Menneske-datamaskine interaktion i informationssøgesystemer: evaluering af brugs- og læsevenlighed

Af Kasper Hornbæk

Informationssøgesystemer siger mod at støtte mennesker i at søge efter, læse og på anden måde håndtere information. Ud fra min baggrund i fagfeltet menneske-datamaskine interaktion argumenterer jeg for at brugs- og læsevenlighed er nyttige evalueringstyper for informationssøgesystemer. Denne argumentation er i overensstemmelse med en stigende interesse i fagfeltet informationssøgning for brugergrænseflader og for menneske-datamaskine interaktion. For at illustrere nyttet af at fokusere på brugs- og læsevenlighed giver jeg to eksempler på evaluering af informationssøgesystemer som jeg har været med til at udvikle. Målet med brugergrænsefladerne til disse informationssøgesystemer er at støtte brugs- og læsevenlighed. Eksemplerne illustrerer hvordan vi i menneske-datamaskine interaktion arbejder med evaluering. De viser også hvordan tætte studier af interaktionen mellem mennesker og datamaskiner kan bruges til at forstå gode og dårlige egenskaber ved informationssøgesystemer.

Menneske-datamaskine interaktion og informationssøgning

I menneske-datamaskine interaktion har der fra 1980erne været en udbredt interesse for informationssøgning. Der bliver i stadig stigende omfang udviklet innovative grænseflader til information-

1) I informationssøgning er der en stigende kritik af de kriterier for søgeeffektivitet som hyppigst anvendes i evaluering af informationssøgesystemer, precision og recall, se f.eks. Hersh (1994). Det er blevet klart at disse evalueringskriterier kun i begrænset omfang er relateret til den egentlige nytte og brugbarhed af informationssøgesystemer. Marchionini (1992), s. 156, har udtrykt det således:

’End users want to solve their information problems; they want to do their work or accomplish their goal. They want answers rather than pointers; they want document delivery rather than information retrieval. End users do not care about the design of the information system, the elegance of the retrieval engine, or the structure of the data unless these severely impede the accomplishments of their goals.’

Derfor er det vigtigt at finde evalueringsmetoder og evalueringsskriterier som er relateret til hvor godt brugerne løser deres opgaver, og ikke kun hvor godt systemet fremfinder dokumenter. Alternativer til performancerelaterede recall og precision, såsom kvaliteten af de opgaver der løses ved brug af informationssøgesystemet og brugernes tilfredshed med systemet, har i mange år været anvendt i menneske-datamaskine interaktion. Menneskedatamaskine interaktion har også i vid udstrækning brugt metoder som inddrager brugere i evaluering af brugergrænseflader.

2) For det andet er det i stigende omfang klart at brugergrænsefladens udformning er kritisk afgørende for udfaldet af informationssøgning. Susan Dumais (1996) har påpeget at mens algoritmer til søgemaskiner ofte giver forbedringer fra ca. 1-10% i målbar evaluering kriterier, så forbedrer veldesignede brugergrænseflader informationssøgning med op til 25%. Kun systemer til relevans-feedback kan opnå tilsvarende forbedringer. Denne udtalelse er særlig bemærkelsesværdi fordi Dumais i mange år har forsket i netop algoritmer til informationssøgesystemer. Veldesignede brugergrænseflader og solide evalueringer af disse er derfor vigtige.

3) Endelig søger brugere uden særlige kundskaber om søgemaskiner, forespørgselssprog og katalysersinger principper stadig hyppigere information, f.eks. på WWW. Dette stiller krav til informationssøgesystemer om at støtte novicer i at søge, og at gøre det nemt at formulere forespørgsler og forstå resultaterne af søgninger. Menneske-datamaskine interaktion tilbyder teknikker som forbedrer disse dele af en brugergrænseflade.

Brugs- og læsevenlighed

1) Effektivitet, det vil sige hvor præcist og komplet brugeren når sine mål. Effektivitet kan måles f.eks. som kvaliteten af løsning på de opgaver som er blevet støttet af informationssøgesystemet.

2) Produktivitet, som er forholdet mellem effektivitet og de ressourcer som brugeren anvender for at nå sine mål. Produktivitet vil ofte være udtrykt som f.eks. den tid det tager at løse en opgave med systemet eller den mentale belastning ved løsning af opgaver.

Sammen med Erik Frøkjær og Morten Hertzum har jeg argumenteret for at alle tre aspekter af brugsvenlighed skal måles ved evaluering (Frøkjær, Hertzum & Hornbæk, 2000). Vi viste at man ikke kan antage at de tre aspekter hænger sammen, f.eks. er produktive systemer ikke nødvendigvis effektive. Derfor bør man måle alle tre aspekter.

Systemer til informationssøgning bør tillige støtte læsevenlighed. Dette er en konsekvens af at dometurer, web-sider og e-post i stigende grad læses direkte fra skærmen. For eksempel har Sellen & Harper (1997) beskrevet brugen af papir og elektroniske dokumenter hos analytikere i International Monetary Fund. Sellen & Harper anslår at 14% af tiden analytikere arbejdede med dometurer læser de dem fra skærmen. Analytikerne brugte en kombination af skærmlesning og papirlesning 35% af tiden. Et studie af brugen af WWW (Byrne et al., 1999) viste at brugere benytter dobbelt så lang tid på at bruge den information de finder ved søgning, browsing og andre aktiviteter. Læsning fra skærmen udgør den vigtigste måde at bruge information på. I menneskedatamaskine interaktion, i pedagogisk orienterende undersøgelser af læsning og i teknikker til effektiv udformning af dometurer er der forsket intenst i hvordan en brugergrænseflade kan støtte læsevenlighed (Dillon, 1994; Schriver, 1997). Denne litteratur beskriver teknikker til at forbedre navigation i dometurer, til at gøre løsning fra skærmen mere behagelig og til at hjælpe brugere med at bedre at huske en tekst. Det er muligt at forbedre læsevenligheden uden at ændre indholdet af dometurerne i et informationssøgesystem, f.eks. ved at sikre at skrifttyperne er læselige, at linierne i dokumentet ikke er for lange og ved at tilbyde et overblik over dometurer. Når brugere læser direkte fra skærmen bliver løsningen af det problem som ledte til informationssøgning afhængig af, hvor godt systemet støtter læsning. læsevenlighed er derved en forudsigning for brugsvenlighed og kan måles indirekte ved at se på brugsvenligheden af et system. Læsevenlighed kan også evalueres direkte ved at se på hvordan brugerne navigerer i dometurer, hvor de læser dokumenter, hvor meget de lærer af at læse teksten, samt ved at undersøge deres tilkredsning med løsningen. Desværre er læsevenlighed ikke hyppigt i fokus ved evaluering af dometurer til informationssøgning (undtagelser findes, f.eks. Kengeri et al., 1999). Det under min interesse i informationssøgning i 50 år har fokuseret på at støtte fremfinding af dometurer, uden dog at støtte brugere i at behandle og effektivt at læse disse dometurer fra en skærm.

I de følgende to afsnit giver jeg eksempler på hvordan evaluering af dometurer til informationssøgning og -håndtering kan foregå ud fra et fokus på brugsvenlighed og læsevenlighed.

Tematiske kort

Tematiske kort er blevet foreslået som en måde at forbedre informationssøgning på. Et tematiske kort viser et grafisk overblik over en samling af dometurer sammen med ord som beskriver temaerne i dokumentsamlingen, se figur 2. Forhåbningen til tematiske kort er at de forbedrer brugsvenligheden i forhold til ikke-grafiske systemer. Det tematiske kort antager at hjælpe brugere til at overskue en dokumentsamling, at være behageligt at søge på og at være hurtigt, fordi brugere kan søge ved hjælp af den visuelle repræsentation af dometurer og temaer. For at undersøge om disse forhåbninger kunne indfriess sammenlignede vi et

Undersøgelsens opbygning

Tekstbaseret informationssøgesystem og tematisk kort
Det tekstbaserede informationssøgesystem er vist i figur 1. Øverst i vinduet kan brugeren formulere forespørgsler med booleske operatorer. Resultatet af forespørgsler vises som en liste af titler og forfattere nederst i vinduet. Fuldteksten af dokumenter i listen kan ses ved at dobbeltklikke med musen på en titel.

![Boolean Search](image)

Figur 1. Tekstbaseret informationssøgesystem.
Det tematiske kort er vist i figur 2. I feltet øverst på skærmen kan indtastes forespørgsler og listen til højre viser fremfundne dokumenter. Disse dele af grænsefladen svarer til den øverste og nederste del af det tekstbaserede informationssøgesystem. Til venstre findes selve det tematiske kort med dokumenter og ord som beskriver temaer på kortet. Dokumenter er vist som sorte og lyse prikker. Dokumenterne der er blevet fremført ved søgning efter ordene 'user' og 'interface' er i figuren markeret med en lys prik på kortet. De sorte prikker er dokumenter som ikke indeholder ordene 'user' og 'interface'.

Det tematiske kort er konstrueret ved brug af multidimensionel skalering (Borg & Groenen, 1997). Algoritmen til multidimensionel skalering placerer dokumenterne i dokumentssamlingen i to dimensioner ved brug af cosinus-målet for lighed mellem dokumenter – et almindeligt benyttet lighedsmål i søgemaskiner (Salton & McGill, 1983). Placeringen af dokumenter på kortet sigter mod at minimere forskellen mellem cosinus-ligheder mellem dokumenter og afstående mellem doku-

![Visual Searching](image)

Figur 2 - Tematisk kort

Forskelle i brugsvenlighed

Brugsvenligheden af de to grænseflader blev målt som antallet af dokumenter forsøgspersonerne fandt relevante, deres tidsforbrug og deres tilfredshed med systemet. Den statistiske analyse benyttede variansanalyse og parvise t-tests og er beskrevet nærmere i Hornbæk & Frøkjær (1999). Dertil har vi en række kvalitative observationer som belyser hvordan forsøgspersonerne bruger kortet. Vi fandt ingen statistisk signifikant forskel mellem de to grænseflader i antallet af dokumenter som forsøgspersonerne markerede som relevante og som vi også fandt relevante (dvs. interaktiv recall). Antallet af dokumenter som mere end en person fandt relevant var heller ikke væsentlig forskelligt mellem grænsefladerne. Til gengæld fandt vi en overraskende forskel i tidsforbrug mellem de to grænseflader. Forsøgspersonerne brugte 14.2 minutter der opgave med den visuelle grænseflade og blot cirka 10.8 minutter med den bølgeske grænseflade. Vores egne og gengange hypoteser om typen af tematiske kort kan derved ikke indfriess i dette studie. Tematiske kort ser altså ikke ud til at gøre informationssøgelse mere produktive. Efter at have løst opgaverne interviewede vi forsøgspersonerne om deres tilfredshed med de to grænseflader. Fire ud af de seks forsøgspersoner foretræk at bruge det tematiske kort. De synes at graffikken var behagelig, de kunne lide det overblik man fik fra det tematiske kort og de blev inspireret til at finde søgeord ved at kigge på kortet. En af forsøgspersonerne sagde:

"Jeg kunne bedre lide det grafiske, det var lidt sjarvere på en eller anden måde. Det er nok det bedste ved [det tematiske kort]" og en anden sagde:

"Dels havde man ordene [på kortet] og så kunne man også se hvor mange [dokumenter] man havde ramt sådan nogenlunde, så man kunne hurtigere danne sig et overblik over hvordan ens søgning gik, om man havde ramt mange eller få, også hvordan de lå placeret i forhold til hinanden, om de var tæt på eller sprede."

I interviewet efter forsøget nævnte halvdelen af forsøgspersonerne at de til tider havde problemer med at forstå kortet. For eksempel var forhaldet mellem ord og dokumenter på kortet uklart for nogle af forsøgspersonerne. En af dem sagde:

"Jeg undrer mig lidt over de kategorier [ord på kortet] som er vist, det er lidt ... nogle af dem er hovedtemaer i datalogien ligesom 'evaluatiion' og 'usability' som man kan forholde sig til men sådan noget som 'hand' … det kan betyde hvad som helst"

og en anden:

Flere forsøgspersoner udtrykte også overraskelse når de så på dokumenter ved siden af hinanden på kortet og ikke kunne afgøre hvad dokumenterne havde tilfælles. En forsøgsperson kommenterede

"Man håber at når dokumenterne er tæt på hinanden så handler de om det samme."

Da jeg spurgte forsøgspersonen hvor tæt dokumenterne handlede om det samme sagde vedkommende:

"Måske halvdelen af gangene."

Tilfredsheden med det tematiske kort er derved blandet, med positive kommentarer om oplevelsen af at søge men også væsentlige problemer med kortets forståelighed og gennemskuelighed.

De kvalitative observationer om brugen af kortet vedrører forsøgspersonernes inspiration til søge-
ord og hvordan forsøgspersonerne søgte på kortet. Ved at analysere forsøgspersonernes ytringer fra eksperimentet fandt vi fire kilder som inspirerede forsøgspersonernes valg af søgeord: 1) inspiration fra teksten som beskriver opgaven, 2) inspiration fra associationer eller anden inspiration som ikke kan detekteres i tænke-højt ytringerne, 3) inspiration fra dokumenternes fuldtekst eller titler og 4) inspiration fra ord på det tematiske kort. Med denne klassifikation viser det sig at cirka halvdelen af søgeordene kommer fra beskrivelser af opgaven, cirka en tredjedel fra associationer og cirka ti procent fra enten dokumenters fuldtekst eller det tematiske kort. Typisk sker inspirationen til søgeord fra det tematiske kort ved at forsøgspersonen ser et ord på kortet og derefter bruger det i en forespørgsel. Forsøgspersonerne foretræk at søge på kortet frem for at skimme listen af titler og forfattere. Forsøgspersonerne begyndte en tredjedel af alle opgaver med at søge på kortet; i resten af opgaverne begyndte forsøgspersonerne med en forespørgsel, men derefter søgte de på kortet. Søgning på kortet skete typisk på tre måder. For det første fokuserede nogle forsøgspersoner på bestemte ord eller områder på kortet. I en opgave om lyd i brugergrænseflader bemærkede en forsøgsperson for eksempel:

"Ja, grænseflader der anvender lyd, så var det jo at der lå, hvad var det jeg fandt der hed noget her ‘audio’, ‘speech’ på kortet, netop fordi det sådan er et søgeord der, tror jeg jeg vil gå ind og kigge om der er noget [på kortet]."

Nogle forsøgspersoner fokuserede også på et bestemt område på kortet, f.eks. opdagede en person et område med mange dokumenter fremført i relation til en forespørgsel og sagde:

"Jeg prøver lige at se på den sky der over [på kortet], for at se hvorfor den er placeret der ovre."

For det andet var der opgaver hvor forsøgspersonerne brugte et dokumentets position på kortet til at vurdere om dokumentet var relevant. Forsøgspersonerne brugte også et dokumentets position til at finde andre relevante dokumenter:

"Hmm, ja det er jo, altså jeg ville jo umiddelbart sige at det er sikkert også relevant fordi..."

I forbindelse med de tre jøge nogle af forsøgspersonerne målıst på det tematisk kort. Vi observerede primært dette i søgninger efter velspecificerede dokumenter, hvor nogle forsøgspersoner – når de ikke nemt kunne finde et dokument som beskrev de opgaven – kiggede mange gange på de samme dokumenter og områder på kortet.

Konklusion på undersøgelsen af tematisk kort
Undersøgelsens hypotese om at en visuel grænseflade forbedrer brugsesværligheden af informationssøgning blev ikke entydigt bekræftet. Forsøgspersoner var langsomme med det tematiske kort end med den booleske grænseflade. Omvendt viser interviewerne med forsøgspersonerne at de kunne lide at søge på kortet. Analysen af tænke-højt ytringerne viser at de fandt nyttige søgeord på kortet. Interaktionen med kortet er omfattende og er blandt andet rettet mod at prøve at afgøre dokumenters relevans ud fra deres position på kortet og mod at finde interessante ord og områder på kortet. Hvorfor er brugsenvidenheden så ikke højere for det tematisk kort? En forklaring er at forsøgspersonerne taber fokus på deres søgeopgave, fordi de skifter meget mellem forespørgsler og at skimme kortet. Til tider distraheres de måske også af det tematisk kort og begynder at søge måløst på kortet. Desuden er forståelsesligheden af det automatiser genererede kort problemfylt.

En klar forbedring af det tematisk kort ville være at bedre algormiter til at vælge de ord som karakteriserer temaer, f.eks. kunne man give mere kontekst end et enkelt ord ved at bruge kombinationer af ord eller sætninger. Dertil bør forståelsesligheden af kortet forbedres generelt, f.eks. ved at gøre det eksplicit hvilke temaer dokumenter tæt på hinanden har tilfælles. Desuden er det svært at foretage en systematisk afsogning af fremfundne dokumenter på kortet: flere forsøgspersoner foreslog at en mere håndterbar, lineær struktur ville være et nyttigt supplement til kortets associative struktur.
Visualisering af dokumenter

dokumenter særligt mærke til resuméet, overskrifter og så videre (Dillon, 1994; Bishop, 1999). Derfor kan man i fiskeøjegrænsefladen altid læse disse dele af dokumenterne. Hensigten med fiskeøjegrænsefladen er, at reducere den tid der bruges på at navigere i dokumentet ved at gøre dokumentet kortere – i gennemsnit er dokumenterne 25% kortere i fiskeøjegrænsefladen. Desuden ville vi støtte forsøgspersonerne i en overblikksorienteret læsestrategi, hvor de først læser de vigtigste afsnit i et dokument og senere kan læse detaljerne. I højere del af overblikksgrænsefladen (overst i figur 3) – detaljområdet – er dokumentet vist på samme måde som i den lineære grænseflade. Dertil er knyttet et overblik over dokumentet – overblikksområdet – som viser en kompakt version af dokumentet, hvor overskrifter i dokumentet er synlige.

Overbliksområdet indikerer ved en mørk firkant hvilken del af dokumentet der er vist i detaljområdet. Det er muligt at bruge overbliksområdet til at navigere i artiklen, f.eks. ved at klikke på en bestemt del af dokumentet som man ønsker at se. Hensigten med overbliksområdet er at støtte navigering, samt at give læserne en fornemmelse af dokumentets indhold og struktur

Eksperiments opbygning

Forskelle i brugsvenlighed

For at vurdere brugergrænsefladens effektivitet gav vi svarerne på opgaverne en karakter mellem 0 og 4. Karakteren 0 blev givet for det helt forkerte eller meget mangelfulde svar; karakteren 4 blev givet til den korrekte og meget velunderbyggede besvarelse. Mellem de tre grænseflader fandt vi en statistisk signifikant forskel i den karakter som forsøgspersonerne fik for besvarelser af essay-opgaver. Med overblikksgrænsefladen får forsøgspersonerne i gennemsnit en halv karakter mere end den lineære og fiskeøjegrænsefladen. Vi fandt også en signifikant forskel mellem grænseflader i de 'incidental learning' spørgsmål som forsøgspersonerne fik efter at have skrevet essayet. Med fiskeøjegrænsefladen besvarer forsøgspersonerne mellem 0.8 og 1.2 færre spørgsmål korrekt end med den lineære og overblikksgrænsefladen. Forsøgspersonernes tidsforbrug ved læsning af dokumenter som de skal skrive essays om er forskelligt mellem grænsefladerne: Fiskeøjegrænsefladen er 16% hurtigere end overblikksgrænsefladen og den lineære grænseflade. Vi fandt ikke nogen forskel i karakter mellem grænsefladerne for spørgsmålsopgaver, men overblikksgrænsefladen er omkring 20% langsommere end den lineære grænseflade. Der er ikke nogle signifikante forskel mellem den lineære grænseflade og fiskeøjegrænsefladen. Nitten af forsøgspersonerne foretrak at bruge overblikksgrænsefladen, en person foretrak den lineære grænseflade. Forsøgspersonerne nævnte som årsag til deres præference overblikket over dokumentstrukturen og at overblikksgrænsefladen støttede navigation og gjorde det nemmere at finde rundt i dokumentet.

Forskelle i læsevenlighed

Ovenstående data belyser væsentlige forskelle i brugsvenlighed mellem grænsefladerne. Disse data fortæller os dog ikke hvordan forsøgsperso-
nerne læser dokumenterne eller hvordan de tre grænseflader støtter forøgelpersonerne i at navigere i dokumenterne. Under eksperimentet blev det automatisk registreret hvilke dele af artiklen forøgelpersonerne kunne se på et givet tidspunkt og hvordan de brugte mus og tastatur til at navigere igennem dokumentet. Derfor kan vi rekonstruere hvilke dele af dokumenterne forøgelpersonerne har kigget på, hvor lang tid de har kigget på forskellige dele, samt i hvilken rækkefølge de kiggede på dokumentets dele. Fra disse data kan vi vurdere hvordan de tre grænseflader påvirker læseprocessen.

Læseøvelsen i forbindelse med spørgsmålsopgaverne kan undersøges på tilsvarende måde. I spørgsmålsopgaverne kan svarene på spørgsmål findes på bestemte positioner, såkaldte svarpositioner. Fra læsemønstrerne kan vi afgøre hvornår en svarposition første gang ses og hvad forøgelpersonerne gør når de har fundet en svarposition. En tæt undersøgelse af disse data viser to ting om læseøvelsen i grænsefladerne. For det første når forøgelpersonerne cirka lige hurtigt frem til en svarposition med de tre grænseflader. Det betyder at forskellen i tidsforbrug ikke kan skyldes at en af grænsefladerne ikke støtter at finde et svar hurtigt. Til gengæld er det klart fra vores data at forøgelpersonerne med overblaksgrænsefladen cirka 40% hyppigere end i den lineære grænseflade navigerer væk fra en svarposition efter de har set et svar. Derved finder forøgelpersoner som bruger overblaksgrænsefladen 30% flere svarpositioner i de artikler hvor svaret kan findes flere steder i artiklen. Overblaksgrænsefladen indbyder derved til udforskning af artikler og tilbyder åbenbart bekvemme måder at gøre dette på. Ulemper er at nogle læseprocesser måske er skræbelige i den forstand at overblaksgrænsefladen vil distrahera læere og lede dem til at miste fokus på den opgave de er ved at løse. Det højere tidsforbrug ved løsning af spørgsmålsopgaver kan måske skyldes at overblaksområdet i nogle situationer tiltrækker sig forøgelpersonernes opmærksomhed og derved får dem til yderligere at udforske dokumentet, selvom de allerede har fundet et anvendeligt svar på opgaven de er ved at løse.
En anden interessant observation er, at forsøgspersoner som anvender overbliksgrensefladen mere hyppigt vender tilbage til tidligere sete svarposition end når de anvender de andre grænseflader. I stort omfang sker dette ved hjælp af overbliksområdet. En forklaring på denne adfærd er, at forsøgspersonerne måske erindre i hvilket område af dokumentet de fandt et særlig interessant tekstfragment. Fra forskning i papirdokumenter ved vi at læsere, uden at gøre sig det bevidst, erindrer hvor på siden de læste bestemt information (Rothkopf, 1971). Noget lignende er normalt særere at gøre i elektroniske dokumenter, særligt når teksten er uden sidemarkeringer. Overblicksgrensefladen støtter på den måde læsning ved at støtte læseren i at forbinde en position med det der læses.

Konklusion på undersøgelsen af visualisering af dokumenter

Ud fra vores eksperiment mener vi at overblicksgrensefladen støtter forsøgspersonerne bedre i at læse end de to andre grænseflader. Forsøgspersonerne fik højere karakterer for deres essays. De foretrak også at læse ved hjælp af overblicksgrensefladen og hævdede at de fik et bedre overblik over dokumentet. Desuden støttes forsøgspersonerne i at huske tekstfragmenters position i dokumentet. Derfor mener vi at langt flere informationssøgesystemer burde anvende grænseflader som overblicksgrensefladen og derved øge systemets læsevenlighed. Fiskeøjegrænsefladen støtter forsøgspersonerne i at læse hurtigt og støtter en overblickorienteret læsetil. Nogle forsøgspersoner var dog utrygge ved om vigtige afsnit af tek-
sten var blevet formindsket. Desuden viser vores ‘incidental learning’ spørgsmål at forsøgspersonerne ikke får samme dybe forståelse af de doku-
menter de læser som med de andre grænseflader. Fiskeøjgrænsefladen er derfor nyttig primært til
ildskritiske opgaver. Vores eksperiment viser
nytten af at undersøge læsning detaljeret. Først da
vi kiggede på læsevenligheden af systemerne kun-
ne vi forklare hvorfor vi observerede forskelle
i brugsvenlighed. Desuden viser eksemplet, at det
er muligt at forbedre læsevenligheden væsentligt
for grænseflader til informationssøgesystemer.

Konklusion

Fra mit arbejde i menneske-datamaskine interak-
tion har jeg i denne artikel forsøgt at vise hvordan
brugsvenlighed og læsevenlighed kan indgå i e-
valuering af informationssøgesystemer. Brugsvenligh-
hed giver fokus på hvor effektive, produktive og
tilfredse brugere er når de søger information. Læse-
venlighed vedrører tilgængelighed af dokumenter og
støtte til navigation. Tilsammen giver de to begreb-
er fokus på interaktiv informationssøgning, på
design af velfungerende brugergrænseflader og på
at relaterere evaluering til brugerens faktiske gavn af
informationssøgesystemer.

Jeg illustrerede nytten af begreberne brugs- og
læsevenlighed ved to eksempler. Evalueringen af
det tematiske kort viste hvordan almindeligt fore-
kommende antagelser om værdien af tematiske
kort ikke viser sig som forskelle i brugsvenlighed.
Til gengæld afdækkede evalueringen en modsæt-
nelse mellem den tid forsøgspersonerne brugte på
tøge og deres tilfredshed med systemerne. Kun
fordi vi brugte en vifte af mål for brugsvenlighed
kunde vi nå til en nogenlunde forståelse af gode
dørlige egenskaber ved tematiske kort. Ekspe-
mentet med visualisering af dokumenter viser at
det er muligt at fokusere på læseprocessen ved
design og evaluering af informationssøgesysteme-
er. Derved kunne overblikgrænsefladen for-
bedre den karakter forøgspersonerne opnåede
for deres essays med cirka 25% – en markant for-
bedring ud fra et fokus på læsevenlighed. De to
eksempler viser også nytten af at forstå forskelle i
brugs- og læsevenlighed ved at se på hvordan bru-
gere interagerer med informationssøgesystemer.
Kun ved at undersøge hvordan det tematiske kort
blev brugt og hvordan forsøgspersonerne intera-
gerede med visualiseringer af dokumenter kan vi
opstille forklaringer på hvorfor der er forskelle i
brugs- og læsevenlighed. Tætte analyser af inter-
aktion i eksemplerne har vist hvordan visuelle
grænseflader kan lede brugeren til at udforske
dokumenter og dokumentetsmuligheder unødvigt – om
dette er hensigtssmessigt afhænger af hvilke o
informationssøgesystemet skal støtte. Desuden
viste observationer og kommentarer fra forsøgspersonerne at de havde svært ved at forstå det
thematiske kort og fiskeøjgrænsefladen, og at det
tørker deres tilfredshed med systemerne. Grænerne over faser i læseprocessen hjælpede også
å forstå forskelle mellem grænsefladerne og
forstå hvordan de støttede og navigation i

dokumenter.

Sammenfattende er min vigtigste pointe at bru-
gergrænsefladen og interaktionen mellem mennes-
sker og datamaskiner har afgørende indflydelse
på informationssøgning. Mit forslag er derfor at
fokusere på brugs- og læsevenlighed ved design og
evaluering af informationssøgesystemer.

References

Bishop, A. P. 1999. Document structure and digital
libraries: how researchers mobilize information in
to journal articles. Information Processing and
Management, 35, 255-279.

Borg, I. & Groenen, P. 1997. Multidimensional
Scaling. Springer Verlag.

condensation of electronic publications by sen-
tence selection. Information Processing & Man-
gement, 31, 5, 675-685.

Byrne, M. D., John, B.E., Wehrle, N.S., & Crow, D.
C. 1999. The tangled web we wove: a taskonomy of
WWW use. I Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI
York NY, 544-551.

Card, S. K., Mackinlay, J. D. & Shneiderman, B.
1999. Readings in Information Visualization. San
Francisco CA: Morgan Kaufmann.

