
B
R

IC
S

R
S

-97-1
D

anvy
&

G
oldberg:

P
artialE

valuation
ofthe

E
uclidian

A
lgorithm

BRICS
Basic Research in Computer Science

Partial Evaluation of
the Euclidian Algorithm
(Extended Version)

Olivier Danvy
Mayer Goldberg

BRICS Report Series RS-97-1

ISSN 0909-0878 January 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/1/

Partial Evaluation of the Euclidian Algorithm ∗

(extended version)

Olivier Danvy Mayer Goldberg

BRICS †

Department of Computer Science
Aarhus University ‡

January 1997

Abstract

Some programs are easily amenable to partial evaluation because
their control flow clearly depends on one of their parameters. Spe-
cializing such programs with respect to this parameter eliminates the
associated interpretive overhead. Some other programs, however, do
not exhibit this interpreter-like behavior. Each of them presents a chal-
lenge for partial evaluation. The Euclidian algorithm is one of them,
and in this article, we make it amenable to partial evaluation.

We observe that the number of iterations in the Euclidian algorithm
is bounded by a number that can be computed given either of the two
arguments. We thus rephrase this algorithm using bounded recursion.
The resulting program is better suited for automatic unfolding and
thus for partial evaluation. Its specialization is efficient.

Keywords: partial evaluation, scientific computation.

The programs described in this article are available at the URL

http://www.brics.dk/~danvy/Programs/{power,euclid}.scm

∗To appear in LISP and Symbolic Computation.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
Phone: (+45) 89 42 33 69. Fax: (+45) 89 42 32 55
E-mail: {danvy,mayer}@brics.dk
Home pages: http://www.brics.dk/~{danvy,mayer}

1

1 Partial Evaluation in Principle

Partial evaluation is a program-transformation technique for specializing
programs [5, 9]. A partial evaluator typically specializes a source program
with respect to parts of its input and yields a residual program. Running
this residual program on the remaining input yields the same result as the
source program on the complete input — but (it is hoped) more efficiently.

Source
program

//

partial evaluation
(some input)

&&

evaluation
(complete input)

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

Residual
program

��

evaluation
(remaining input)

Result

2 Partial Evaluation in Practice

Some programs lend themselves well to partial evaluation — for example,
when the initial values of their induction variables are known. A partial
evaluator can simply unfold the corresponding recursive calls.

2.1 An effective example

For example, Figure 1 displays the source procedure computing the power
function. It is written using the programming language Scheme [4]. Figure 2
displays its associated generating extension [9] when the exponent is known
— the generating extension of a program p is a (stand-alone) program carry-
ing out the specialization of p. It is also known as a “backquote interpreter”
in the literature [7, 11].

Figure 3 displays the result of specializing power with respect to the
exponent 10 (i.e., of running the generating extension of Figure 2). In the
base case, the residual code could be simplified a bit further, but this would
only clutter Figure 2. The residual code is represented both in compact
form and in linearized form, i.e., using straight-line code, which is an asset

2

(define sqr

(lambda (x) (* x x)))

(define power

(lambda (x n)

(letrec ([loop (lambda (n)

(cond

[(zero? n)

1]

[(odd? n)

(* x (sqr (loop (/ (1- n) 2))))]

[else

(sqr (loop (/ n 2)))]))])

(loop n))))

Figure 1: Source procedure computing the power function

(define power-gen

(lambda (n)

(let ([x (gensym! "x")])

‘(lambda (,x)

,(letrec ([loop (lambda (n)

(cond

[(zero? n)

‘1]

[(odd? n)

‘(* ,x (sqr ,(loop (/ (1- n) 2))))]

[else

‘(sqr ,(loop (/ n 2)))]))])

(loop n))))))

Figure 2: Generating extension for the power function

3

(define power-10

(lambda (x8)

(sqr (* x8 (sqr (sqr (* x8 (sqr 1))))))))

;;; for all x, (power x 10) = (power-10 x) = (power-10-linearized x)

(define power-10-linearized

(lambda (x9)

(let* ([x10 (sqr 1)]

[x11 (* x9 x10)]

[x12 (sqr x11)]

[x13 (sqr x12)]

[x14 (* x9 x13)]

[x15 (sqr x14)])

x15)))

Figure 3: Specialized versions of the power function

(define GCD

(lambda (m n)

(if (zero? m)

n

(GCD (remainder n m) m))))

Figure 4: Source procedure computing the GCD function (Euclidian algo-
rithm)

for compiling scientific code efficiently [2, 3]. It is simple to modify Figure
2 to make it generate the let expressions, and again to simplify the residual
code a bit in the base case (see appendix).

2.2 An ineffective example

Other programs, however, are less suited for partial evaluation because their
control flow does not uniquely depend on one of their parameters. This is
the case for the Euclidian algorithm, which computes the greatest common
divisor of two numbers (see Procedure GCD in Figure 4). Both arguments act
as induction variables, and furthermore, the induction is mixed. Therefore,
GCD has no static induction variable and a partial evaluator, given any one
of the two arguments, cannot specialize GCD as simply as in Figure 2.

4

2.3 Call unfolding and bounded recursion

As illustrated in Section 2.1, specializing the power procedure with respect
to a given exponent amounts to unfolding its recursive calls. Indeed, the
power function is defined inductively over the exponent, and correspond-
ingly, the power procedure is defined recursively — which is actually too
heavy handed. We can instead consider a bounded recursive definition of
the power procedure and the corresponding generating extension.

As a first step, let us make the unbounded recursive definition explicit.
We first exhibit the use of the (applicative-order) fixed-point operator in
the definition of the power procedure (Figure 5), and then we factor the
functional out through uncurrying and eta-reduction. The result, displayed
in Figure 6, is a traditional recursive definition using a fixed-point oper-
ator: Procedure power is the fixed-point, i.e., the potentially unbounded
composition of Functional (make-power-functional x), for any x.

Since the exponent determines the number of recursive calls, we can sim-
plify this unbounded recursive definition into a bounded recursive one. We
do this by defining power as them-th composition of (make-power-functional
x), for any x. The operator taking a function and returning its m-th com-
position reads as follows.

λf.λx. (f · · · (f︸ ︷︷ ︸
m times

x) · · ·)

This operator is the m-th Church numeral [1]. Figure 7 displays the Scheme
procedure integer->Church, which takes an integer m, and returns the m-th
Church numeral.

Now we only need the number of iterations of the exponentiation algo-
rithm. Given an exponent n, the algorithm divides it by two until it hits
zero. The number of iterations is thus the number of digits of the binary
representation of n plus one, i.e., blog2(n)c+ 2.

Figure 8 displays the definition of the exponentiation algorithm in
bounded form. It behaves exactly as the code of Figures 1, 5, and 6, with the
added guarantee that by construction, it cannot loop. The corresponding
generating extension is shown in Figure 9. It behaves exactly as the code
of Figure 2, also with the added guarantee that by construction, it cannot
loop.

The problem with the Euclidian algorithm is that we cannot define it
inductively over one of its parameters, and thus we cannot specialize the
corresponding program merely using bounded unfolding.

5

(define unbounded-power

(lambda (x n)

((fix1 (lambda (loop)

(lambda (n)

(cond

[(zero? n)

1]

[(odd? n)

(* x (sqr (loop (/ (1- n) 2))))]

[else

(sqr (loop (/ n 2)))])))) n)))

;;; where fix1 is an applicative-order fixed-point operator

;;; for unary functions.

Figure 5: Inner functional associated to the exponentiation algorithm

(define make-power-functional

(lambda (x)

(lambda (loop)

(lambda (n)

(cond

[(zero? n)

1]

[(odd? n)

(* x (sqr (loop (/ (1- n) 2))))]

[else

(sqr (loop (/ n 2)))])))))

(define unbounded-power

(lambda (x n)

((fix1 (make-power-functional x)) n)))

;;; where fix1 is an applicative-order fixed-point operator

;;; for unary functions.

Figure 6: Outer functional associated to the exponentiation algorithm

6

(define integer->Church

(lambda (m)

(if (zero? m)

(lambda (f)

(lambda (x)

x))

(let ([m-1 (integer->Church (1- m))])

(lambda (f)

(lambda (x)

(f ((m-1 f) x))))))))

Figure 7: Procedure generating a Church numeral

(define bottom

(lambda (f)

(lambda xs

(error f "out of gas"))))

(define float->integer

(lambda (x)

(inexact->exact (truncate x))))

(define log2

(lambda (n)

(/ (log n) (log 2))))

(define bounded-power

(lambda (x n)

((((integer->Church (+ (float->integer (log2 n)) 2))

(make-power-functional x))

(bottom ’power))

n)))

Figure 8: The exponentiation algorithm in bounded form

7

(define bounded-power-gen

(lambda (n)

(let ([x (gensym! "x")])

‘(lambda (,x)

,((((integer->Church (+ (float->integer (log2 n)) 2))

(lambda (loop)

(lambda (n)

(cond

[(zero? n)

‘1]

[(odd? n)

‘(* ,x ,(loop (1- n)))]

[else

‘(sqr ,(loop (/ n 2)))]))))

(lambda (n)

‘((bottom ’power) ,n)))

n)))))

Figure 9: Generating extension for the exponentiation algorithm in bounded
form

3 Making the Euclidian Algorithm Amenable to Partial
Evaluation

The number of recursive calls in GCD, however, is bounded. Given any one
of GCD’s arguments, this bound can be computed independently of the other
one. This property enables us to put the Euclidian algorithm into the
partial-evaluation groove.

We first consider an unbounded recursive definition of GCD (Section 3.1).
We then establish an upper bound for the Euclidian algorithm (Section 3.2).
We then state the corresponding unbounded recursive definition of GCD and
its associated generating extension (Section 3.3).

3.1 The unbounded recursive definition of the Euclidian algo-
rithm

As a first step, let us make the unbounded recursive definition explicit.
We do this by applying an applicative-order fixed-point operator to the
functional associated to Euclid’s algorithm, as displayed in Figure 10.

Procedure GCD is the fixed-point, i.e., the potentially unbounded compo-

8

(define Euclid-functional

(lambda (GCD)

(lambda (m n)

(if (zero? m)

n

(GCD (remainder n m) m)))))

(define unbounded-GCD

(fix2 Euclid-functional))

;;; where fix2 is an applicative-order fixed-point operator

;;; for binary functions.

Figure 10: Functional associated to the Euclidian algorithm

sition of Functional Euclid-functional.

3.2 An upper bound for the Euclidian algorithm

Proposition 1 For any a ∈ N, the number of iterations needed for com-
puting gcd(a, b) or gcd(b, a) for all b ∈ N is bounded above by the following
expression.  log(a

√
5− 1)

log(1+
√

5
2)

+ 2

Proof: We use Lamé’s result, as stated in Knuth’s Art of Computer
Programming [10, Page 79]. Given two integers a and b such that a ≤ b, it
takes at most n0 + 1 iterations to compute gcd(b, a) whenever b < Fn0+1,
where Fn denotes the n-th Fibonacci number.

For our purposes, we do not know whether b ≥ a. After one itera-
tion, however, gcd(b, a) reduces to gcd(a, bmod a), whose computation is
bounded by n0 + 1. Therefore, given a ∈ N such that a < Fn0 for some
n0 ∈ N, computing either gcd(a, b) or gcd(b, a) for all b ∈ N requires at
most n0 + 2 steps.

Let us now find a closed expression for n0. De Moivre’s equation [10]
gives us a closed form for the n-th Fibonacci term

Fn =
1√
5

(ϕn − ϕ̂n)

9

where ϕ and ϕ̂ respectively denote the golden ratio 1+
√

5
2 and its conjugate

1−
√

5
2 .
Since |ϕ̂| is less than 1 and thus limn→∞ ϕ̂n = 0, replacing |ϕ̂| by 1 yields

the following inequality:

ϕn0 − 1 ≤ a
√

5 ≤ ϕn0 + 1

for any a ∈ N.
Since we aim for an upper bound, we concentrate on the right-hand

inequality, and obtain:

n0 =
⌈
logϕ(a

√
5− 1)

⌉
=

 log(a
√

5− 1)

log(1+
√

5
2)


Hence the result. 2

Figure 11 displays the function mapping a number into the number of
iterations needed to compute the greatest common divisor of this number
and any other number. As can be noted, this function increases logarith-
mically (for example, it maps 1010 to 50). We can also compare it with
Lamé’s upper bound, i.e., the number of iterations given the smaller of the
two arguments of the Euclidian algorithm: five times the number of digits
in base 10. Lamé’s upper bounds exceed ours in all but five cases (from 5
to 9).

3.3 A bounded recursive definition of the Euclidian algorithm

Figure 12 displays the definition of the Euclidian algorithm in bounded
form. The corresponding generating extension is shown in Figure 13. Given
a number, it computes the upper bound on the number of calls to the GCD
function, and unfolds the code of the GCD procedure accordingly. Figure
14 displays the result of specializing GCD with respect to 3. (As in Figure 3,
the first test in the residual code could be simplified away by unfolding the
functional once, as done in appendix.)

4 Practical Assessment

As illustrated above, partial evaluation inductively inlines the exponenti-
ation and the Euclidian procedures. For the exponentiation procedure, a

10

(define upper-bound

(let* ([sqrt-5 (sqrt 5.0)]

[log-of-golden-ratio (log (/ (+ 1.0 sqrt-5) 2.0))])

(lambda (a)

(+ 2 (float->integer (/ (log (* sqrt-5 a))

log-of-golden-ratio))))))

Figure 11: Upper bound on the number of iterations in the Euclidian algo-
rithm

(define bounded-GCD

(lambda (m n)

((((integer->Church (upper-bound m))

Euclid-functional)

(bottom ’GCD))

m n)))

Figure 12: The Euclidian algorithm in bounded form

(define bounded-GCD-gen

(lambda (m)

(let ([n (gensym! "n")])

‘(lambda (,n)

,((((integer->Church (upper-bound m))

(lambda (GCD)

(lambda (m n)

‘(if (zero? ,m)

,n

,(let ([x (gensym! "n")])

‘(let ([,x (remainder ,n ,m)])

,(GCD x m)))))))

(lambda (m n)

‘((bottom ’GCD) ,m ,n)))

m n)))))

Figure 13: Generating extension for the Euclidian algorithm in bounded
form

11

(define GCD-3 ;;; for all x, (GCD 3 x) = (GCD-3 x)

(lambda (n0)

(if (zero? 3)

n0

(let ([n1 (remainder n0 3)])

(if (zero? n1)

3

(let ([n2 (remainder 3 n1)])

(if (zero? n2)

n1

(let ([n3 (remainder n1 n2)])

(if (zero? n3)

n2

(let ([n4 (remainder n2 n3)])

(if (zero? n4)

n3

(let ([n5 (remainder n3 n4)])

((bottom ’GCD) n5 n4)))))))))))))

Figure 14: Specialized version of the GCD function

tight loop is replaced by a series of squarings and multiplications. For the
Euclidian procedure, a tight loop is replaced by a series of conditional ex-
pressions. The former is clearly a win. The latter may or may not yield
a more efficient program on modern architectures (cf. branch-delay slots,
instruction cache, etc.).

In any case, if there were a static computation associated with the loop,
it would be performed at partial-evaluation time and the resulting value
would be either consumed at partial-evaluation time or inlined (cached)
in the specialized program. Again, on a modern architecture, the latter
could be a mixed blessing (cf. register allocation, etc.), unless the static
computation is sizeable.

Nevertheless, these issues are more conjectural than structural. They
depend on both the language processor and on the computer at hand. In
our experience with high-level languages such as Scheme, ML, and C, the
specialized code usually performs better than the source code, particularly
when the Euclidian algorithm is enriched with a static computation at each
iteration of the loop. (For example, we could equip it to return a pair: the
greatest common divisor as usual, plus the result of some iterative arithmetic
computation over the static argument.)

12

But the problem we were facing in this work was “can we specialize
Euclid’s algorithm at all?” — and the answer is yes.

5 Conclusion

The Euclidian algorithm has no clear binding-time division and thus it can-
not be specialized using offline partial-evaluation methods, as the exponen-
tiation algorithm [5, 9]. By rephrasing it using bounded recursion, we have
made it more amenable to automatic unfolding. Specializing it with respect
to either of its arguments terminates and yields a finite, flat sequence of
tests and remainder operations. This residual code corresponds to having
unfolded the source procedure finitely many times.

Following this method, other algorithms with no clear binding-time di-
vision should be amenable to partial evaluation, when part of their input
makes it possible to find an upper bound for the depth of their call graph.
Similarly, if a probable upper bound n could be established statistically for
a program, then a partial evaluator could unfold calls n times and then re-
tain a call to the original code. The correctness of this transformation for a
functional f is stated as follows:

fix f =βη pnq f (fix f)

where pnq denotes the n-th Church numeral. Such blind unfoldings are
customary in most optimizing compilers and conventional partial evaluators.
However, blind unfoldings were explicitly ruled out in partial evaluation
and mixed computation, ten years ago [8], because not only do they most
often lead to residual code explosion but also because they raise the thorny
problem of finding a satisfactory n. We make do without them here, thus
providing a concrete example of resource-bounded partial evaluation [6].

Acknowledgements

Grateful thanks to Rowan Davies, Laurie Hendren, Julia L. Lawall, Karoline
Malmkjær, and René Vestergaard for comments and discussions, to Dany
Breslauer and Peter Kornerup for bibliographic pointers, and to the review-
ers and the editor for lucid comments.

The diagram of Section 1 was drawn with Kristoffer Rose’s XY-pic pack-
age.

13

A Optimized Versions of Power and GCD

As pointed out in the body of this article, the specialized versions of power
and of GCD could be simplified a bit further, by folding the squaring of 1
in power, and the test over the constant argument in GCD. The former is
achieved in Figure 15 and the latter in Figure 16.

References

[1] Henk Barendregt. The Lambda Calculus — Its Syntax and Semantics.
North-Holland, 1984.

[2] Andrew A. Berlin. Partial evaluation applied to numerical computation.
In Mitchell Wand, editor, Proceedings of the 1990 ACM Conference on
Lisp and Functional Programming, pages 139–150, Nice, France, June
1990. ACM Press.

[3] Andrew A. Berlin and Daniel Weise. Compiling scientific code using
partial evaluation. IEEE Computer, 23(12):25–37, December 1990.

[4] William Clinger and Jonathan Rees (editors). Revised4 report on
the algorithmic language Scheme. LISP Pointers, IV(3):1–55, July-
September 1991.

[5] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[6] Olivier Danvy, Nevin C. Heintze, and Karoline Malmkjær. Resource-
bounded partial evaluation. ACM Computing Surveys, 28(2):329–332,
June 1996.

[7] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Es-
sentials of Programming Languages. The MIT Press and McGraw-Hill,
1991.

[8] Neil D. Jones. Challenging problems in partial evaluation and mixed
computation. In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones,
editors, Partial Evaluation and Mixed Computation, pages 1–14. North-
Holland, 1988.

14

(define power

(lambda (x n)

(letrec ([loop (lambda (n)

(cond

[(even? n)

(sqr (loop (/ n 2)))]

[(= n 1)

x]

[else

(* x (sqr (loop (/ (1- n) 2))))]))])

(if (zero? n)

1

(loop n)))))

(define bounded-power-gen

(lambda (n)

(let ([x (gensym! "x")])

‘(lambda (,x)

,(if (zero? n)

1

((((integer->Church (1+ (float->integer (log2 n))))

(lambda (loop)

(lambda (n)

(cond

[(even? n)

‘(sqr ,(loop (/ n 2)))]

[(= n 1)

x]

[else

‘(* ,x (sqr ,(loop (/ (1- n) 2))))]))))

(lambda (n)

‘((bottom ’power) ,n)))

n))))))

Figure 15: Optimized versions of Figures 1 and 9

[9] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalu-
ation and Automatic Program Generation. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1993.

[10] Donald E. Knuth. The Art of Computer Algorithms, Volume 1, Fun-
damental Algorithms. Addison-Wesley, 1968.

15

(define GCD

(lambda (m n)

(letrec ([loop (lambda (m n)

(if (zero? m)

n

(loop (remainder n m) m)))])

(if (zero? m)

n

(loop (remainder n m) m)))))

(define bounded-GCD-gen

(lambda (m)

(let ([n (gensym! "n")])

‘(lambda (,n)

,(if (zero? m)

n

(let ([x (gensym! "n")])

‘(let ([,x (remainder ,n ,m)])

,((((integer->Church (1- (upper-bound m)))

(lambda (GCD)

(lambda (m n)

‘(if (zero? ,m)

,n

,(let ([x (gensym! "n")])

‘(let ([,x (remainder ,n ,m)])

,(GCD x m)))))))

(lambda (m n)

‘((bottom ’GCD) ,m ,n)))

x m))))))))

Figure 16: Optimized versions of Figures 4 and 13

[11] Mitchell Wand. From interpreter to compiler: a representational deriva-
tion. In Harald Ganzinger and Neil D. Jones, editors, Programs as Data
Objects, number 217 in Lecture Notes in Computer Science, pages 306–
324, Copenhagen, Denmark, October 1985.

16

Recent BRICS Report Series Publications

RS-97-1 Olivier Danvy and Mayer Goldberg. Partial Evaluation of the
Euclidian Algorithm (Extended Version). January 1997. 16 pp.
To appear in the journal Lisp and Symbolic Computation.

RS-96-62 P. S. Thiagarajan and Igor Walukiewicz.An Expressively Com-
plete Linear Time Temporal Logic for Mazurkiewicz Traces. De-
cember 1996. i+13 pp. To appear inTwelfth Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’97 Proceedings.

RS-96-61 Sergei Soloviev.Proof of a Conjecture of S. Mac Lane. De-
cember 1996. 53 pp. Extended abstract appears in Pitt, Ryde-
heard and Johnstone, editors,Category Theory and Computer
Science: 6th International Conference, CTCS ’95 Proceedings,
LNCS 953, 1995, pages 59–80.

RS-96-60 Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pet-
tersson, and Wang Yi. UPPAAL in 1995. December 1996.
5 pp. Appears in Margaria and Steffen, editors,Tools and Algo-
rithms for The Construction and Analysis of Systems: 2nd Inter-
national Workshop, TACAS ’96 Proceedings, LNCS 1055, 1996,
pages 431–434.

RS-96-59 Kim G. Larsen, Paul Pettersson, and Wang Yi.Compositional
and Symbolic Model-Checking of Real-Time Systems. December
1996. 12 pp. Appears in16th IEEE Real-Time Systems Sympo-
sium, RTSS ’95 Proceedings, 1995.

RS-96-58 Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pet-
tersson, and Wang Yi. UPPAAL — a Tool Suite for Automatic
Verification of Real–Time Systems. December 1996. 12 pp.
Appears in Alur, Henzinger and Sontag, editors, DIMACS
Workshop on Verification and Control of Hybrid Systems, HY-
BRID ’96 Proceedings, LNCS 1066, 1996, pages 232–243.

RS-96-57 Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnos-
tic Model-Checking for Real-Time Systems. December 1996.
12 pp. Appears in Alur, Henzinger and Sontag, editors,DI-
MACS Workshop on Verification and Control of Hybrid Systems,
HYBRID ’96 Proceedings, LNCS 1066, 1996, pages 575–586.

RS-96-56 Zine-El-Abidine Benaissa, Pierre Lescanne, and Kristoffer H.
Rose. Modeling Sharing and Recursion for Weak Reduc-
tion Strategies using Explicit Substitution. December 1996.

