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A Definability Theorem for First Order Logic

Carsten Butz (Århus) and Ieke Moerdijk (Utrecht)∗

In this paper, we will present a definability theorem for first order logic.
This theorem is very easy to state, and its proof only uses elementary tools.
To explain the theorem, let us first observe that if M is a model of a theory
T in a language L, then, clearly, any definable subset S ⊂ M (i.e., a subset
S = {a | M |= ϕ(a)} defined by some formula ϕ) is invariant under all
automorphisms of M . The same is of course true for subsets of M n defined
by formulas with n free variables.

Our theorem states that, if one allows Boolean valued models, the con-
verse holds. More precisely, for any theory T we will construct a Boolean
valued model M , in which precisely the T–provable formulas hold, and in
which every (Boolean valued) subset which is invariant under all automor-
phisms of M is definable by a formula of L.

Our presentation is entirely selfcontained, and only requires familiarity
with the most elementary properties of model theory. In particular, we have
added a first section in which we review the basic definitions concerning
Boolean valued models.

The Boolean algebra used in the construction of the model will be pre-
sented concretely as the algebra of closed and open subsets of a topological
space X naturally associated with the theory T . The construction of this
space is closely related to the one in [1]. In fact, one of the results in that
paper could be interpreted as a definability theorem for infinitary logic, using
topological rather than Boolean valued models.

1 Preliminary definitions

In this section we review the basic definitions concerning Boolean valued
models (see e.g. [2]). Most readers will be familiar with these notions, and

∗Both authors acknowledge support from the Netherlands Science Organisation
(NWO).
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they are advised to skip this section. They should note, however, that our
Boolean algebras are not necessarily complete, and that we treat constants
and function symbols as functional relations.

Let us fix a signature S, consisting of constants, function and relation
symbols. For simplicity we assume it is a single sorted signature, although
this restriction is by no means essential. Let L denote the associated first
order language Lωω(S).

A Boolean valued interpretation of L is a tripleM = (B, |M|, [[−]]), where
B is a Boolean algebra, |M| is the underlying set of the interpretation,
and [[−]] is an operation which assigns to each formula ϕ(x1, . . . , xn) of L
with free variables among x1, . . . , xn a function |M|n → B, whose value at
(m1, . . . ,mn) is denoted

[[ϕ(m1, . . . ,mn)]].

These functions are required to satisfy the usual identities (where we write
m for m1, . . . ,mn):

(i) [[ϕ ∧ ψ(m)]] = [[ϕ(m)]] ∧ [[ψ(m)]] and similar for the other Boolean con-
nectives.

(ii) [[∃yϕ(y,m)]] =
∨
{[[ϕ(k,m)]] | k ∈ |M|},

[[∀yϕ(y,m)]] =
∧
{[[ϕ(k,m)]] | k ∈ |M|},

where it is part of the definition of an interpretation that these sups and infs
are required to exists in B. Finally, we require

(iii) if ` ϕ(x1, . . . , xn) then [[ϕ(m)]] = 1B for any m ∈ |M|n.

In (iii), ` denotes derivability in (one of the usual axiomatisations of) classical
first order logic.

Remark 1.1 (i) Note that, in particular, |M| is equipped with a B–valued
equality [[x1 = x2]] : |M|2 → B, satisfying the identities for reflexivity, transi-
tivity and symmetry,

[[m = m]] = 1B,

[[m1 = m2]] = [[m2 = m1]],

[[m1 = m2]] ∧ [[m2 = m3]] ≤ [[m1 = m3]].
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(ii) For each constant c the formulas c = x and x = c define the same func-
tion C = [[c = x]] : |M|2 → B, which should be viewed as the interpretation
of c. It satisfies the conditions C(m) ∧ [[m = m′]] ≤ C(m′) and

∨
{C(m) |

m ∈ |M|} = 1B. Similarly, each n–ary function symbol is interpreted, via
the formula f(x1, . . . , xn) = y, by a function F : |M|n × |M| → B. This
function satisfies the conditions F (m, k) ∧ [[m = m′]] ∧ [[k = k′]] ≤ F (m′, k′)
and

∨
{F (m, k) | k ∈ |M|} = 1B. (Here m = m1, . . . ,mn as before, and

[[m = m′]] stands for
∧n
i=1[[mi = m′i]].)

(iii) For each n–ary relation symbol r the formula r(x1, . . . , xn) defines a
map R : |M|n → B, which is extensional in the sense that R(m) ∧ [[m =
m′]] ≤ R(m′).

(iv) The entire interpretation is determined by these data in (i)–(iii). First,
using derivability of usual equivalences such as ` f(g(x)) = y ↔ ∃z(f(z) =
y∧g(x) = z), one obtains by induction for each term t(x1, . . . , xn) a function
T : |M|n+1 → B interpreting the formula t(x1, . . . , xn) = y. Next, one builds
up the interpretation of formulas in the usual way, using the assumption that
all necessary sups and infs exist in B.

As usual, we writeM |= ϕ if [[ϕ(m)]] = 1 for all m ∈ |M|n, and we sayM
is a model of a theory T if M |= ϕ whenever T ` ϕ. In this case, we write
M |= T , as usual.

2 Automorphisms of models and statement of the the-
orem

Consider a fixed Boolean valued model M = (B, |M|, [[−]]). An automor-
phism π of M consists of two mappings π0 and π1. The map π0 : B → B
is an automorphism of the Boolean algebra B, while π1 : |M| → |M| is an
automorphism of the underlying set |M|, with the property that

π0[[ϕ(m1, . . . ,mn)]] = [[ϕ(π1(m1), . . . , π1(mn))]], (1)

for any formula ϕ(x1, . . . , xn) and any m1, . . . ,mn ∈ |M|. (Of course it is
enough to check a condition like (1) for constants, functions and relations
of L, and deduce (1) for arbitrary ϕ by induction.)

An (n–ary) predicate on M is a map p : |M|n → B which satisfies the
extensionality condition

p(m) ∧ [[m = m′]] ≤ p(m′) (2)
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for any m,m′ ∈ |M|n (where [[m = m′]] stands for
∧n
i=1[[mi = m′i]], as before).

Such a predicate p is definable if there is a formula ϕ(x1, . . . , xn) such that

p(m) = [[ϕ(m)]], for all m ∈ |M|n. (3)

It is invariant under an automorphism π if

π0p(m) = p(π1(m)), for all m ∈ |M|n, (4)

(where π1(m) is (π1(m1), . . . , π1(mn))). Obviously, every definable predicate
is invariant. Our theorem states the converse.

Theorem 2.1 Let T be any first order theory. There exists an Boolean
valued model M such that

(i) M is a conservative model of T , in the sense that M |= ϕ iff T ` ϕ,
for any sentence ϕ.

(ii) Any predicate which is invariant under all automorphisms of M is de-
finable.

Before proving the theorem in §4, we will first give an explicit description
of the Boolean algebra and the interpretation involved in the next section.

3 Construction of the model

Our Boolean algebra will be defined as the algebra of all clopen (i.e., closed
and open) sets in a topological space X. To describe X, let κ ≥ ω be the
cardinality of our language L. We fix a set ST of (ordinary, two–valued)
models M of T such that every model of cardinality ≤ κ is isomorphic to a
model in ST . Then, in particular, a formula is provable from T iff it holds
in all models in the set ST .

Definition 3.1 An enumeration of a model M is a function α : κ → |M |
such that α−1(a) is infinite for all a ∈ |M | (here |M | is the underlying set
of M ).

The space X has as its points the equivalence classes of pairs (M , α),
where M ∈ ST and α is an enumeration of M . Two such pairs (M , α) and

(N, β) are equivalent if there exists an isomorphism of models θ : M
'→ N

4



such that β = θ ◦ α. We will often simply write (M , α) when we mean the
equivalence class of (M , α). The topology of X is generated by all the basic
open sets of the form

Uϕ,ξ = {(M , α) | M |= ϕ(α(ξ))}. (5)

Here ϕ = ϕ(x1, . . . , xn) is any formula with free variables among x1, . . . , xn,
while ξ = (ξ1, . . . , ξn) is a sequence of elements of κ (i.e., ordinals ξi < κ);
we use α(ξ) as an abbreviation of α(ξ1), . . . , α(ξn).

Observe that each such basic open set Uϕ,ξ is also closed, with complement
U¬ϕ,ξ. So X is a zero–dimensional space. We now define the Boolean algebra
B as

B = Clopens(X), (6)

the algebra of all open and closed sets in X.
Notice that arbitrary suprema need not exist in B, although B has many

infinite suprema. In particular, if U ⊂ X is clopen and {Ui}i∈I is a cover of U
by basic open sets, then the union

⋃
i∈I Ui defines a supremum U =

∨
i∈I Ui

in B; we only need suprema of this kind.

The Boolean algebra B just constructed is part of a natural Boolean
valued model M = (B, |M|, [[−]]), with

|M| = κ (7)

and evaluation of formulas defined by

[[ϕ(ξ1, . . . , ξn)]] = Uϕ,ξ, (8)

for any formula ϕ(x1, . . . , xn) and any sequence ξ = ξ1, . . . , ξn of ordi-
nals ξi < κ.

Lemma 3.2 This evaluation defines a B–valued interpretation of the lan-
guage L.

Proof. One needs to check the requirements (i)–(iii) from Section 1.
Now (iii) is clear, while (i) and (ii) are completely straightforward. For
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illustration, we give the case of the existential quantifier. Suppose ϕ(y, x) is
a formula with just two free variables x and y. Then for any ξ < κ,

[[∃yϕ(y, ξ)]] = {(M , α) | M |= ∃yϕ(y, α(ξ))}
= {(M , α) | ∃η < κ : M |= ϕ(α(η), α(ξ))}

(since each α is surjective)

=
⋃
η<κ

{(M , α) | M |= ϕ(α(η), α(ξ))}

=
⋃
η<κ

[[ϕ(η, ξ)]],

and this union is a supremum in B, by the remark above. 2

4 Proof of the theorem

We will now show that the interpretation M has the two properties stated
in Theorem 2.1. The first one is easy:

Proposition 4.1 M is a conservative model of T .

Proof. We need to show that M |= σ iff T ` σ, for any sentence σ ∈ L.
By Lemma 3.2, [[σ]] = {(M , α) | M |= σ}. Thus [[σ]] = X iff M |= σ for all
M ∈ ST , and this holds iff T ` σ, by definition of ST . 2

For the proof of the definability result 2.1(ii), we shall only need a par-
ticular collection of automorphisms of the model M. Let Sκ denote the
symmetric group of permutations of κ. Then Sκ acts on the model M as
follows. Any π1 ∈ Sκ induces a homeomorphism π0 : X → X, defined by

π0(M , α) = (M , α ◦ π−1
1 ).

This map has the property that π0(Uϕ,ξ) = Uϕ,π1(ξ), or

π0[[ϕ(ξ)]] = [[ϕ(π1(ξ))]],

for any formula ϕ(x1, . . . , xn) and any ξ = ξ1, . . . , ξn < κ. Thus, the pair
π = (π1, π0) is an automorphism of M. This defines an action of Sκ on M,
i.e., a representation

ρ : Sκ → Aut(M), ρ(π1) = π.

For the second part of Theorem 2.1, it will now be enough to show:

6



Proposition 4.2 Any Sκ–invariant predicate is definable.

To simplify notation, we will only prove this for a unary predicate. So
let us fix such an invariant predicate p. It is a function p : |M| = κ −→ B
satisfying the extensionality condition

p(ξ) ∧ [[ξ = ξ′]] ≤ p(ξ′),

as well as the invariance condition

p(π1ξ) = π0(p(ξ)),

for any π1 ∈ Sκ. We will first show that p is “locally” definable (Lemma 4.5).

Lemma 4.3 Let (M , α) ∈ U ∈ B and η0 ∈ κ. Then there is a formula
δ(x1, . . . , xn, y) and elements ξ1, . . . , ξn ∈ κ such that

(i) (M , α) ∈ Uδ,(ξ,η0) ≤ U .

(ii) For any point (N, β) in X, any b1, . . . , bn, c ∈ |N| such that N |=
δ(b1, . . . , bn, c), and any η ∈ κ with β(η) = c, there exists a π1 ∈ Sκ
such that π1(η) = η0 and π0(N, β) ∈ Uδ,(ξ,η0).

Proof. Choose a basic open set Uδ′,ξ, given by a formula δ′(x1, . . . , xn) and
ξ1, . . . , ξn < κ, such that

(M , α) ∈ Uδ′,ξ ⊂ U.

Let Eqα(x1, . . . , xn, y) be the formula∧
α(ξi)=α(ξj)

xi = xj ∧
∧

α(ξi)=α(η0)

xi = y,

and define δ to be δ′ ∧ Eqα. Then obviously

(M , α) ∈ Uδ,ξ,η0 ⊂ Uδ′,ξ ⊂ U.

Now choose any (N, β), b1, . . . , bn, c and η satisfying the hypothesis of part (ii)
of the lemma. Then in particular N |= Eqα(b1, . . . , bn, c) and c = β(η).
Since β : κ → |N| has infinite fibres, we can find ζ1, . . . , ζn < κ such that
β(ζi) = bi, while the sequence ζ1, . . . , ζn, η satisfies exactly the same equalities
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and inequalities as the sequence ξ1, . . . , ξn, η0. [Indeed, if ζ1, . . . , ζi have been
found, and ξi+1 = ξk for some k ≤ i or ξi+1 = η0, then also α(ξi+1) = α(ξk)
or α(ξi+1) = α(η0), hence bi+1 = bk or bi+1 = c since N |= Eqα(b1, . . . , bn, c).
Thus, we can choose ζi+1 = ζk respectively ζi+1 = η. If, on the other hand,
ξi+1 /∈ {η0, ξ1, . . . , ξi}, we can use the fact that β−1(bi+1) is infinite, to find
ζi+1 ∈ β−1(bi+1) \ {η, ζ1, . . . , ζi}.] Thus, there is a permutation π1 ∈ Sκ with

π1(η) = η0, π1(ζ1) = ξ1, . . . , π1(ζn) = ξn.

But then N |= δ(b1, . . . , bn, c) means that N |= δ(π−1
1 (ξ1), . . . , π

−1
1 (ξn), π

−1
1 (η0)),

or that π0(N, β) ∈ Uδ,(ξ,η0). 2

Lemma 4.4 Let η0 < κ. There is a cover p(η0) =
∨
i∈I(η0) Ui in B, and

formulas ψη0

i (y), such that for any i ∈ I(η0),

(i) Ui ≤ [[ψη0

i (η0)]].

(ii) For any η < κ, [[ψη0

i (η)]] ≤ p(η).

(iii)
∨

i∈I(η0)

[[ψη0

i (η0)]] = p(η0).

Proof. Observe that (iii) follows from (i) and (ii). To prove these, write
U = p(η0), and apply Lemma 4.3 to each of the points (M , α) ∈ U . This will
give a cover U =

⋃
i∈I Ui by basic open sets, and for each index i a formula

δi(x1, . . . , xn, y) and elements ξ1, . . . , ξn < κ such that

Ui = Uδi,(ξ,η0),

and moreover such that property (ii) of Lemma 4.3 holds for each of these
formulas δi. Now define

ψη0

i (y) = ∃x1 . . .∃xnδi(x1, . . . , xn, y).

It is now clear that statement (i) in the lemma holds. For (ii), suppose
(N, β) ∈ [[ψη0

i (η)]]. This means that N |= ∃x1 . . .∃xnδi(x1, . . . , xn, y). By 4.3(ii),
we can find a π1 ∈ Sκ such that π1(η) = η0 and π0(N, β) ∈ Uδi,(ξ,η0) = Ui.
Since Ui ⊂ U = p(η0), also π0(N, β) ∈ p(η0), and hence, by invariance of p,
(N, β) ∈ p(π−1

1 (η0)) = p(η), as required. 2
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Lemma 4.5 There is a family {ψi(y) | i ∈ I} of formulas such that, for all
η < κ,

p(η) =
∨
i∈I

[[ψi(η)]].

Proof. This follows immediately from the previous lemma, for the collection
of formulas {ψη0

i | η0 < κ, i ∈ I(η0)}. 2

Proof of Proposition 4.2. Consider the function p′ : |M| → B defined by
p′(η) = ¬p(η). Clearly, since p is a predicate, so is p′, i.e., p′(η) ∧ [[η = η′]] ≤
p′(η′) for all η, η′ < κ. Moreover, p′ is invariant since p is. So we can apply
Lemma 4.5 to p′, to find a collection of formulas

{ϕj(y) | j ∈ J}

such that for all η < κ,

p′(η) =
∨
j∈J

[[ϕj(η)]]. (9)

The definability of p now follows by a standard compactness argument.
Let c be a “new” constant, and consider the theory T ′ = T ∪ {¬ψi(c) | i ∈
I} ∪ {¬ϕj(c) | j ∈ J}. If T ′ where consistent, it would have a model M ,
which we can assume to be (an expansion of a model) in the set ST . Let α be
an enumeration of M , and choose η < κ with α(η) = c(M ), the interpretation
of c in M . Then (M , α) ∈ X = p(η) ∨ p′(η), hence (M , α) ∈ [[ψi(η)]] for
some i ∈ I or (M , α) ∈ [[ϕj(η)]] for some j ∈ J .. This means that M |=
ϕi(α(η)) ∨ ψj(α(η)), contradicting the fact that M models T ′. This proves
that T ′ is inconsistent.

Now apply compactness, to find i1, . . . , in ∈ I and j1, . . . , jm ∈ J such
that

T ` ∀y(ψi1(y) ∨ · · · ∨ ψin(y) ∨ ϕj1(y) ∨ · · · ∨ ϕjm(y)). (10)

Write ψ = ψi1 ∨ · · ·∨ψin and ϕ = ϕj1 ∨ · · ·∨ϕjm. We claim that ψ defines p.
Indeed, let (M , α) be any point in X, and let η < κ. By (10), M |= ψ(α(η))∨
ϕ(α(η)), or in other words, either (M , α) ∈ [[ψ(η)]] or (M , α) ∈ [[ϕ(η)]]. If
(M , α) ∈ [[ψ(η)]], then (M , α) ∈ p(η) by Lemma 4.2. And if (M , α) ∈ [[ϕ(η)]],
then (M , α) ∈ p′(η) by (9), hence (M , α) /∈ p(η). Thus (M , α) ∈ [[ψ(η)]] iff
(M , α) ∈ p(η).

This show that [[ψ(η)]] = p(η) for any η < κ, and completes the proof. 2
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