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UPPAAL — a Tool Suite for
Automatic Verification of Real-Time Systems *

2 1

Johan Bengtsson Kim Larsen
Fredrik Larsson® Paul Pettersson? Wang Yi**?2

1 BRICS** , Aalborg University, DENMARK
2 Department of Computer Systems, Uppsala University, SWEDEN

Abstract. UPPAAL is a tool suite for automatic verification of safety and
bounded liveness properties of real-time systems modeled as networks of
timed automata. It includes: a graphical interface that supports graphi-
cal and textual representations of networks of timed automata, and auto-
matic transformation from graphical representations to textual format,
a compiler that transforms a certain class of linear hybrid systems to
networks of timed automata, and a model-checker which is implemented
based on constraint—solving techniques. UPPAAL also supports diagnostic
model-checking providing diagnostic information in case verification of a
particular real-time systems fails.

The current version of UPPAAL is available on the World Wide Web via
the UPPAAL home page http://www.docs.uu.se/docs/rtmv/uppaal.

1 Introduction

UPPAAL is a new tool suite for automatic verification of safety and bounded live-
ness properties of networks of timed automata [13, 8, 6]. The tool was developed
during the spring of 1995 as the result of intense research collaboration between
BRICS at Aalborg University and Department of Computing Systems at Upp-
sala University. The two main design critea for UPPAAL has been efficiency and
ease of usage.

The current version of UPPAAL, as well as its future extensions, is imple-
mented in C++. Model—checking is often hampered by various state—explosion
problems. In UPPAAL thes problems are dealt with by a combination of on—the—
fly verification together with a new and coarser symbolic technique reducing
the verification problem to that of solving simple linear constraint systems. The
features and tools of UPPAAL includes:

* This work has been supported by the European Communieties (under CONCUR2
and REACT), NUTEK (Swedish Board for Technical Development) and TFR
(Swedish Technical Research Council)

** This author would also like to thank the Chinese NSF and the Hong Kong Wang’s
Foundation for supporting a visit to the Institute of Software, Chinese Academy of
Sciences, in 1995.

*** Basic Research in Computer Science, Centre of the Danish National Research
Foundation.
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Fig. 1. Overview of UPPAAL

— A graphical interface based on Autograph.

— An automatic compilation of the graphical definition into a textual format.

— Analysis of certain types of hybrid automata by compilation into ordinary
timed automata. In particular UPPAAL allows automata with varying and
drifting time—speed of clocks.

— A number of simple, but in practice extremely useful syntactical checks are
made before verification can commence.

— Generation of diagnostic traces in case verification of a particular real-time
system fails.

In this paper we present the various features of UPPAAL, review and pro-
vide pointers to the theoretical foundation as well as applications to various
case—studies.

2 An Overview of UPPAAL

UPPAAL consists of a suite of tools for verifying safety properties of real-time
system. An overview of the system is shown in Figure 1. In this section we briefly
describe the main features of UPPAAL.

2.1 Graphical Description of Networks of Timed Automata

It is possible to draw networks of timed automata using Autograph, given
that certain syntactical rules are followed, e.g. the different automata in the
network must be enclosed in boxes with the name of the process in the struc-
tural label, there must be a textual box describing the system configuration,
i.e. declaration of clocks, channels and auxiliary integer variables. To be able
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Fig. 2. Graphical Description of Fischers Mutual Exclusion Protocol

to import system descriptions, drawn with help of Autograph, into UPPAAL the
system must be saved in the Autograph .atg-format. In Figure 2 the Autograph
version of Fischers Protocol [1, 10] is shown.

2.2 Textual Description of Networks of Timed Automata

In addition, UPPAAL allows networks of timed automata to be described us-
ing a textual format (called .ta) providing a basic programming language for
timed automata. In certain cases we found this textual format more convenient
(and faster) to work with than the graphical interface. The compiler atg2ta
automatically transforms system description in the graphical .atg—format into
the textual .ta—format, thus supporting the important principle WYSIWY V4.
Figure 3 shows the resulting .ta—format for Fischers Protocol from Figure 2.

2.3 Linear Hybrid Systems

Under certain conditions, the model of timed automata may be generalized to
allow clocks with rates varying between a lower and an upper bound, and to
allow clock rates to change between different control-nodes (vertices) [9]. This
extension of timed automata is useful for modelling of hybrid systems where the
behaviour of the system variables can be described or approximated using lower
and upper bounds on their rates. Using abstraction techniques, this class of linear
hybrid system can be transformed into timed automata and thus be verified
using the techniques available for timed automata, implemented in UPPAAL.
UPPAAL allows linear hybrid automata where the speed of clocks is given by an
interval. Hybrid automata of this form may be transformed into ordinary timed
automata using the translator hs2ta. Philips Audio-Control Protocol of [3] is
one such linear hybrid system and for its Autograph version is shown in Figure 5.

4 What You See Is What You Verify.



//

// Declarations

/!

clock x1, x2;
int id;

//

// Processes
//

process P1 —
state a, b, c, cs;
init a;
trans a -, b —
guard id == 0;
assign x1 := 0;

process P2 —

state cs,c,b,a;

init a;

trans c -}, cs —

guard x2 ;= 2, id == 2;

b7—' c— b-pc=

¢ ) guard x2 j= 1;

guard x1j=1; assign x2 := 0, id := 2;

assign x1 := 0, id := 1;

) a-j,b-—
€-ics— guard id == 0;
guard x1 ;= 2, id == 1;

assign x2 := 0;

)
3

/!

// System Configuration

/!

system P1,P2;

Fig. 3. Textual Description of Fischers Mutual Exclusion Protocol

2.4 Syntactical Checks

Given a textual description of a timed automata in the .ta-format the pro-
gram checkta performs a number of syntactical checks. In particular the use
of clocks, auxiliary integer variables and channels must be in accordance with
their declaration, e.g. attempted synchronization on an undeclared channel will
be captured by checkta.

2.5 Model-Checking

In the current version UPPAAL is able to check for reachability properties, in par-
ticular whether certain combinations of control-nodes and constraints on clocks
and integer variables are reachable from an initial configuration. The desired
mutual exclusion property of Fischers protocol (Figure 2 and Figure 3) falls into
this class. Bounded liveness properties can be obtained by reasoning about the
system in the context of testing automata. The model-checking is performed by
the module verifyta which takes as input a network of timed automata in the
.ta-format and a formula. verifyta can also be used interactively. In case ver-
ification of a particular real-time system fails (which happens more often than
not), a diagnostic trace is automatically reported by verifyta [7]. Such a trace



may be considered as diagnostic information of the error, useful during the sub-
sequent debugging of the system. This principle could be called WYDVYAE?.

3 The UPPAAL Model

In this section, we present the syntax and semantics of the model used in UPPAAL
to model real-time systems. The emphasis will be put on the precise semantics
of the model. For convenience, we shall use a slightly different syntax compared
with UPPAAL’s user interface.

We assume that a typical real-time system is a network of non—deterministic
sequential processes communicating with each other over channels. In UPPAAL,
we use finite-state automata extended with clock and data variables to describe
processes and networks of such automata to describe real-time systems.

3.1 Syntax

Alur and Dill developed the theory of timed automata [2], as an extension of
classical finite-state automata with clock variables. To have a more expressive
model and to ease the modelling task, we further extend timed automata with
more general types of data variables such as boolean and integer variables. Our
final goal is to develop a modelling (or design) language which is as close as
possible to a high-level real-time programming language. Clearly this will create
problems for decidability. However, we can always require that the value domains
of the data variables should be finite in order to guarantee the termination of
a verification procedure. The current implementation of UPPAAL allows integer
variables in addition to clock variables.

In a finite-state automaton, a transition takes the form I -+ I’ meaning
that the process modelled by the automaton will perform an a—transition in
state [ and reach state I’ in doing so. Note that there is no condition on the
transition. Alur and Dill [2] extend the untimed transition to the timed version:
l —gﬂ " where g is a simple linear constraint over the clock variables and ¢ is
a set of clocks to be reset to zero. Intuitively, [ —gﬂ) I’ means that a process in
control node [ may perform the a-transition instantaneously when g is true of
the current clock values and then reach control node I’ with the clocks in ¢ being
reset. The constraint g is called a guard. In UPPAAL, we allow a more general
form of guard that can also be a constraint over data variables, and extend the
reset—operation on clocks in timed automata to data variables.

Now assume a finite set of clock variables C ranged over by z,y, z etc and
a finite set of data variables V' ranged over by i, j, k etc.

Guard over Clock and Data Variables We use G(C, V) to stand for the set
of formulas ranged over by g, generated by the following syntax: g :== a | gAg,

5 What You Don’t Verify You Are Explained.



where a is a constraint in the form: z ~nori ~nforz € C,i € V,~e {<,>,=}
and n being a natural number. We shall call G(C, V') guards. Note that a guard
can be divided into two parts: a conjunction of constraints g.’s in the form x ~ n
over clock variables and a conjunction of constraints g,’s in the form ¢ ~ n over
data variables. We shall use tt to stand for a guard like > 0 which is always true,
for a clock variable x as clocks can only have non-negative values. In UPPAAL’s
representation of automata, the guard t is often omitted.

Reset—Operations To manipulate clock and data variables, we use reset—set
in the form: w := € which is a set of assignment—operations in the form w := e
where w is a clock or data variable and e is an expression. We use R to denote
the set of all possible reset—operations.

The current version of UPPAAL distinguishes clock variables and data
variables: a reset—operation on a clock variable should be in the form z := n
where n is a natural number and a reset—operation on an integer variable should
be in the form: 7 := c*i+ ¢’ where ¢, ¢’ are integer constants. Note that c, ¢’ can
be negative.

Channel, Urgent Channel and Syncronization We assume that processes
synchronize with each other via channels. Let A be a set of channel names and out
of A, there is a subset U of urgent channels on which processes should synchronize
that whenever possible. We use A = {a?|a € A} U {a!|a € A} to denote the set
of actions that processes can perform to synchronize with each other. We use
name(a) to denote the channel name of a, defined by name(a?) = name(a!) = a.

Automata with clock and data variables Now we present an extended ver-
sion of timed automata with data variables and reset—operations.

DEFINITION 1. An automaton A over actions A, clock variables C' and data
variables V' is a tuple (N, lo, E) where N is a finite set of nodes (control-nodes),
lo is the initial node, and E C N x G(C,V) x A x 28t x N corresponds to the
set of edges. To model urgency, we require that the guard of an edge with an
urgent action should always be t, i.e. if name(a) € U and (l,g,a,r,l') € E then

g = tt. In the case, {l,g,a,r,l'y € E we shall write, | 227 1 which represents a
transition from the node | to the node I’ with guard g (also called the enabling
condition of the edge), action a to be performed and a set of reset—operations r
to update the variables. a

Concurrency and Synchronization To model networks of processes, we in-
troduce a CCS-like parallel composition operator for automata. Assume that
A;...A,, are automata with clocks and data variables. We use A to denote their
parallel composition. The intuitive meaning of A is similar to the CCS parallel
composition of A;...A,, with all actions being restricted, that is,

(Aaf..-[An)\A



Thus only synchronization between the components A; is possible. We shall call
A a network of automata. We simply view A as a vector and use A; to denote
its 4th component.

3.2 Semantics

Informally, a process modelled by an automaton starts at node [y with all its
clocks initialized to 0. The values of the clocks increase synchronously with
time at node [. At any time, the process can change node by following an edge

g,a,7
I —— I’ provided the current values of the clocks satisfy the enabling condition
g. With this transition, the variables are updated by 7.

Variable Assignment Now, we introduce the notion of a variable assignment.
A variable assignment is a mapping which maps clock variables C' to the non-
negative reals and data variables V to integers. For a variable assignment v and a
delay d, v d denotes the variable assignement such that (v d)(x) = v(x)+d for
any clock variable z and (v@d) (i) = v(¢) for any integer variable ¢. This definition
of @ reflects that all clocks operate with the same speed and that data variables
are time—-insensitive. For a reset-operation r (a set of assignment—operations),
we use r(v) to denote the variable assignment v’ with v'(w) = val(e, v) whenever
w:=e € r and v'(w') = v(w') otherwise, where val(e,v) denotes the value of e
in v. Given a guard g € G(C, V) and a variable assignment v, g(v) is a boolean
value describing whether g is satisfied by v or not.

Control Vector and Configuration A control vector | of a network A is a
vector of nodes where I; is a node of A;. We shall write I[I}/l;] to denote the
vector where the ith element I; of  is replaced by I..

A state of a network A is a configuration (/,v) where [ is a control vector
of A and v is a variable assignment. The initial state of Ais (Zo, vo) where 1y is
the initial control vector whose elements are the initial nodes of A;’s and vq is
the initial variables assignment that maps all variables to 0.

Maximal Delay To model progress properties, we need a notion of maximal
delay. Let (I, v) be a configuration of an automaton A. Note that A in location [
may have a number of outgoing transitions with guards. The process modelled
by A in state (I, v) may have to wait for the guards to become true, which enables
the transitions. However, we do not want the process to stay forever in the same
control-node, i.e. [; in other words, some discrete transition must be taken within
a certain time bound. We require that the bound should be the maximal delay
before all the guards are completely closed, that is, they will never become true
again. This is formalized as follows:

DEFINITION 2. (Maximal Delay for Automata)

MD(l,v) = max{d | | 225 1" and g(v & d)} 0



Note that max{} = 0. This will be the case when all the guards for outgoing
transitions in ! have already been closed in state (l,v) or in other words, the
process reaches a time—stop process, which means that A is physically unreal-
izable. Now we extend the notion of maximal delay to networks of automata,
which insures that synchronization on urgent channels happens immediately.

DEFINITION 3. (Maximal Delay for Networks of Automata)

- a?r; alyr;
MD(Z,U): 0 _ I'fEOlGU,li,ljelili &lJ
min{MD(l,v) | I € I} otherwise

d

Transition Rules The semantics of a network of automata A is given in terms
of a transition system with the set of states being the set of configurations and
the transition relation defined as follows:

DEFINITION 4. (Transition Rules for Networks of Automata)

-, v)«»(i[lg/li,l}/lj], (r; Ur;)(v)) if there exist l;,1; € I,g;,9;,,7; and 7;

j,a?,rj

such that I; 5 11, 1; 25 11, g,(v) and g;(v).
— (L,v)~ (v @ d) if d < MD(l, v) O

al,r;

4 The UPPAAL Model-Checker

In the current version, UPPAAL is able to check for reachability properties,
in particular whether certain combinations of control-nodes and constraints on
clock and data variables are reachable from an initial configuration.

Logic The properties that can be analysed are of the forms:
e u= VOB | 306 B = alPLAB|p

Where a is an atomic formula being either an atomic clock (or data) constraint
(¢) or a component location (A4;at 1). Atomic clock (data) constraints are either
integer bounds on individual clock (data) variables (e.g. 1 < z < 5) or integer
bounds on differences of two clock (data) variables (e.g. 3 < x —y < 7).

Intuitively, for YOS to be satisfied all reachable states must satisfy 8. Du-
ally, for 308 to be satisfied some reachable state must satisfy 8. Formally let
~» denote the transitive closure of the delay— and action—transition relations be-
tween network configurations. Then the satisfaction relation |= between network
configurations and formulas are defined as follows:

q -0}~ @) AT, 8
<z, @)~ Ty = T B

v) E3I0B = (T, ) .(I,v) ~
v) EVOB <= V({l,v).(I,v) ~

)



Satisfaction with respect to a boolean combination 8 of atomic formulas is de-
fined inductively on the structure of 5 (behaving as usual with respect to the
boolean connectives). Satisfaction with respect to an atomic formula is given by
the following definitions:

(lv)Ecevece
<Z,’U> |:Azatl<:>l1:l

Our (simple and efficient) model-checking technique extends to the logic pre-
sented in [7], which also allows for bounded liveness properties to be specified.
Currently, bounded liveness properties are obtained by reachability analysis of
the system in the context of testing (and time-sensitive) automata. We conjec-
ture that all bounded liveness properties of the logic in [7] can be translated into
reachability problems in this manner.

Model Checking The model-checking procedure implemented in UPPAAL is
based on an interpretation using a finite-state symbolic semantics of networks.
More precisely, we interpret the logic with respect to symbolic network config-
urations of the form [I, D], where D a constraint system (i.e. a conjunction of
atomic clock and data constraints) and I a control-vector. Some of the rules
defining this symbolic interpretation is given in Table 1.

DCec li=1 F[,D]:p

F[I,D]:c F[I,D]: At F[I,D]: 308

F [T/l my /), (rs Ur) (D A gi A gg)] = 308 lzi 9% ]

gj.al,r;
. it

- [, D] : 308 l j
k[, D7) : 308
F[I,D]: 308

Table 1. Symbolic Interpretation of Reachability Logic

To read the rules of Table 1 some notation needs to be explained. For D
a constraint system and r a set of variables (to be reset) r(D) denotes the set
of variable assignments {r(v) | v € D}. Now DT denotes the following set of
variable assignments

D' = {w|3v € D3d < MD(l,v).w = v & d}

An important observation is that, whenever D is a constraint system (i.e. a con-
junction of atomic clock and data constraints), then so are both (D) and D'.



Moreover, due to Richard Bellman representing constraint systems as weighted
directed graphs (with clock and data variables as nodes), these operations as
well as testing for inclusion between constraint systems may be effectively im-
plemented in O(n?) and O(n?) using shortest path algorithms [11, 12, 6].

Now, by applying the proof rules of Table 1 in a goal directed manner
we obtain an algorithm (see also [13]) for deciding whether a given symbolic
network configuration [I, D] satisfies a property 3¢ 3. To ensure termination (and
efficiency), we maintain a (past—) list £ of the symbolic network configurations
encountered. If, during the goal directed application of the proof rules of Table 1
a symbolic network configuration [I, D'] is generated which is already “covered”

by a configuration [I, D] in £ (i.e. D’ C D) then the the goal directed search

fails at [I, D] and backtracking is needed. If [I, D'] “covers” some configuration

[I,D] in £ (i.e. D C D') then [I, D'] replaces [I, D] in L.

5 Applications and Performance

UPPAAL has been used to verify various benchmark examples and applications
including: several versions of Fischer’s protocol, Philips Audio-Control Protocol,
the Train Gate Controller, the Manufacturing Plant, the Steam Generator, the
Mine-Pump Controller and the Water Tank.

In [8] an experiment was performed using four existing real-time verifica-
tion tools: UpPAAL, HYTECH (Cornell), Kronos (Grenoble) and Epsilon (Aal-
borg). In the experiment it was verified that the so-called Fischer’s mutual exclu-
sion protocol [10, 1], shown in Figure 2, satisfies the mutual exclusion property
VO-((Py at cs) A (P, at cs)). With all the tools installed on the same machine®
the standard Unix command time was used to measure execution time. The
resulting time-performance diagram, shown in Figure 4, indicate that UPPAAL
performs time- and space-wise favorably compared to the other tools in the
experiment.

In [7], in this volume, the Philips Audio-Control Protocol [3, 4] was veri-
fied using UPPAAL. A version of the protocol is shown in Figure 5. In the verifica-
tion of this protocol, we found the diagnostic model-checking feature of UPPAAL
useful for detecting and correcting several errors in the description of the pro-
tocol. UPPAAL verifies that the received bit stream is guaranteed to be identical
to the sent bit stream in 3.8 seconds’.

6 Conclusion and Future Work

In this paper we have presented the main features of UPPAAL together with a
review of and pointers to its theoretical foundation and application on case—
studies.

6 The tools were installed on a Sparc Station 10 running SunOS 4.1.3 with 64MB of
primary memory and 64 MB of swap memory.

7 UPPAAL version 0.95 was installed on a Sparc Station 10 running SunOS 4.1.3, with
64 MB of primary memory and 64 MB of swap memory.
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Fig. 4. Execution Times for Fischer’s Protocol.

Future versions of UPPAAL will extend the current model-checker to the
safety and bounded liveness logic of [7]. Also future versions of UPPAAL will
integrate the newly developed compositional model—checking technique of [6],
which, judged from experimental results using a CAML prototype implementa-
tion [5], seems to be a powerful technique in the on—going fight against explosion
problems.
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