despite the similarity between the statement of their result
and ours, the two are essentially incompatible and neither result implies the other.
The reasons for this are two-fold. First, our results hold over words, i.e., over a
unary vocabulary with built-in ordering. In particular, unlike arbitrary structures,
over words we do not havegenuindinite model property: with two variables one
can say that for every position in the word there is a greater position. Secondly,
our “small” model property (Theorem 4) shows that every satisfiable formula has
a model whose “size” is bounded exponentially by the quantifier depth of the for-
mula, whereas the small model property of [GKV97] depends on the size of the
entire formula. Moreover, the proof techniques used in the two results are com-
pletely different.

Our proof of the “small” model property fdfO? is facilitated by our transla-
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tion. It is enough to prove the same small model property for uidryin terms

of operator depth instead of quantifier depth) because our translatioFfodno
unary-TTL at most doubles the quantifier/operator depth. The existence of small
models for unaryt'L is established by an analysis of unary-types; these types
behave quite differently than types for temporal logic in general.

FO? provides built-in binary predicates for a total order and a successor re-
lation (besides free unary predicates). As further evidence of the robust corre-
spondence between first-order and temporal logic we show that everfgHds
further restricted by removing the successor predicate, the relationship to tempo-
ral logic still persists: the resulting logic has exactly the same power as temporal
logic with temporal operators “sometime in the future” and “sometime in the past”
only. Moreover, we determine the complexity of satisfiability for this further re-
stricted first-order logic, and the corresponding temporal logic, as well as their
difference in succinctness.

All our results hold both for finite words angrwords with only minor techni-
cal changes. In this conference paper we only deal with the more interesting case
of w-words.

The paper is organized as follows. Section 2 introduces our notation and ter-
minology. Section 3 presents the translation frBOF to unaryTL and shows it
is optimal. Section 4 establishes NEXP-completeness of satisfiabili§dér In
Section 5, we establish the small model property. Section 6 is concerneB®th
without “successor” and unafyL without “next” and “previously”. We conclude
in Section 7.

2 Terminology and Notation

We work with first-order logic ovev-words, where our vocabulary contains unary
predicates fronp,, = {Py, P, P, ..., P,_1} for somem, and in addition con-
tains the built-in predicatesstic” for “successor” and «” for “less than”. We
useFO? to denote the class of properties definable by first-order formuias,
where at most: occurs free, and where at most 2 variables occur in all.oive
will also informally useFO? to refer to the set of such formulas. A®? formula
¢(z) naturally defines a property afwords over the alphabet whose symbols are
subsets of,, = {po, . . ., pm_1}, Namely the propertya € (2°)* | a = ¢[0]}.
Herea |= P;(i) iff p; € o fori >0, j < m.

We use unaryFL to denote the class of propertieswiwords definable by
linear temporal logic formulas built from atomic propositions frety, using
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the boolean connectives and the unary temporal operatdtsext”), © (“pre-
viously”), © (“eventually” or “sometime in the future”), an¢t (“sometime in the
past”). We also use unafjL to denote the set of such formulas. By convention,
(a, 1) = @ if there exists a positiop strictly greater thamsuch that«, j) = .
The same applies t©.

Formulasy and from FO? over p,, or unarydL over o,, are said to be
equivalentf (a, i) = ¢ iff (a,7) ¢ forall « € (27)* andi > 0. A formulayp
fromFO? overp,, or unaryTL overo,, is said to besatisfiabldf the property over
2= it defines is non-empty. Let thetomic order formulabe z = y, suc(z,y),
suc(y,z), z < y, andy < .

The length of a formula is denoted by, its quantifier (operator) depth by
adp () (respectivelyodp(,)).

3 Unary-TL=FO?

We prove that the logics unafjt. and FO* are equally expressive. The non-
trivial direction of this fact follows from the following much stronger statement:

Theorem 1 EveryFO? formulay(z) can be converted to an equivalemtaryTL
formulay’ with |¢'| € 20U¢l(adp@)+1) andodp(¢’) < 2qdp(y). Moreover, the
translation is computable in time polynomially|ip/|.

The reverse translation is trivial, and linear in both size and operator/quantifier
depth. Note the contrast between the theorem and what follows from the work in
[Sto74]: there is a non-elementary lower bound in terms of blow-up in size for any
translation of first-order formulas with three variables into temporal formulas.

Proof of Theorem 1. Given anFO? formula (z) the translation procedure
works a follows. Wherp(z) is atomic, i. e., of the forn®;z, it outputsp,. When
o(x) is of the formy); V ¢, or —p—we say thatp(z) is composite—it recursively
computes); andi)y, ort’ and outputs)] v ¢4 or —)’. The two cases that remain
are whenp(z) is of the form3ze*(x) or Jye*(x,y). In both cases, we say that
() is existential In the first casep(z) is equivalent tadyp*(y) and, viewinge
as a dummy free variable ip*(y), this reduces to the second case.
In the second case, we can rewrite z, y) in the form

o (z,y) = Bxo(®,y), - xr-1(z,9),
&)(l’), ) &S*l(x% CO(y>> 3] thl(y))
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wheref is a propositional formula, each formuja is an atomic order formula,
each formulg; is an atomic or existentidO? formula withqdp(&;) < qdp(e),
and each formulg; is an atomic or existentidfO?® formula with qdp(¢;) <
qdp(¢p).

In order to be able to recurse on subformulag efe have to separate tljes
from the(;'s. We first introduce a case distinction on which of the subformgjlas
hold or not. Let T and F denote true and false. We obtain the following equivalent
formulation fory:

Vet me (/\(52 %) A

Ely ﬁ(XO? co Xr=1,705 -4y Vs—1, CO; ey thl))

We proceed by a case distinction on which order relation holds betweaedy.

We consider five mutually exclusive cases, determined by the following formulas,
which we callorder types = = y, suc(z,y), suc(y,x), x < y A —suc(zx,y),

y < x A —suc(y, z). When we assume that one of these order types is true, each
atomic order formula evaluates to either T or F, in particular, each of ke
evaluates to either T or F; we will denote this truth valuexpy We can finally
rewrite ¢ as follows, wherél" stands for the set of all order types:

VWe{T, Fls (/\(ﬁz < i) A

1<s

V 3y(r A BOGs X717 0))

T€Y

Notice now the following. Ifr is an order typey(x) an FO* formula, andk)’
an equivalent unar§-L. formula, there is an obvious way to obtain a unaiy-
formular[y] equivalent tor A ¢ (y), see the following table:

T | T[¥]
r=y Y’
suc(z, y) @y
suc(y, ) O

r < yA-suc(z,y) | DY
y < x A —suc(y,z) | @Y

Our procedure will therefore recursively compgfdor i < s and(; fori < ¢
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and output

Vierr me (/\(fé ) A (1)
\/ 780G, - xi-1, 7)) )
7Y

Now we verify that|¢’'| andodp(y’) are bounded as stated in the theorem. The
proof is inductive on the quantifier depth of The basic observation is that there
are2® < 2l¥I possibilities for7 in the disjuction of line 1 above, and by the
inductive hypothesis each disjunct has length at magtp|2°(¢l(adp(¥)  for a
constantc. The stated bound fofy’| follows by induction. Thabdp(¢’) <
2 qdp(¢p) follows from the conversions in the table above.

It is straightforward to verify that our translationgécan be computed in time
polynomial in|¢'|. =

An exponential blow-up, as incurred in the translation of Theorem 1, is neces-
sary:

Theorem 2 There is a sequende,,),,>1 of FO? sentences over, of sizeO(n?)
such that the shortest temporal logic formulas equivalen,ihave size™,

Proof. We give only a proof for an unbounded vocabulary; in this case the
formulasyp,, can be chosen to be of si¢&n).

The formulayp,, is a formula ovem, ., that defines the following property,
denoted.,,: “any two positions that agree gn, ...,p,_; also agree op,”. This
is easily defined ifO? within size linear inn:

o = VaVy( \ (P & Py) = (Poz <> Pay)).
<n

As every property (language) defined by any temporal logic formauleven
with “until” or “since”) is recognized by a non-deterministiauBtii automaton
with 2004 states, see [VW94], it is enough to show that eveuglf ‘automaton
for L, requires at least?” states.

SupposeA recognized.,. Letay, ...,asn 1 be any sequence of ti2 sym-
bols of the alphabe2®~. For every subsek of {0,...,2" — 1} let wx be the
word by . ..bsn 1 With b; = a; if i € K and else; = a; U {p, }. Notice that there
are2?" such words. Alsow% = ¢ andwgws, = ¢, for K # K'. Therefore,
if K # K" andqx andgg are the states assumed yin accepting runs fow$
andw$,, after2” steps, the, andgx have to be distinct, i. e.4 needs at least
22" states. n



4 The Complexity of Satisfiability for FO?

We now show that the satisfiability problem f80? over w-words is NEXP-
complete. This is in sharp contrast to the non-elementary lower bound for satis-
fiability of first-order logic with three variables over words which follows from
[Sto74]. Satisfiability for unaryFL remains, as with fulllL,, PSPACE-complete
[SC85].

Theorem 3 Satisfiability for anFO? formula ¢ over p,, is decidable in non-
deterministic time©(dr(¥)*m) and thus satisfiability foFO? is in NEXP.

As a main tool for our NEXP upper bound we prove a strong small model
property forFO? which is of interest in its own right:

Theorem 4 Every satisfiablé?O? formula ¢ over p,, has a model of the form
uv®, where both, andv have length bounded kg (adp(©)*m)

We will prove Theorem 4 in Section 5.

The other ingredient in our NEXP upper bound is the following lemma, which
allows us to find out, given stringsandv, whetheruww* satisfies aiO? formula
¢ by just checkingp on the stringuv??t!, whered is the quantifier depth ap.

Lemma 1 Let p(z) be anFO? formula, and letu andv be words withjv| > 2,
and letd = qdp(y).
1. Forr > 0and0 < s < |v|,

w® = pllu| + 2d[v| + s] iff uv” = l|lu] + (2d + 7)|v| + 3] (3)

2. In particular, if o(z) = Jyp*(z,y) anduv® = ¢[i] withi < [uv?¢L|, then
there existg < |uv?*3| such thatuv® = ©*[i, j].

Proof. Part 2 follows from the proof of part 1. The proof for part 1 is by induction
on the quantifier deptt.

Base caseWheny(z) is quantifier free, the only thing we can say about the
only variablez is which predicates hold at, and clearly the predicates that hold
at a positionj = |uv| + q|v| + r are exactly those that hold fat| + r (simply
because we are at the same position in the wrd



Inductive case:Assume true ford, we prove the assertion fat+ 1. Our
formula p(z) of depthd + 1 is a boolean combination of formulag(z) of the
form:

FyB(x1, - X6, V1(7), o Y (), 1Y), - - -5 7e(y))

where denotes a boolean combination of the given formulas and gdehy)
is an atomic order relation (i.e., oneof y, suc(y, =), etc.). We will argue that
part 1 holds for formulas of the form’ and it will follow that it holds fory as
well because the “iff” in part 1 is preserved under boolean combination.

(<) Supposep[j] holds forj = |u| + (2(d + 1) + 7)|v| + s, wherer > 0
and0 < s < |v|. Then there is a witness far, namely a positiork at which
B(xalg, kl, - -+ xald, k], ildls - - - ¥mld], Lkl - - -, ve[k]) holds. We consider sev-
eral cases based on the locatiorkof uv®. Letj) ; = |u| +2(d+1)|v| + 5. We
want to show thap|j;. ;] also holds.

1. j < k: In this case we know by the inductive hypothesis tjjat satisfies
the same);'s asyj, and thatj), , + (k — j) satisfies the samg’s ask, and
thus is a witness foy, , just ask is for j, because their juxtaposition is
exactly the same.

2. lu| + (2d + 1)|v| < k < j: In this case the exact same argument as in case
1 works, with the roles ok andj reversed.

3. k < |u| + (2d + 1)|v|: In this case, we can fik as a witness for botf and
Jiu.1 because, given that| > 2, the order type ofk, 5, ,) and(k, j) is the
same.

(=) Suppose thap[j] holds forj where|uv?¢t2?| < j < |uv?*3|. Then the
claim is thaty[j'] holds forj’ = j + r|v| and for allr. This is again split into
cases based on the location of the witness

1. j < k: Butthenj + r|v| has a witness &t + r|v|.

2. lu| + (2d + 1)|v| < k < j: In this case again + r|v| hask + r|v| as a
witness.

3. k < |u|+ (2d +1)|v|: Now again as in the second case abbv&a witness
for bothj andj + r|v| because, given that| > 2, the order types ofk, j)
and(k, j + r|v|) are the same. =



Proof of Theorem 3. The non-deterministic algorithm determines the satisfia-
bility of an FO? formula (z) over p,, as follows. It first guesses andv of
length bounded by®(adr(¥)*m) |t then builds up a table that contains for ev-
eryi < |uv?*!| and for every subformula(z) of p(x) a bit saying whether

wv* = 4[i]. This is done inductively. The entry for an atomic or composite (see
proof of Theorem 1)) is easily determined. From Lemma 1, part 2, it follows
that in order to determine whether or not an existential formula (see proof of The-
orem 1) of the formdy 8(x(z,y), £(x),((y)) holds at a position < |uv?@*+!] it
suffices to consider only positions |uv?@t3| for y. Whether or not a formula
((y) holds at such a position can be determined by a lookup in the table according
to (3). The algorithm outputs the entry for position O ard). ]

Now to conclude thaFO? satisfiability is NEXP-complete, we observe that
it is NEXP-hard. This follows from the work of [Le80,uB4]. We sketch the
reduction for completeness:

Theorem 5 ([Le80, Ri84]) FO? satisfiability is NEXP-hard. In fact, even satisfi-
ability for FO? over p;, as well as satisfiability foFO? formulas that do not use
“suc” and “ <” are NEXP-hard.

Proof. We only sketch the proof for showing that satisfiability #®? without
either ‘suc” or “<” is NEXP-hard. We give a reduction from the problem of
determining whether for a given tiling systeéfinC {0, 1, ..., c—1}* with c colors

and a given initial rone € T of lengthn there exists a tiling of 2" x 2™ square
consistent withl” and withz occurring in the lower left corner. (Recall that an
element(cy, ¢z, c3,¢4) € T is considered a square tile with left edge colored by
c1, right edge colored by,, etc. A tiling is consistent if adjacent edges carry the
same color.) This problem is known to be NEXP-complete, see, e uB4]FWe

can, with a shorFO? formula, name the adjacent positions in a tiling (and check
their consistency) by exploiting the fact that addition has poly-sized propositional
formulae. The predicates are used to specify the address coordinates, as well as
tile content, of positions in the tiling. [

5 A small model property for FO?

Theorem 1 tells us that evelO? formula of depthk can be translated into an
equivalent unaryFL formula of depth2k. Thus in order to prove Theorem 4 it
suffices to prove the same small model property for uridty-nhamely:
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Theorem 6 Every satisfiableunary-I'L. formula ¢ over o,, has a modelv*
where the sizes af andv are bounded bg@dr(#)*m),

We mention without proof that such a small model property does not hold for
temporal logic in general. In fact, one can prove a non-elementary lower bound
on the size of small models of temporal logic formulas in terms of operator depth.
We also mention that there is a family of satisfiable urityformulasy,, over
o, Of depthO(n) where the smallest models have sizg™").

We first sketch a proof of Theorem 6 and then go into details.klgt > 0.

We say that a unar{-L. formulay is of depth (at mostjk, &) if it is of depth (at
most)k in © and depth (at most in ®. Given anv-wordw and a position > 0,
the (k, &) type ofi in w, denotedr;’,, (i), is the set of all unarfFL formulas of
depth at mostk, k') that hold inw ati. This means thav |= ¢ iff ¢ € 71%.,(0)
for every formulay of operator depthik, £'). It is thus enough to show that for
everyw-word w there exist, andv of size bounded bg?(k+++1)*m) gych that
e (0) = T,gj,;,(o) for w' = wv*. In order to establish this, we first show that
for everyw-word w one can findu andv such thatv anduv® agree on the types
of position 0 and such that andv are bounded polynomially in the number of
types that occur iw. We then show that the number of types occurring in a given
w-word is bounded byp?(+++¥+1)*m) — (Notice that the number o0, 0) types
occurring in anyv-word overs,, is already inf2(2™).)

The following lemma establishes that tile+ 1, k') type of a positioni in a
given wordw is determined uniquely by (%) local neighborhood, (2) thg:, &)
types that occur to its right, and (3) ttve ') types that occur to its left.

Lemma 2 Letw andw’ bew-words and;, i > 0.
1. 790 (1) = Té‘j,;/(i’) iff wip . wi Wi = Wy Wy Wy, Where,
by conventiomu; = $ andwj = $ for j < 0 ($ being a special symbol).
2. T]::U—‘,—l,k’(i) - lev—’il’kl(i/) |f and On|y |f7—8l’)k./(2) — 7—8(’)];/(2‘/), {T;Ci,)k"(]) ‘ ] < Z} -
{w () 17 <} and{r,(5) | j > i} = {7’ () | J > i}

Proof. Part 1 is clear: A depth’ formula that uses né operator can describe
completely the content of thé-neighborhood of the current position, and nothing
more.

To prove part 2 we proceed by induction én The base casg; = 0, is
immediate. Assume true far, we prove the claim fok + 1.

=) (i) = r,;‘j;l,k, (') then in particulafw, i) and(w’, ") agree on all
depth(0, k) formulas, and thusy’,. (i) = 7% (7).

11



To show{7, (5) | j > i} C {7 (4) | 7 > '}, letr’ € {7 (5) | j > i}.
There are only a bounded number of inequivalent formulas of dgptt) (this
can be proved by a straightforward induction). At denote the set of such
formulas. There is thus a formula

y=Nern AN v

per! e \T'

which holds in a word precisely at those positions havihgt’)-type 7. But

then®~ is a depth(k + 1, £’) formula that holds afw’, i') precisely when' €

{r(5) | § > i'}. A symmetric proof shows thatr,, (j) | j > i} 2 {7 (j) |

j > i}, and thus{r. () | 7 > i} = {T;:j];,(j) | 7 > '}. A similar proof shows
that {7, () | j < i} = {7, (7) | J <7},

(<) Assume thatgs, (i) = 7% (7). {r% () |7 < i} = {72) | 7 < 7%,
and{r’(j) | j > i} = {7 (i) | 7 > i'}.

First observe that every unaiyE. formula) of depth(k, £') is equivalent to
a formulay’ also of depth(k, k'), wheret)’ is in a normal form where al®
have been “moved in”, i.e., appear without ayoperators in their scope. In
other words, every unaryL formula of depth(k, ') is equivalent to a boolean
combination of formulas of depttk, ') starting with®, and formulas of depth
(0, k"). Thus we can restrict our attention to normal form formulas.

Now, lety be a depth{k + 1, £') formula in normal form.

If the outermost connective af is ®, then it is a depth0, £') formula. Thus,
since by assumptiorg’, (i) = 73, ('), ¥ € 7% (1) & ¥ € T W (@),

If the outermost connective af is € theny = ¢+. Now (w, i) = ¢ iff there
exists aj > i such thaty € 7;,,(j). Hence, since by assumptigm?,.(j) | j >
i} = {7 () | j > '}, we havey € 7%, (i) < ¢ € 7%, ,,(i'). The case when
1 = Oy is symmetric.

To conclude the proof, note that thes” in the previous two paragraphs is
preserved under boolean combination. ]

Using Lemma 2, we can now establish the following lemma which shows how
to collapsev-words in order to get “smallery-words without changing the type
structure of thevu-word in an essential way. In the following lemnkawill be
fixed, and we adopt the shorthand notatignfor 75 , .

Lemma 3 Letw = ugujus . .. be anw-word.
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1. Assume and j are positions such that < j and (i) = 7°(j). Let
w' = Uy .o UUjp 1 Ujq2 - - -
Thent (1) = 7(1) for I < iand7' (1) = 7 (1 + (j — 1)) for I > .
2. Assume andj are positions such that
@ <y,
(b) 7’(0) = 7’ (4),
©) {0 [1=0} ={n’() |l <4}, and
@) {n'() i <<} ={m’() [ FU(m (1) =7 ()}

Letw = Ug . .- ui(ui—l—l ce. Uj)w.
Thent' (1) = 7*(1) for I < i and 7 (i +r(j — i) + s) = 7(i + s) for
r>0and0 <s<j—1.

Proof. We prove part 1 by induction oh. Base cases = 0. When we cut out
a piece of a word, we don’t change any of the characters we didn't cut out, and
moreover the characters in theneighborhoods of a point remain the same, thus
we don’t chang€0, £’)-types of any point.

Assume true fork. Supposer’,,(i) = 7,(j). By part 2 of Lemma 2 it
follows that

{0 +1),.... (G — 1)} S{7'(m) [m < i} (4)
{r(i+1),....,m (G — 1)} S{nI(m) [m > j} (5)

Let 7(!) be the mapping defined by:

(0) = l if I <i
TWEY 1+ (G —i) otherwise

By the inductive hypothesis we know that for It (1) = 7 ((1)).

But then{7 (m) | m > 1} = {r&(x(m)) | m > 1} = {7*(m) | m > 7()},
the last equality following from containment 5. Similarly, using containment 4,
we have{r (m) | m < I} = {r(x(m)) | m < 1} = {r(m) | m < x(1)}.
But then by part 2 of Lemma 2 we havg, (1) = 7, (x (1)), which is what we
wanted to prove.

The proof of part 2 is again by induction én Base cases = 0. Forl < i,
given thati and;j have the samg'-neighborhood, th&’-neighborhood of position
linw'is the same as thé neighborhood of in w. Also, forl =i +r(j — 1) + s,
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by the same fact, has the samé&’-neighborhood as + s. The base case then
follows from part 1 of Lemma 2.

Suppose true fok, we prove the claim fok + 1. First note thatk + 1, k')-
types constitute a refinement @f, &')-types, meaning that two positions with the
same(k + 1, k')-type have the sam, k')-type. Thus, given that (a) through (d)
hold for & + 1, by the inductive hypothesis we know thgt (1) = (1) for I <
andr' (i +r(j —i) +s) = 7%(i + s) forr > 0and0 < s < j —i.

Thus, in particular, we claim that far< i, {7*'(m) | m >} = {r%(m) |
m > [}. This is so because hyl) the infinitely recurring(k + 1, k¥’)-types (and
thus also infinitely recurringk, k')-types) are precisely those that already occur
ati,i+1,...,i+(j —i—1) = j — 1. In a similar way it follows thaf 7% (m) |
m < I} = {t¥(m) | m < [}. Thus, by part 2 of Lemma 2, it follows that
Tipa (1) = qucﬂ—il—l(l)' ,

A similar proof shows that’ ; (i +7(j —i) +s) = 7*,1 (i + ), forr > 0 and
0<s<(j—1i). n

From this lemma, we conclude:

Lemma 4 Letw be anw-word over2°~ andt the number ofk, k') types occur-
ring in w. There existsy’ of the formuv® such that the length af andv is less
than (¢ + 1)? and such that;”,, (0) = 7%, (0).

Proof. Part 2 of Lemma 3 immediately implies we can assume uv“ for some

u andv. We can also assume thaaindv are chosen such that the assumptions of
part 2 of Lemma 3 are given with= |u| andj = |uv|. Now, letu andv be such
that for every other such paif andv’ we haveluv| < |u'v'|. For contradiction,
assume firsf| > (¢ + 1)2. For every(k, k') typer of a positions with i < s < j
pick a positioni, such that < i, < j and7},(i,) = 7. Since|v| > (t + 1)?, we
can find two positiongand!’ carrying the same type such that | <!’ < 57 and
eitheri, < lorl’ < i, foreach ofthe,’s. Thus, by part 2 of Lemma 3, = v and

V' = VU1 . . . Ut u[ OV —[u|+1 - - - Vjo|—|u|—1 WOUId be a smaller pair. Ifu| > (¢t + 1)?

we obtain a contradiction in a similar way using part 1 of Lemma 3. ]

We now upper bound the number of types that can occur in a giveord:
Lemma 5 The number ofk, k') types occurring in any-word overo,, is at

most23(GK+Dm+D+D) i e {7, (7)) | 4 > 0} < 23(EKHDMED+D) for every
w € (297,

14



Proof. The proof is by induction ot. Let w be anyw-word overo,,. Let
tw,r) be the number ofk, k') types occurring inw. For the base case, from
Lemma 2, part 1, it is easy to see thgt,, < 2*+Dm+)_ Now observe that the
sequenceé{7;’,. (i) | j < i})i>o iS anincreasing sequence containing at megt,
distinct elements. Similarly, the sequeride;’,,(j) | 7 > i})i>o is a decreasing
sequence containing at magt ;) + 1 distinct elements. Therefore, there are only
2t (1) + 1 many distinct pairs of the forrt{7",, (5) | 7 < i}, {7 (4) | 7 > i}),
and thus, using Lemma 2, part &1 4y < (2tgpy + 1)2@F DM+ where,
again,2?¥"+1)(m+1) gccounts for the number of disting, ') types. The lemma
follows by induction. ]

Theorem 6 now follows from Lemma 4 together with Lemma 5; this also
proves Theorem 4. ]

We also prove a different small model property in terms of formula size (proof
omitted):

Theorem 7 1. Every satisfiabl&0? formulay has a model of sizz”(¢D.

2. Satisfiability for arffO? formulay can also be decided in non-deterministic
time200¢D,

6 Further Restricting FO? and Unary-TL

It is only natural to further restridfO? by allowing < as the only built-in predi-
cate; we denote the resulting logic by #Q]. Correspondingly, one can consider
the logical language that is obtained from undily-by disallowing the use ob
and©; we denote this language WL[®].

Obviously, TL[®] can easily be translated into F@]. A slight modification
of the translation fronFFO? to unaryTL described in the proof of Theorem 1
yields the reverse translation, i. &L[®] = FO?[<]. Corresponding to Theo-
rem 1, we have:

Theorem 8 EveryFO? formulap(x) can be converted to an equivaleéit.[®]
formulay’ with || € 20U¢ladr(®) andodp(y’) < qdp(yp).

As FO’[<] is a sublogic offO?, the upper bounds for the complexity of the
satisfiability forFO? carry over to F®[<]. Moreover, as we have seen in Theo-
rem 5, even the hardness result carries over:
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Theorem 9 Satisfiability forFO*[<] is NEXP-complete. In fact, satisfiability for
an FO?[<] formulay over p,, is decidable in non-deterministic tin& (ade()m)
and also in non-deterministic timg? (¢,

Note the difference betwe@?(@dr(#)*™) in Theorem 3 an@®@dr(®)™) in the
above theorem.

That satisfiability for FG[<] is no less difficult than satisfiability foFO?
(both are NEXP-complete) contrasts with what happens to satisfiability when
passing from unar{FL to TL[®]. In [SC85], it was shown that satisfiability for
the temporal logic where the only temporal operator is “at present or sometime in
the future” is in NP. We show that satisfiability faiL[©] (which now includes
the past operator) remains in NP, and thus is NP-complete. This is obtained by
proving a linear-size model property: for every satisfiabld®| formulay there
existu andv with |u|, |v] < |¢] such thatuv® = ¢ (proof omitted).

7 Conclusion

We have shown that the close correspondence between first-order and temporal
logic over words persists when looking at first-order formulas with only two vari-
ables, and we have presented an easily understood translation of these formulas
into temporal formulas. Our translation is optimal: the formulas incur at most an
exponential blow-up in size and we have proved that this is necessary in the worst
case.

The satisfiability problem for unaryd. is known to remain, as with full'L,
PSPACE-complete, but we have shown thar satisfiability is drastically sim-
pler thanFO? satisfiability: the former is NEXP-complete, while the latter is
known to require non-elementary complexity. Moreover, our NEXP upper bound
for FO? satisfiability, and the corresponding small model propertie§' @t and
unaryTL, have the advantage of being only in terms of quantifier/operator depth
and the number of propositions in the vocabulary, rather than the size of the entire
formula, a fact that may be of potential use when dealing with large but shallow
formulas.

Some remaining questions: (1) Given a regular languafgay, as a B¢hi or
finite automaton), can we decide whetligs FO? (and thus unaryFL) definable?
[EW96, TW96b] obtained closely related results, but neither yields this particu-
lar fact. (2) Is theFO? quantifier alternation hierarchy strict? This question can
also be phrased in terms of operator alternation in uidry{3) Does satisfiabil-
ity remain NEXP-hard for F€<] formulas (without successor) over a bounded
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number of predicates? (4) Can the upper bound of the small model property for
FO? be improved ta€@dr(®)+m)2 This would make (the proof of) Theorem 7
obsolete.
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